
CS 101 Spring 2006 Final Exam Name: _______________________________ Email ID: ________ 

Page 1 of 8 

This exam is open text book but closed-notes, closed-calculator, closed-neighbor, etc.  Unlike the midterm 
exams, you have a full 3 hours to work on this exam.  Please sign the honor pledge here: 
 
 

 
 

 
 
 
 
 
 
 

  

Page 1 none 
  

Page 2 none 
  

Page 3 none 
  

Page 4 ____ / 15 
  

Page 5 ____ / 25 
  

Page 6 ____ / 20 
  

Page 7 ____ / 25 
  

Page 8 ____ / 15 
  
  

Total ____ / 100 
  

 
 
Note: When an integer type is required use int, when a floating-point type is required use double.   
 

1. (0 points) What section are you in? 
 

____ CS 101-E          ____ CS 101-7 (lab 2-3:15 p.m. Thu)   
 
____ CS 101-3 (lab 8-9:15 a.m. Thu)     ____ CS 101-8 (lab 3:30-4:45 p.m. Thu) 
 
____ CS 101-4 (lab 9:30-10:45 a.m. Thu)   ____ CS 101-9 (lab 5-6:15 p.m. Thu) 
 
____ CS 101-5 (lab 11-12:15 a.m. Thu)    ____ CS 101-10 (lab 6:30-7:45 p.m. Thu) 
 
____ CS 101-6 (lab 12:30-1:45 p.m. Thu)   ____ CS 101-11 (lab 8-9:15 p.m. Thu) 

 

XX / XX 
 



CS 101 Spring 2006 Final Exam Name: _______________________________ Email ID: ________ 

Page 2 of 8 

 
The following questions ask you to code up a class to implement an associative array. An associative array 
is composed of a collection of keys and a collection of values, where each key is associated with one value. 
The operation of finding the value associated with a key is called a lookup or indexing, and this is the most 
important operation supported by an associative array. The relationship between a key and its value is 
sometimes called a mapping or binding. For example, if the value associated with the key "bob" is 7, we say 
that our array maps "bob" to 7.  This is similar to how a dictionary operates: the key is the word you are 
looking up, such as ‘set’; the value is the definitions for that word.  
 
From the perspective of a programmer using an associative array, it can be viewed as a generalization of an 
array of objects: while a regular array maps integers (the array index) to arbitrarily typed objects (Locations, 
Strings, etc.), an associative array maps arbitrarily typed objects to arbitrarily typed objects.  For this exam, 
we will be mapping Strings to Strings. 
 
In this series of questions, we will be using the associative array as a phonebook, able to map something like 
"UVa Computer Science Department" to "434 982 2200". Therefore, you will write Java code for the 
AssocList class, providing code for the following: 
 

• Any necessary instance variables. 
• AssocList():  the default constructor. 
• void add(String key, String value):  Bind a new key to a new value 
• void increaseCapacity(): Increases the size of the array so it can hold more values 
• void reassign(String key, String newValue): Bind an old key to a new value 
• void remove(String key):  Unbind a key from a value and remove it from the key set 
• String lookup(String key): Find the value (if any) that is bound to a key 
• String toString(): Returns the String representation of this associative array 
• boolean isEmpty():  Returns if there are no elements inserted into this associative array 
• int size():  Returns the number of elements inserted into the array 

 
While there can be many different implementations of an associative array, the way in which you 
must implement it is by keeping two separate 1-dimensional arrays, called "keys" and "values". The 
String entry in the first array (the "keys" array) in a particular position is "matched" by a String 
entry in the second array (the "values" array). If keys[12] =  "UVa Computer Science Department", 
then values[12] = "434 982 2200".  

 
To emphasize that you are writing a single functional class, we have written this exam up in the form of 
skeleton code for you to complete. The different code sections equate to exam questions, and are explained 
further in the comments along with their point values. Your complete answers to these questions should be a 
functioning Java class.  Don’t forget to count your braces, parentheses, etc. We also include the full code for 
a main() method to illustrate the use of the AssocList class. 
 
When developing this class, you may assume the other methods are written.  In other words, when writing 
the add() method, you can assume that the size() method is written properly, and thus can use size() in add(). 
 

XX / XX 
 



CS 101 Spring 2006 Final Exam Name: _______________________________ Email ID: ________ 

Page 3 of 8 

// The below main() method below is simply to give you an example of how the 
// AssocList class might be used and how it should behave. You do not need 
// to modify, add, or otherwise do anything with th e below code.  Note that  
// the code here tests some of the functionality of  the AssocList class, but  
// not all. 
 
public static void main (String [] args) { 
    
   // create a new AssocList 
   AssocList phonebook = new AssocList (); 
    
   // Add entries for Papa Johns, Dominos, and Pizz a Hut 
   phonebook.add("papa johns", "434-296-7272"); 
   phonebook.add("dominos", "434-979-2656"); 
   phonebook.add("pizza hut", "434-979-5588"); 
    
   // print the phone book 
   System.out.println(phonebook); 
    
   // Try a search: lookup domino's 
   // Should print "Lookup for dominos returned: 43 4-979-2656" 
   String ret = phonebook.lookup("dominos"); 
   System.out.println("Lookup for dominos returned:  " + ret); 
    
   // Oops! Wrong domino's! Get one closer to campu s! 
   phonebook.reassign("dominos", "434-971-8383"); 
    
   // print the phone book again -- should show onl y one dominos, with  
   // updated value 
   System.out.println(phonebook); 
    
   // remove one real entry, one bogus entry 
   boolean b1 = phonebook.remove("papa johns"); 
   boolean b2 = phonebook.remove("little caesars");  
    
   // print the phone book one last time -- should show only one  
   // dominos, with updated value 
   System.out.println(phonebook); 
 
   // Show size and emptiness 
  System.out.println ("The array has " + phonebook. size() + 
                    " items; isEmpty() returns " + 
                    phonebook.isEmpty()); 
  } 
 
// Output: 
// 
// AssocList[papa johns=434-296-7272, dominos=434-9 79-2656, pizza hut=434-979-5588] 
// Lookup for dominos returned: 434-979-2656 
// AssocList[papa johns=434-296-7272, dominos=434-9 71-8383, pizza hut=434-979-5588] 
// AssocList[dominos=434-971-8383, pizza hut=434-97 9-5588] 
// The array has 2 items; isEmpty() returns false 

XX / XX 



CS 101 Spring 2006 Final Exam Name: _______________________________ Email ID: ________ 

Page 4 of 8 

 
public class AssocList { 
 
// Question 2: 10 points 
// instance variables: give the code necessary to d eclare the instance 
// variables needed by this class, using the inform ation given in the  
// introduction. The instance variables may be init ialized here or in the  
// constructor below.  You may choose any value you  want for the initial  
// capacity of the AssocList arrays 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
// Question 3: 5 points 
// Provide the code for the definition of the defau lt constructor. You may 
// initialize your instance variables here or when they are defined above. 
 
 
 
 
 
 
 
 
 
 
 
 

___ / 15 



CS 101 Spring 2006 Final Exam Name: _______________________________ Email ID: ________ 

Page 5 of 8 

  // Question 4: 10 points 
// add(): Add the key,value to an empty position in  the arrays.  You must  
// “expand” the array capacity as needed via the in creaseCapacity() method 
// (see question 5).  If the key already exists in the AssocList, then the  
// old value is replaced by the new value (the one passed in as a parameter) 
 
public void add(String key, String value) { 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
// Question 5: 15 points 
// increaseCapacity(): This method will double the size of BOTH 
// arrays, and copy the values from the old arrays to the new ones. 
 
private void increaseCapacity() { 

___ / 25 



CS 101 Spring 2006 Final Exam Name: _______________________________ Email ID: ________ 

Page 6 of 8 

// Question 6: 10 points 
// reassign(): Change the "value" associated with t he "key" to "newValue".   
// This method returns whether the reassignment was  successful (i.e. if the  
// value was not found, then it returns false; if i t was found (and thus  
// reassigned), it returns true) 

 
public boolean reassign(String key, String newValue ) { 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

// Question 7: 10 points 
// remove(): Remove the "key" and its associated va lue from the arrays.   
// Note that if a value is removed from the middle of the associative array, 
// you DO need to “shift” the successive values dow n one spot.  This method  
// should return true or false, depending on whethe r the value was removed or  
// not (i.e. if the value was not found, it will re turn false). 

 
public void remove(String key) { 

___ / 20 



CS 101 Spring 2006 Final Exam Name: _______________________________ Email ID: ________ 

Page 7 of 8 

// Question 8: 10 points 
// lookup(): Find the value associated with the key  

 
public String lookup(String key) { 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

// Question 9: 15 points 
// toString(): Return a String with the elements cu rrently stored in the queue. 
// 
// The String should be of the form, "AssocList[a=v al1, b=val2, c=val3]" where  
// a,b,c are keys and val1, val2, and val3 are the associated values. 

 
public String toString () { 

 
 
 
 
 
 
 

___ / 25 



CS 101 Spring 2006 Final Exam Name: _______________________________ Email ID: ________ 

Page 8 of 8 

// Question 10: 5 points 
// isEmpty(): Returns whether the associative array  is empty or not. 

 
public boolean isEmpty() { 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

// Question 11: 10 points 
// size(): Returns the number of elements in the as sociative array. 

 
public int size() { 

 
 
 
 
 
 
 
 

 

___ / 15 


