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Abstract. Memory errors continue to be a major source of software failure. To ad-
dress this issue, we present MEDS (Memory Error Detection System), a system for
detecting memory errors within binary executables. The system can detect buffer
overflow, uninitialized data reads, double-free, and deallocated memory access errors
and vulnerabilities. It works by using static analysis to prove memory accesses safe.
If a memory access cannot be proven safe, MEDS falls back to run-time analysis. The
system exceeds previous work with dramatic reductions in false positives, as well as
covering all memory segments (stack, static, heap). 

1 Introduction
Modern computer software is absolutely essential to today’s information and commu-
nications infrastructure. Software provides high performance, upgradeable, patchable,
and diverse functionality in nearly every computer operated device from desktop and
laptop computers, to cell phones and PDAs, and even automotive, marine, and aeronau-
tical environments. 

Considering the importance of computer software, it is no surprise that we demand
software be reliable. Software must be reliable in two ways: it must be free from bugs
which crash the program, and it must be free from vulnerabilities which might let a ma-
licious user attack the system. Current software development practices yield a variety
of memory errors: buffer overflow, array out-of-bound, double-free, and uninitialized
pointer dereference errors. These errors may be relatively benign and only cause a pro-
gram to crash. However, in a critical application, there may be significant dangers, such
as important data being lost, aeroplanes being off course, or breach of security if the bug
is exploited by a malicious attacker.

While there are a variety of memory-safe languages, such as Java and C#, that are
available to address this problem, developers are reluctant or unable to use such lan-
guages for a variety of reasons. First, there is significant cost associated with maintain-
ing memory safety, and software developers may decide that the system performance
goals cannot be met with a memory safe language. Second, many applications existed
before the wide availability of such languages, and the cost of moving from a non-safe
language to a safe language is prohibitive. Finally, language support might be lacking
on the platform in which the system is to be deployed. For example, Java run-time li-
braries might not exist for an embedded GPS device. Consequently, memory safe lan-
guages are not always a viable option for software.

An even worse situation arises when the software’s source code is not available.
Such a situation could occur because some or all of the software comes from an untrust-



ed third party. For example, a third party library might be used for font rendering, or the
entire project might be developed by an untrusted source and used in critical infrastruc-
ture. Another example is black-box testing, where the tester must find memory errors
with no access to the source code. Thus, a tool to detect memory errors requiring only
the binary executable file would be of great use for testing and security purposes.

To meet this need, we have developed MEDS: The Memory-Error Detection Sys-
tem. MEDS operates by using a combination of static and dynamic analysis to achieve
a variety of advances to the state-of-the-art in binary-only memory error detection.
MEDS provides:

1. Comprehensive protection of all memory segments, including global-static data,
heap-allocated data structures, and stack allocations without requiring debug in-
formation. Previous techniques required debug information and failed to protect
the stack due to excessive false positive rates.

2. Significant reduction of false positive rates. Previous techniques had several cat-
egories of false positives which would render those techniques useless for on-line
protection, and much less desirable for offline use.

3. Aggressive static and dynamic analysis provide higher levels of protection with
run-time performance comparable to previous, less effective techniques.

4. No reliance on source code, object code, or debugging information. Many mem-
ory error detectors require source code or source code changes, or object code so
that custom allocation and tracking libraries can be linked.

5. An optional profiling step to help separate false positives from actual errors and
provide further performance benefits. Previous techniques have no mechanisms
for helping a user differentiate real errors from falsely reported errors.

Together, these advances demonstrate that MEDS provides significant improvement to
state-of-the-art memory overwriting defences. 

The remainder of the paper is organized as follows: Section 2 describes the MEDS
system in detail, while Section 3 gives experimental evidence of MEDS’ effectiveness.
Section 4 discusses related work, and finally Section 5 summarizes our findings.

2 MEDS

2.1 System Overview
MEDS, as shown in Fig. 1, takes a binary program as input. The binary is used for static
analysis and to prepare the mmStrata run-time system. MEDS first prepares a run-time
system using a binary instrumentation tool we call the Stratafier, so named because it
inserts a software dynamic translation system called Strata into an executable image.

After the binary has been “stratafied,” MEDS runs a static analysis step to create an
annotations file. The annotations file contains information obtained during all types of
analysis to facilitate further analysis and performance improvements. Furthermore, the
annotation file is the means for communication among all MEDS components. 

Finally, the run-time system is ready to detect memory errors. When run, the re-
vised program binary is dynamically instrumented by mmStrata. Memory writes that



cannot be statically proven safe are checked for safety. Any violations detected result
in further annotations (with diagnostic information) which are later reported to the user.

Sections 2.2-2.6 discuss these components in more detail.

2.2 MEDS Type System
To effectively detect memory errors, MEDS stores metadata for every program storage
location: each hardware register and memory location is assigned its own metadata. The
base system has two types of metadata:

• n – a numeric type (i.e. non-pointer) object is held in the storage location.
• pobj – a pointer is stored in the corresponding storage location with referent obj.

Note that this metadata carries with it the bounds of obj, so that dereferencing of
this object can be bounds checked. Furthermore, two objects of the same type,
with different bounds, receive distinct metadata.

This data is initialized at program start-up, and updated for each program operation so
that the metadata is consistent with the value held in each storage location. For example,
consider a mov eax,[0x8100800] instruction. The metadata associated with stor-
age location 0x8100800 is loaded, and stored into the metadata for register eax. For
instructions that involve computation, a metadata computation is performed as well.
Fig. 2 shows how metadata types are combined to compute a new metadata type. As the
figure shows, most operations simply return that the result is numeric. Add and sub-
tract operations are valid on pointers, and can result in a pointer type. A few opera-
tions, namely bitwise and and or operations, can result in either a pointer or a numeric
type when a pointer type is used for input. For these operations, we use a simple heu-
ristic that examines the result value. If the result stays within the referent object, then
the result is a pointer, otherwise the result is a numeric.

For efficiency purposes, memory is divided into pointer-sized (4-byte) blocks and
one metadata entry is kept for each block. In our implementation, the metadata is a
pointer to a bounds-information object. The object contains the metadata type, as well
as information about the referent if the type is a pointer. Furthermore, a reference count

Fig. 1. High-level MEDS overview.
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is maintained so we know when it is safe to deallocate the bounds-information in a gar-
bage collected manner. In the dynamic systems, metadata information is kept in a small
array for registers, and a splay tree (for fast common case look-ups) for memory.
Bounds-information objects are allocated whenever the system detects the allocation of
an object by the program, and are lazily deallocated after the corresponding program
object is deallocated and the reference count falls to zero. 

2.2.1 Challenges
Although the MEDS type system sounds easy to implement, there are a variety of chal-
lenges. These challenges are maintaining bounds information, type identification, code
identification, and handling non-standard code. This section describes each challenge
and gives a high-level view of how it was overcome. Complete details about the solu-
tions are in following sections, as noted.

The first challenge the MEDS system faces is that every object created in the system
needs to have a bounds-information object associated with it. For heap objects, this is
as simple as having the dynamic system watch calls to allocation and deallocation rou-
tines. For static-global and stack objects, allocating the bounds-information object
properly is not as easy. The information for static-global variables comes from the static
analyzer (see Section 2.4). Stack variables are by definition at variable addresses, and
bounds-information objects cannot be allocated at program start-up. Again, the static
analyzer helps by analyzing stack frames (again, details in Section 2.4) which the dy-
namic system uses to create bounds-information objects dynamically. For functions that
are unanalyzeable (because they contain dynamic stack allocation via alloca, or
some other non-standard stack manipulation), the dynamic run-time system creates and
updates bounds-information objects for the stack frames (see Section 2.6). 

Besides tracking object creation, MEDS also needs to know whether a created ob-
ject is a numeric type or a pointer to another object to set the metadata for the newly
created object. For many objects this is easy, e.g. objects returned from malloc never
contain a pointer initially. But consider the instruction mov eax,$0x8108004.
Should eax be considered a pointer after this instruction? If so, to what object does it
point? In the instruction lea eax,[esp + 36], to which stack frame should eax
point? If statically allocated memory were to contain the value 0x8108004, is this val-
ue a pointer? Compiler optimizations can produce code in which a pointer is initialized
to point outside its referent data object, because accesses through the pointer will al-
ways contain an offset to bring the address within the referent object. These are all cases
of a general pointer identification problem. The static analyzer and the profiler combine
forces to resolve questions about any value which might be a pointer (Sections 2.4-2.5).

Fig. 2. Rules for combining metadata types.

+ p n - p n &,| p n *, /, %, ^, ~, <<, >> p n
p n p  p n p  p p/n p/n  p n n
n p n n n n n p/n n n n n



Another major challenge faced by MEDS is how to locate the executable code with-
in a program. The static analyzer solves this problem (see Section 2.4).

Compiler optimizations and non-standard code can cause the type system to erro-
neously consider some objects to be numeric. Consider the code in Fig. 3 as an example
of code commonly created by a combination of strength reduction and induction varia-
ble elimination [1]. In the loop preheader, register ecx gets assigned the offset from ob-
ject a to object b, eliminating complex address arithmetic and multiple induction vari-
able updates. However, the basic type system assigns ecx as type numeric. Thus, both
the load and store instructions in the loop are seen as references to variable a, when
clearly one is a reference to variable b. To solve this problem, we extend the basic type
system with an offset type, optr1,ptr2. The offset type is created when the difference
between two pointers is taken. In most operations, the offset type behaves as numeric,
except in the case of adding a pointer and an offset; when pptr1+optr1,ptr2 is cal-
culated, the result is pptr2. Care must be taken when deallocating objects to ensure that
all offset types that reference the object are marked as invalid. 

A problematic non-standard coding style is to use block operations to work on an
object as an aggregate, e.g. using memcpy to copy a list node from one location in
memory to a second location. Since pointers are almost always on a word boundary, and
most block operations occur on word or double-word boundaries, the common case is
handled without problem. However, if memcpy or a similar user-written routine uses
byte-by-byte operations, then the byte load and byte store operations seem inherently to
have a numeric type. Consequently, the copy can cause the type system to lose infor-
mation about pointers in the destination of the byte-by-byte copy. MEDS solves this
problem by considering the most significant byte of a pointer to be a pointer regardless
of how or where it is stored. Thus, sign extension and truncation of the “pointer,” as one
byte of the pointer is copied, results in no issues. Likewise, we only set the metadata for
a 4-byte memory storage location if the most significant byte is written. 

Before moving to an in-depth description of each tool, we first briefly examine
Software Dynamic Translation, a mechanism used to dynamically instrument binaries.

2.3 Software Dynamic Translation
Strata is a software dynamic translation (SDT) system designed for high retargetability
and low overhead translation. Strata has been used for a variety of applications includ-
ing system call monitoring, dynamic download of code from a server, and enforcing se-
curity policies [2, 3]. This section describes some of the basic features of Strata which

for(i=0;i<N;i++)
a[i]=b[i];

eax=&a // eax is ptr to a
ecx=&b // ecx is ptr to b
ecx=ecx-eax // what type is ecx?

L1:mov ebx,[eax+ecx] // ptr to a?
mov [eax],ebx
add eax,4
…

Fig. 3. Strength-reduction example.



are important to understanding the experiments presented later. For an in-depth discus-
sion of Strata, please refer to previous publications [4, 5, 6].

2.3.1 Strata Overview
Strata operates as a co-routine with the program binary it is translating, as shown in Fig.
4. As the figure shows, each time Strata encounters a new instruction address (i.e., PC),
it first checks to see if the address has been translated into the fragment cache. The frag-
ment cache is a software instruction cache that stores portions of code that have been
translated from the native binary. The fragment cache is made up of fragments, which
are the basic unit of translation. If Strata finds that a requested PC has not been previ-
ously translated, Strata allocates a fragment and begins translation. Once a termination
condition is met, Strata emits any trampolines that are necessary. Trampolines are piec-
es of code emitted into the fragment cache to transfer control back to Strata. Most con-
trol transfer instructions (CTIs) are initially linked to trampolines (unless the transfer
target already exists in the fragment cache). Once a CTI’s target instruction becomes
available in the fragment cache, the CTI is linked directly to the destination, avoiding
future uses of the trampoline. This mechanism is called fragment linking and avoids sig-
nificant overhead associated with returning to Strata after every fragment [4].

Strata’s translation process can be overridden to implement a new SDT use. In this
paper, we modify Strata’s default translation process to insert instrumentation to en-
force the MEDS type system in both the profiler driven analysis (Section 2.5) and the
online detector (Section 2.6). 

2.4 Static Analysis
The MEDS Static Analyzer is implemented as a plug-in to the popular IDA Pro disas-
sembler [7]. After IDA Pro completes its disassembly of the program binary, the static
analyzer plug-in analyzes the program and produces informative annotations. 

Fig. 4. High-level overview of Strata operation.
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A preliminary step is to assist IDA Pro in the disassembly. Disassembly of a pro-
gram binary involves solving the problem of precisely identifying code and data within
the binary. This problem is not perfectly solvable at present. The two basic design ap-
proaches for disassemblers, recursive descent and linear scan, have different strengths
and weaknesses when analyzing different program binaries. The static analyzer im-
proves upon the recursive descent approach of IDA Pro by using a linear scan disassem-
bler (the GNU Linux tool objdump) to get a second opinion on which addresses are
code and which are data. If code identified by objdump but not identified by IDA Pro
can now be successfully analyzed by IDA Pro, as requested by the static analyzer, the
code is incorporated into the IDA Pro code database. This augmentation of IDA Pro’s
abilities improves the analysis coverage of MEDS and prevents false positives that
would arise if code sections escaped static analysis and received no annotations.

Informative annotations are provided to identify all functions and static-global data
objects by three attributes: name, starting address, and total size. If the executable has
been stripped, the names will be dummy names generated by IDA Pro. The static-global
data annotations will be used at run time to create bounds-information objects for static-
global memory objects, as described in Section 2.2.1. The function annotations are used
to identify the location of key library functions that allocate memory (such as malloc),
so that heap memory referents can be tracked at run time.

The most important informative annotations describe the run time stack. Functions
that allocate a local stack frame, or activation record, with space for local variables must
have their stack memory objects tracked at run time. The instruction that allocates space
for the stack frame (usually by subtracting the stack frame size from the stack pointer)
is identified by a series of annotations that enable the run time dynamic analysis to di-
vide the stack region into local variables, saved registers, and a saved return address.
The run time dynamic analysis will then be able to check the bounds of stack references
so that a memory access cannot overflow from one stack object to another (e.g. from a
local variable to the return address). Precise identification of all sub-regions of the run-
time stack permits monitoring of stack accesses without incurring false positives or
false negatives. This synergy of static and dynamic analysis is a significant advance
over comparable prior work in this area, which relied entirely on dynamic analysis and
suffered from numerous stack-related false positives, as described in Section 4.

2.5 MEDS Profiler
The optional MEDS profiler is based on Strata, and uses information from the static
analysis phase to mimic the MEDS type system. One of the main goals is to reduce false
positives. The MEDS profiler does this by answering the question “is this object a point-
er, and if so, to what does it point?”  

To answer this question, any time an object might be a pointer (i.e. is pointer-sized
and has a value that might legitimately make it a pointer), it is assigned a metadata type
of q. The q-type tells the profiler that the decision on whether the object is a pointer has
not yet been made, and carries along information about the creation point of the object.
When the result of the operation depends on whether the q-type should have been a
pointer, the profiler lazily evaluates it to either a p-type or an n-type by determining if
there’s a corresponding referent for the object’s current value. Ultimately, if a q-type is



dereferenced in the program, the profiler records which object was dereferenced. If, at
the end of execution, the q-type always referenced the same object, then the profiler
records that the q-type should be created as a pointer type during final execution. Oth-
erwise, the profiler fails to prove that the object was a pointer, and safely reverts to the
assumption that the created object is a numeric type. In either case, an informative an-
notation is written into the annotations file to inform the other parts of the system. 

If no profiler information is available (for example, if the profiler was not run),
MEDS falls back to a simple heuristic that works quite well. The heuristic assumes that
a static constant is a pointer if and only if it is within the bounds of some data object.
Section 3 gives evidence that this simple heuristic works well for many benchmarks,
but that some benchmarks will require stronger static analysis or profiler information.

2.6 mmStrata
The MEDS dynamic monitoring system is called mmStrata (memory-monitor Strata).
It makes the final determination of whether a memory access causes a memory error or
not. To make this determination, it strictly enforces the MEDS type system. At program
start-up, mmStrata uses informative annotations created during static and profile anal-
yses to make decisions about which static entities are pointers and sets metadata appro-
priately. A bounds-information object is created for each program object at start-up
(statically allocated data, as well as bounds-information objects for the program’s in-
coming arguments that exist on the stack), and the program begins to execute.

During execution, mmStrata watches for newly created objects. For example, calls
to dynamic memory allocation routines are considered to create new objects. Likewise,
when mmStrata reaches a program point that static analysis has determined creates a
new stack frame, mmStrata creates new bounds-information objects for the stack frame.
However, some functions fail to have a stack frame clearly identified, and the dynamic
system must still create bounds-information objects to protect the non-analyzed stack
frame. To create these objects, the dynamic system watches call instructions (or other
control flow instructions that cross function boundaries). If the call instruction targets a
function that failed the static analysis of the stack frame, then the dynamic system cre-
ates a bounds-information object to represent a new, empty stack frame. While within
this function, changes in the stack pointer cause a change in bounds to the bounds-in-
formation object. For example, if a dynamic stack allocation (perhaps from alloca)
extends the stack by 700 bytes, the bounds contained within the bounds-information ob-
ject are extended. Another example is if outgoing arguments for a function call are
pushed, the bounds within the bounds-information object are extended, then when the
call returns, those arguments are removed from the stack, and the bounds shrink. In one
function we analyzed, the stack frame was created by moving 0 into the ecx register,
then pushing ecx 128 times. Consequently, we believe this mechanism for monitoring
non-standard stack frames is a key part of providing complete protection.

MEDS deals with stack deallocations the same way. If the stack frame is being
watched dynamically, the bounds within the bounds-information object shrink. If the
bounds shrink to the point at which the object has negative size, we assume that the
stack frame is no longer needed and mark the stack frame as invalid, and mark the
bounds-information object ready for deallocation when the reference count falls to zero. 



With the information provided by the static analysis phase, the profiler and the
MEDS type system, mmStrata can detect a variety of memory errors. For example,
mmStrata detects double-free errors by monitoring calls to allocation and deallocation
routines. Out of bounds pointer writes are detected by examining the metadata associ-
ated with the pointer to determine if the write is in-bounds. Writes to stale objects are
detected by examining the valid bit of the bounds-information object. MEDS clearly
provides a general defence that can detect most memory errors within a binary execut-
able. The next section discusses limitations where memory errors might be missed.

2.7 Limitations
MEDS currently has several limitations. These limitations are active areas of research.

The first limitation is how signals are handled. The base Strata system watches
asynchronous signals correctly, efficiently, and transparently. The mmStrata exten-
sions, however, need to be enhanced. In particular, new bounds-information objects
need to be created for the stack area when a signal is caught. We do not expect this to
be a challenging extension, but our system currently does not handle signals.

Like signal handling, system calls to mmap are a challenge. The mmap system call
offers a wide variety of ways in which memory can be allocated, including mapping
multiple address ranges to the same physical memory. MEDS only handles basic mmap
calls that simply allocate memory. Again, we do not see this as a challenging extension.

Our system currently only supports statically linked code. Dynamic linking makes
communication through the annotation file more difficult, as absolute addresses cannot
be used. Instead, MEDS would have to use a path to a dynamically linked library and
an offset within the library. The run-time system would have to watch dynamically
loaded libraries and adjust its data structures appropriately. For libraries that are chosen
based on dynamic input from the user, the system needs the ability to run the static anal-
ysis phase online. These same solutions would be necessary for a system that uses self-
modifying code or generates code on the fly (such as a JIT). Our system currently im-
plements none of these solutions.

Our system also does not currently handle kernel-level threading. To handle thread-
ing efficiently would be significant work, but not impossible. One solution would in-
volving using a locking mechanism to protect all metadata updates. This could be pro-
hibitively expensive, however, and a scheme that moves exclusive metadata access be-
tween threads would likely provide better performance. The best mechanism for
threading support is an ongoing area of research.

A subtle, yet important limitation is that our system only protects variables at the
allocation level. For example, consider a call to malloc that allocates the structure
shown in Fig. 5. MEDS will provide protection so that no pointer to the object can be
dereferenced outside the object. However, the user_input buffer may still over- or
underflow and cause the program to misbehave. We believe that modern methods for
detecting variable types will allow us to solve this problem, but our current implemen-
tation of this mechanism is incomplete and not reported here. A related problem is how
to deal with third party allocators (such as an arena allocator) built on top of system al-
location routines (such as malloc, sbrk, or mmap).   If the application uses a third
party allocator, MEDS may only provide a very coarse-grained protection for the super-



objects allocated with the underlying allocation routines. How to solve these problems
is an area of ongoing research.

2.8 MEDS Summary
MEDS, the Memory Error Detection System, is a system to detect memory errors in bi-
nary executables. No source or object code is required to use the system. The system
operates by first running a static analysis pass, then optionally a profiling pass. Finally,
a software dynamic translation-based system called mmStrata is used to detect memory
errors. Each of these systems work by applying the MEDS type system, composed in
its most basic form of numeric and pointer types. Simple extensions allow for the offset
type to reduce false positives, and the q-type in the profiler for further reduce false pos-
itives. Section 3 gives compelling evidence to the efficacy of this approach.

3 Experimental Results
We separate our evaluation of MEDS into two broad categories. First is a security eval-
uation in which we use a selection of real benchmarks to test for true and false overwrit-
ing detections, as well as any errors that the MEDS system may have missed (Section
3.2). The second category evaluates the performance of the MEDS system on a variety
of benchmarks (Section 3.3). Before that, however, we briefly describe the experimen-
tal setup (Section 3.1).

3.1 Experimental Setup
Both exploit testing and benchmark timings were performed. All test programs were
evaluated on an Opteron 148 CPU, running Linux Fedora Core 6, using the gcc 3.2.2
compiler w/static linking, and -O3 -fomit-frame-pointer optimization flags. While
MEDS is designed to enable detection of read or write memory errors, only memory
overwrites were monitored in the configuration tested.

The benchmark programs evaluated are shown in Fig. 6. The applications in the
evaluation included standard benchmark suites with no expected vulnerabilities such as
the SPEC CPU2000 benchmark suite [8]. Applications with known or seeded vulnera-
bilities, including the Apache web server, many of the relevant cases in the SAMATE
static analysis test suite, the Wilander buffer overflow suite, and the BASS vulnerability
suite, were also included in the evaluation [9, 10, 11]. In addition, commonly used ap-
plications and test benchmarks were included in the evaluation such as the binutils-2.18
utility suite and the vpo [12] regression test suite, which includes benchmarks such as
fm-part (VLSI placement program), matrix multiply, 8-queens solver, sieve of Erato-
sthenes, wc, Whetstone, Dhrystone, a travelling salesperson problem solver, etc. 

struct foo {
    int rootID;
    char user_input[100];
    int (*function_pointer)();
}

Fig. 5. Allocation-level granularity example.



In addition, several of the vpo test suite benchmarks were seeded and tested with
four categories of vulnerabilities: buffer overflows, array out of bounds accesses, dou-
ble free/dangling pointer references, and uninitialized pointer dereferences.

3.2 Error Detection Evaluation
The benchmarks listed above were run to evaluate detection of memory overwriting.

3.2.1 False Positives
A warning generated by the MEDS system is considered a false positive if it is deter-
mined that a memory overwrite or underwrite has been detected by the system, but no
overwrite or underwrite actually occurred.

As seen in Fig. 7, for SPEC CPU2000, some false positives occurred when the pro-
filing pass was not performed. For the set of applications with known or seeded vulner-
abilities, mmStrata produced warnings only when memory overwriting was attempted,
i.e. it generated no false positive reports. For the other applications tested, only apache
and queens produced false positives, which were eliminated by profiling. No other tests
yielded false positives, even without the profiling pass, as shown in Fig. 8. 

For all benchmarks which produced false positive reports prior to profiling, the false
positive was eliminated by the profiling pass, due to profiler assistance in solving the
problems described in Section 2.2.1. The profiling pass did not generate any new false
positive reports, because the profiling algorithm is conservative.

Several benchmarks from SPEC CPU 2000 (gap, parser, vortex, vpr) con-
tained code which was generated as the result of the combination of strength reduction
and induction variable elimination. After the introduction of the offset type to the shad-
ow type system, false positives due to encountering this type of code were eliminated.

3.2.2 False Negatives
False negatives are recorded when the MEDS system does not generate a warning report
when a memory overwrite should be detected. To evaluate false negatives, we verified

Benchmark Suite Description

SPEC CPU 2000 ammp, art, bzip2, crafty, equake, gap, gcc, gzip, mcf, mesa, 
parser, perlbmk, twolf, vortex, vpr

Wilander buffer overflow suite buffer overflows on the stack, heap, and BSS

Benchmarks for Architectural Security 
Systems (BASS)

buffer overflows: 01_overflow_fp, 02_overflow_variable, 
04_overflow_shellcode_injection

SAMATE Reference Dataset test cases related to memory overwriting

Apache web server with manually seeded vulnerability

binutils nm, objdump, readelf, size, strings

VPO compiler test suite
ackerman, arraymerge, banner, bubblesort, cal, cb, dhrys-
tone, fm-part, grep, hello, iir, matmult, od, puzzle, queens, 
quicksort, shellsort, sieve, strip, subpuzzle, wc, whetstone 

nasm netwide x86 assembler

Fig. 6. Benchmarks evaluated.



that all the memory overwriting occurrences in our benchmarks were detected by our
system. We also tested several vpo regression tests seeded with the following four cat-
egories of vulnerabilities: buffer overflows, array out of bounds accesses, double free/
dangling pointer references, and uninitialized pointer dereferences. Our tool detected
every instance of the seeded vulnerabilities. No false negatives for coarse-grained mem-
ory overwrites were generated for our test applications. Some fine-grained false nega-
tives occurred, but these are outside the scope of this paper.

Benchmark Pre-Profile False
Positives?

Post-Profile False
Positives?

Required Offset 
Type Extension?

MEDS Slowdown
(ref input)

ammp No No No 24.4

art No No No 9.5

bzip2 Yes No No 44.8

crafty Yes No No 35.4

equake Yes No No 20.4

gap Yes No Yes 64.9

gcc No No No 61.9

gzip Yes No No 34.9

mcf No No No 15.0

mesa No No No 34.4

parser Yes No Yes 39.7

perlbmk Yes No No 51.0

twolf Yes No No 34.8

vortex No No Yes 52.0

vpr No No Yes 35.9

Geo. mean 32.6

Fig. 7. False positive and performance results for SPEC CPU 2000.

Benchmark Suite Pre-profiler 
False Positives?

Post-profiler 
False Positives?

Required Offset 
Type Extension?

Wilander No No No

BASS No No No

SAMATE No No No

Apache Yes No No

binutils No No No

VPO compiler test 
suite

queens: Yes 
Others: No No No

nasm No No No

Fig. 8. False positive results for assorted benchmarks.



3.3 Performance
Fig. 7 shows the performance of the MEDS system normalized to native execution for
a variety of SPEC CPU2000 benchmarks. The best performing benchmark is 179.art
at only 9.5 times slower than native speed. The worst performing is 254.gap at 65
times slower than native speed, while the geometric mean of the benchmarks is about
33 times slower than native execution. We realize that this level of run-time overhead
is too high for many application domains. However we believe that it is very suitable
for off-line testing and debugging. Furthermore, it may be useful in secure environ-
ments for programs that do not have high throughput requirements, such as I/O bound
applications, interactive applications or lightly loaded server programs.

As our implementation has only had modest tuning effort, we are encouraged that
MEDS performs as well as past techniques, even though it is a more comprehensive sys-
tem with a more in-depth type system. The closest related work, Annelid based on Val-
grind, reported a geometric mean slowdown of 36.7 times (for the SPEC benchmarks
they report), without protecting the stack, but with the additional overhead of protecting
memory reads [13]. For the same benchmarks, MEDS shows 32.6 times slowdown.
Continued overhead reduction is an area of ongoing research.

4 Related Work
Over time, a wide variety of memory overwriting exploits have been invented, and a
corresponding variety of software defenses have been developed. Some defenses are
specific to particular subsets of all memory overwriting exploits, such as stack smash-
ing, format string, code injection, or buffer overflow exploits [14, 15, 16, 17, 18, 19,
20]. Many memory overwriting defenses require source code or pre-linkage object
code, unlike MEDS, making their use infeasible in many computing environments [20,
19, 17, 21, 22]. Rewriting software in a memory-safe language (e.g., Java, C#) would
prevent memory overwriting exploits, but would require source code and great time ex-
penditure. Some defenses are probabilistic, using randomization, and therefore subject
to being defeated by brute force attacks [23]. Many defenses are designed only to pro-
tect control data, i.e. code addresses used in control flow, such as return addresses and
function pointers [20, 24]. However, security-critical data can include non-control data
[25]. MEDS protects against all memory overwrites, whether the target of the overwrite
is control data or not, and regardless of whether the attack vector is a buffer overflow,
format string exploit, integer overflow of a pointer, double-free, etc.

The most comparable prior work is the Annelid tool, which was based upon the Val-
grind SDT [13]. Annelid detects out of bounds reads and writes to global-static and heap
memory objects. Lacking a profiler and static analyzer, it incurred too many false pos-
itives for stack objects, and the stack portion of Annelid was disabled before comple-
tion. Annelid also encountered the problems with false positives discussed in Section
2.2.1. The pointer identification problem was left unsolved, causing some false posi-
tives. The difference between pointers problem was also left unsolved, although the au-
thors proposed that a pointer offset type (the MEDS solution) could be implemented in
the future. Annelid segments (equivalent to MEDS bounds-information objects) have
an unsafe cleanup mechanism. The only sound solution proposed by the authors was a
slow run-time garbage collection mechanism that would have increased overhead. Fi-



nally, Annelid makes use of some (not usually available) debug information in the ex-
ecutable, unlike MEDS. It appears that Annelid is not being maintained or used.

5 Summary
This paper has described MEDS, the Memory Error Detection System. MEDS detects
common memory errors, such as buffer overflows, within binary executable programs:
no source or object code is required. MEDS starts with a static analysis phase which an-
alyzes functions and objects in the program binary. The static analyzer writes informa-
tive annotations into a file, which are read by an optional profiling step. The profiling
step helps avoid several classes of false positives unsolved by previous work. Finally,
MEDS instruments the program via software dynamic translation to detect memory er-
rors. We show how extending the type system to include the offset-type eliminates a va-
riety of common false positives. Performance of the system is 33 times slower than na-
tive execution for our SPEC CPU2000 benchmarks. This performance is suitable for
off-line uses and I/O intensive or low throughput applications.
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