
In 18th ACM Conference on Computer and Communications Security, Chicago, October 2011

Automated Black-Box Detection of
Side-Channel Vulnerabilities in Web Applications

Peter Chapman
University of Virginia

pchapman@cs.virginia.edu

David Evans
University of Virginia
evans@virginia.edu

ABSTRACT
Web applications divide their state between the client and the server.
The frequent and highly dynamic client-server communication that
is characteristic of modern web applications leaves them vulner-
able to side-channel leaks, even over encrypted connections. We
describe a black-box tool for detecting and quantifying the sever-
ity of side-channel vulnerabilities by analyzing network traffic over
repeated crawls of a web application. By viewing the adversary as
a multi-dimensional classifier, we develop a methodology to more
thoroughly measure the distinguishably of network traffic for a va-
riety of classification metrics. We evaluate our detection system on
several deployed web applications, accounting for proposed client
and server-side defenses. Our results illustrate the limitations of en-
tropy measurements used in previous work and show how our new
metric based on the Fisher criterion can be used to more robustly
reveal side-channels in web applications.

1. INTRODUCTION
Communication between the client and server in a web applica-

tion is necessary for meaningful and efficient operation, but with-
out care, can leak substantial information through a variety of side-
channels. Previous work has demonstrated the ability to profile
transfer size distributions over encrypted connections in order to
identify visited websites [6, 8, 30]. Today, such side-channel leaks
are especially pervasive and difficult to mitigate due to modern web
development techniques that require increased client-server com-
munication [5]. The competitive marketplace encourages a dy-
namic and responsive browsing experience. Using AJAX and sim-
ilar technologies, information is brought to the user on demand,
limiting unnecessary traffic, decreasing latency, and increasing re-
sponsiveness. By design, this approach separates traffic into a se-
ries of small requests that are specific to the actions of the user [27].

Analyzing network activity generated by web applications can
reveal a surprising amount of information. Most attacks examine
the size distributions of transmitted data, since the most commonly
used encryption mechanisms on the web make no effort to conceal
the size of the payload. As a result, traffic patterns can be correlated
with specific keypresses and mouse clicks. Fundamentally, these

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to re-
publish, to post on servers or to redistribute to lists, is strongly encouraged.
CCS 2011, October 17–21, 2011, Chicago, Illinois, USA.

attacks leverage correlations between the network traffic and the
collective state of the web application.

To assist developers who want to create web applications that are
responsive but have limited side-channel leaks, we developed a sys-
tem to automatically detect and quantify the side-channel leaks in a
web application. Our system identifies side-channel vulnerabilities
by extensively crawling a target application to find network traffic
that is predictably associated with changes in the application state.
We use a black-box approach for compatibility and accuracy. Driv-
ing an actual web browser enables the deployment of our tools on
any website, regardless of back-end implementation or complex-
ity. Further, by generating the same traffic as would be seen by
an attacker we ensure that information leaks due to unpredictable
elements such as plug-ins or third-party scripts are still detected.

Previous work has used the concept of an attacker’s ambiguity
set, measured either in reduction power [5, 22, 33] or conditional
entropy [21, 33] to measure information leaks. Our results show
that entropy-based metrics are very fragile and do not adequately
measure the risk of information leaking for complex web applica-
tions under realistic conditions. As an alternative metric, we adopt
the Fisher criterion [11] to measure the classifiability of web appli-
cation network traffic, and by extension, information leakage.

Contributions and Overview. We consider two threat models for
studying web application side-channel leaks: one where the at-
tacker listens to encrypted wireless traffic and another where an
attacker intercepts encrypted network traffic at the level of an Inter-
net service provider (Section 3.2).

We present a black-box web application crawling system that
logs network traffic while interacting with a website in the same
manner as an actual user using a standard web browser, outputting
a set of web application states and user actions with generated net-
work traffic traces, conceptually represented as a finite-state ma-
chine (Section 3). We have developed a rich XML specification
format to configure the crawler to interact effectively with many
websites (Section 4.2).

Using the finite-state machine output of the web application ex-
ploration, we consider information leaks from the perspective of a
multi-class classification problem (Section 5). In building our ex-
ample nearest-centroid classifier, we enumerate three distance met-
rics that measure the similarity of two network traces. Using the
same set of distance metrics, we measure the entropy of user ac-
tions in the web application in the same manner as prior work and
show that the variation and noise in real web applications make
the concept of an uncertainty set insufficient for describing infor-
mation leaks (Section 5.2). This motivates an alternative measure-
ment based on the Fisher criterion to quantify the classifiability and
therefore information leakage of network traces in a web applica-
tion based on the same set of distance metrics (Section 5.3).



We evaluate our crawling system and leak quantification tech-
niques on several complex web applications. Compared to entropy-
based metrics, we find the Fisher criterion is more resilient to out-
liers in trace data and provides a more useful measure of an appli-
cations vulnerability to side-channel classification (Section 6).

2. RELATED WORK
The study of side-channel vulnerabilities extends at least to the

World War II [13]. Pervious work has considered side-channel vul-
nerabilities in a wide variety of domains, including cryptographic
implementations [19], sound from dot matrix printers [1], and of
course, web traffic [5, 6, 8, 30]. The most effective side-channel at-
tacks on web applications have examined the size distributions of
traffic [6,8,30]. The vulnerabilities stem from the individual trans-
fer of objects in a web page, which vary significantly in size and
quantity. Furthermore, due to the deployment of stream ciphers on
the Internet [5], the sizes of objects are often visible in encrypted
traffic. Tunneled connections [3, 21] and even encrypted wireless
connections [3, 5] are vulnerable to these attacks.

The interactive traffic of modern web applications presents at-
tackers with rich opportunities for side-channel attacks. Chen et al.
demonstrated how an attacker could identify specific user actions
within a web application based on intercepted encrypted traffic [5].
The leaks they found in search engines, a personal health informa-
tion management system, a tax application, and a banking site re-
quired application-specific mitigation techniques for adequate and
efficient protection. Search engine suggestions are a suitable exam-
ple to demonstrate these attacks. As the user types a search query,
the client sends the server the typed keys and the server returns a
list of suggestions. An attacker can leverage the fact that the size
of the suggestions sent after each keystroke vary depending on the
typed letter to reconstruct search terms. Figure 1 shows how a sin-
gle query is divided into a revealing series of network transfers. For
a single letter, the attacker only needs to match the traffic to a set
of 26 possibilities (letters A through Z). With the next letter, the
attacker can use the reduced set of possibilities given by the first
letter to drastically reduce the search space.

Side-Channel Vulnerability Detectors. Zhang et al. created Side-
buster [33], a tool that automates the detection of side-channel vul-
nerabilities in web applications built with the Google Web Toolkit
(GWT) [16]. GWT developers write both the client and server code
in Java and the framework generates the JavaScript code for the
browser and automatically manages asynchronous communication.
Every instance in the code where the client and server interact can

Client Google
 748

674

d

 755
681

da

Client Google
 762

679

dan

 775
672

dang

Figure 1: Search engines leak queries through the network
traffic generated by auto-complete suggestions. The numbers
indicate the number of bytes transferred.

be found through a straightforward static analysis. Sidebuster then
quantifies the leaks using rerun testing, which initiates the stati-
cally discovered communication-inducing action using a simulated
browser called HtmlUnit [4] and records the network traffic with
Jpcap [14]. It measures the leaks by calculating the conditional
entropy for each tested action. Sidebuster was tested on several
demonstration applications and mock websites and shown to dis-
cover significant information leaks. We choose a black-box ap-
proach, in part, to create a leak discovery tool that is not limited to
a particular implementation platform.

Black-box Web Application Exploration and Testing. Black-
box exploration of traditional applications is often performed as
part of test case generation [18, 23]. Many commercial automated
black-box application security analysis tools are available (but none
yet consider side-channel leaks) [2]. In the context of modern web-
sites, black-box exploration is difficult since technologies such as
AJAX break the traditional concept of a page. Crawljax was devel-
oped specifically to address the need to crawl the growing number
of web sites employing AJAX elements [24, 25]. Our tool is built
by extending Crawljax (see Section 4).

Side-Channel Leak Quantification. Current practice for quan-
tifying the severity of web side-channels involves measuring the
size of the attacker’s uncertainty (or ambiguity) set in terms of re-
duction power [5, 22, 33] or bits of entropy [5, 8, 21, 33] as estab-
lished in work measuring information flow in traditional software
systems [26] and work specific to the web [20]. A primary goal
is to quantify on average how well an attacker can determine the
private state of the web application given a network trace. In that
case it is also typical to simply measure the performance of a con-
structed classifier [6,22,30]. Section 5 discusses building a network
trace classifier, measuring leaks in entropy bits, and our proposed
method for quantifying leaks with the Fisher criterion.

Proposed Defenses. Prior work has developed a wide range of
mitigation techniques for web side-channel leaks including random
packet padding [5, 6, 8, 22], constant packet size [5, 6], and addi-
tional background traffic [6, 22]. The different defense strategies
can be implemented in various points in the client-server interac-
tion: in the application or server level of the host [5], through a
local proxy [22], or in the web browser itself. The information
available to the attacker affects the analysis and defenses of these
leaks. While early work focused on intercepted HTTPS traffic [6],
other work has considered other scenarios such as eavesdropping
over a WPA/WPA2 connection [3, 5, 22]. Luo et al. developed
HTTPOS, a client-side defense for the leaks [22]. HTTPOS is a
local proxy that obfuscates network traffic by manipulating a wide
range of HTTP, TCP, and IP protocol options and features such as
adjusting the TCP window size, initiating TCP retransmissions, in-
troducing timing delays, and even creating fake content requests.
They target four threat models, two of which are shared with our
work. In examining the applicability and effectiveness of packet
padding defenses, Chen, et al. found that applications required spe-
cific and customized mitigation techniques, and proposed a devel-
opment process for discovering, applying, and tuning defenses. We
do not attempt to develop new defenses here, but rather to enhance
understanding of side-channel leaks and to offer a side-channel leak
quantification tool that can be used as a part of a mitigation process
for typical web applications.

3. OVERVIEW
We built a completely dynamic, black-box side-channel vulner-

ability detection system. Figure 2 shows an overview of the system

2



Web Application

Crawl Specification

Web Crawler

Leak Quantifier
FSM

Distance Metrics

Classifier Builder

Entropy Calculator

Fisher Criterion 
Calculator

HTML ReportTraces

Figure 2: System Overview.

from the perspective of a developer. Using our system, a developer
first creates an XML specification that assists the crawler in explor-
ing the target website. The Web Crawler logs traffic while travers-
ing the site (Section 4) and upon completion of a representative
finite-state machine the Leak Quantifier analyzes the data to find
relationships between user actions and network traffic (Section 5).
A developer can use generated reports to pinpoint vulnerable areas
of the site and devise effective and efficient mitigations. We do not
attempt automatic mitigation here, although we believe the results
produced by our tool could be used to automatically mitigate many
leaks. Section 3.1 explains why we target a black-box solution;
Section 3.2 clarifies the two threat models we consider.

3.1 Black-Box Analysis
Our approach does not assume any access to the server other

than through standard web requests issued by a browser. There are
many advantages to using a black-box, client-side only approach to
perform the analysis. Generating actual user traffic makes experi-
mental testing as close as possible to a real attack. Furthermore,
a full browser such as Firefox can download and execute third-
party scripts and plug-ins (e.g., Flash) which are crucial to realistic
analysis since they could very easily be the the source of the leak.
For example, an instructional Flash video could automatically play
whenever the user of a tax site indicates they wish to obtain a cer-
tain tax credit. Although the remainder of the page may not result
in distinguishable traffic, the streaming video could provide a clear
indicator of the current state of the application.

Another advantage of a black-box approach is that our tool can
be applied to any web application, regardless of its internal con-
figuration. Section 6 reports on our experience applying our tool
to several popular web applications. The primary limitation of the
applicability of our system is that a standard Selenium installation
cannot interact with items that are outside of the browser DOM
(e.g., embedded Flash objects) or that do not fit well into the tra-
ditional web page model (e.g., HTML5 Canvas). Ongoing work
is attempting to add stable Flash support to Selenium [12] which
could be integrated into our testing framework.

3.2 Threat Model
We consider two threat models in this work: an attacker eaves-

dropping on encrypted wireless traffic and an attacker scanning
through traffic directed through an ISP. For both cases, we assume
an attacker targets a particular individual to learn as much informa-
tion as possible from their encrypted web browsing. Most of our
results may also apply to the scenario where a government agency,
for example, is scanning a large amount of traffic from unknown
individuals to find evidence of particular transactions, but we do

not consider that scenario in this work.

WiFi Snooping. In the WiFi Snooping threat model, an attacker
collects data over an encrypted wireless network. Example tar-
gets include high profile persons such as a politician or CEO, about
whom sensitive information could be valuable to competitors or
abused in devious ways. For example, one corporation could eaves-
drop on its competitor’s CEO’s search queries to anticipate the
competitors entry into a new market. Another possible attack would
be a con-artist exploiting leaked sensitive information to customize
a scam a particular victim. In our model, the WiFi snooper can
see the size of network transfers and whether they are incoming
our outgoing from the client but no other information about the
data. We believe this model accurately reflects what an eavesdrop-
per could learn since the access point (AP) announces its MAC
address in the AP beacons and there are a variety of ways for the
attacker to infer the target’s MAC address.

ISP Sniffing. In our second threat model, the adversary taps di-
rectly into the traffic flowing through an ISP either with legal au-
thority or by compromising network equipment. Such an attacker
can observe the IP and TCP plain text packet headers in HTTPS
communication including the source IP, destination IP, and the size
of the encrypted payload.

4. CRAWLING WEB APPLICATIONS
The Crawler explores the target web application to build a finite-

state machine (FSM) representation of the site. Each state in the
FSM is a possible state of the DOM (Document Object Model) in
the application saved as an HTML file. The transitions between
states are the user actions that load new pages or trigger DOM
changes, annotated with recorded network traffic over repeated tri-
als. The FSM is the input into our leak quantifier which measures
the degree to which paths through the state machine are consistent
and identifiable.

Figure 3 shows the structure of the Crawler. We extend the
Crawljax tool to manage the crawling process (Section 4.1). Se-
lenium automates the Firefox actions needed to interact with the
target web application. We use Jpcap to collect a network trace.
Since an exhaustive crawl is not possible for any interesting web
application, we also extend Crawljax to allow developers to spec-
ify a directed crawl using a Crawl Specification, as described in
Section 4.2. Since web services are often unreliable, it is necessary
to repair the resulting FSMs, as described in Section 4.3.

4.1 Crawljax
Crawling modern web sites and services is challenging because

of their highly dynamic nature and emphasis on client-side tech-

3



Web Application
Crawljax

Selenium

Firefox

Side-Channel 
Leak Detector

Jpcap

Host

Crawl 
Specification

Figure 3: Crawling Web Applications.

nologies that violate the traditional concept of a web page [25]. We
build upon Crawljax [24], an open-source tool designed to check
that sites are searchable, testable, and accessible. Crawljax at-
tempts to construct a state machine of user interface states for web
applications even in the presence of JavaScript and AJAX [25]. A
web application state, with the default Crawljax settings, is a spe-
cific DOM configuration. If user actions such as clicks or keyboard
actions result in changes to the DOM, Crawljax creates a new state
and connects the two with a transition. To accomplish this, Crawl-
jax drives an instance of the Selenium [15, 29] testing framework
for black-box manipulation and state inference of the application.
To support our goal of black-box detection of side-channel vulner-
abilities of complex web applications, we made several changes to
Crawljax, described next.

Logging Network Traffic. During execution Crawljax interacts
with developer-specified elements and forms while monitoring the
browser DOM to construct a corresponding state machine. We
added network traffic logging to Crawljax. We used the existing
plugin architecture built into Crawljax and the Jpcap Java library
for network packet monitoring [14].For our experiments, we logged
packet source, destination, length, and inter-packet timings. To im-
prove robustness, our network plugins are also aware of basic TCP
features such as sequence numbering and retransmission. Impor-
tantly, our tools do not use any knowledge unavailable to a poten-
tial adversary intercepting SSL-encrypted traffic. Experiments in
the WiFi threat model ignore TCP features.

Caching. Unlike most previous experiments, the browser cache
was left enabled to more accurately model typical web traffic. With
Crawljax’s depth-first search methodology, the cache is reset upon
returning to the root of the website, which retains the functionality
an attacker would face as the user goes through the site. Since Se-
lenium does not currently include such functionality [28] we wrote
a Firefox extension that communicates with our system.

4.2 Crawl Specification
Ideally, we would exhaustively visit every state of a web applica-

tion. For any non-trivial application, state explosion makes such a
goal infeasible. Hence, we developed a crawling specification that
can be used to direct the navigation. A developer may provide three
XML specifications to our system described in the following sub-
sections: a required interaction specification that directs the crawl,
an input specification for handling input fields, and a login spec-
ification for managing accounts. Regarding the developer burden

<specification>
<click>
<tag>a</tag>

<xpath>/HTML/BODY/DIV[2]/DIV[2]/A</xpath>
</click>
<waitFor>

<id></id><value>footer</value><url>.</url>
</waitFor>
<matchOverride>
<match>
<pattern>
<![CDATA[[\w\W]∗(name="currentquestion")[\w\W]∗?(<\/fieldset>)]]>

</pattern>
<replace></replace>

</match>
</matchOverride>

</specification>

Figure 4: Example Interaction Specification.

of using our tool, writing the specification files is not harder than
designing tests cases with the Selenium framework, a widely used
tool for black-box web application testing. The primary task for
the user of our system is to identify sections of the site that contain
private interactions using the XPath notation and private content on
the page with regular expressions and we advocate the use of of our
tool as part of the development of privacy-sensitive applications.

Interaction Specification. At a minimum, a crawl specification
must specify which elements on a site to click. This specifica-
tion can specify click elements by tag, attribute, or an XPath [7].
Figure 4 shows an example of a interaction specification for the
NHS Symptom Checker (see Section 6.3). It instructs the crawler
to click on all anchor tags that satisfy the XPath expression, /HTML/
BODY/DIV[2]/DIV[2]/A. This corresponds to the “next” button in the
questionnaire. During exploration, the crawler will scan each page
for elements satisfying the criteria, adding them to the depth-first
search stack. The click element can be further refined with noClick
elements that override the click specification.

A developer can use the waitFor element to specify a DOM el-
ement that indicates a web page has successfully loaded. This
was added after we observed that occasionally a request will only
be partially answered, causing only a portion of the page to load.
When the described element appears in the DOM, Crawljax contin-
ues normally. If that particular request never completes fully, our
system times out and retries the user action. The specification in
Figure 4 tells the crawler to wait for the page footer to load.

By default, Crawljax defines two equivalent states as having a
near identical Document Object Model representations (DOM). In
reality, two instances of a web page may be semantically identical
but have slightly differing DOMs. A developer can use matchOver-
ride to enumerate a series of regular expression replacements to
manipulate the DOM before the standard state comparison is per-
formed. The example matchOveride in Figure 4 directs the crawler
to only examine the questions from the symptom checker for the
state equivalence computation.

Input Specification. Many websites require user input for mean-
ingful use. Due to the difficulties of inferring valid inputs, the
developer must specify where and how to fill input fields in the
application. The example input specification shown in Figure 5
was used to select the gender in NHS Symptom Checker. An input
specification indicates how the fields will be populated with the be-
foreClickElement, which in this case would be the next button in the
gender form. Additionally, the developer lists which field should

4



<form>
<beforeClickElement>

<tag>input</tag>
<xPath><expression>

/html/body/span/center/span/center/form[@id="gender"]/table/tbody/tr/td
[2]/div/input

</expression></xPath>
</beforeClickElement>
<field>
<id>female</id><value>false</value><value>true</value>

</field>
<field>
<id>male</id><value>true</value><value>false</value>

</field>
</form>

Figure 5: Example Input Specification.

be populated and all the possible inputs to try. The field tags in the
example direct the crawler to first select the female option, follow
that line of questions, and then return to select male. Specifications
can also request performing a random subset of specified inputs.
For example a developer may want to try random combinations of
first and last names in order to get a larger sample. It may also
be the case that progression in the application requires valid input
(e.g., a Social Security Number), but the developer does not want
network traffic to be tied to a specific input. Such functionality is
implemented with the randomForm element.

Login Specification. Many real-world applications require exist-
ing user-accounts to function. Google Health requires login cre-
dentials to access the site. We extended Crawljax’s basic support
for form pages to allow the developer to list a series of accounts,
from which one is chosen for a particular crawl. Using different ac-
counts prevents logged traffic information from being over-fitted to
a specific user. An example login specification for Google Health
is shown in Figure 6. In this specification a URL is given to login
at, the username and password along with where to input them, and
what button to click to complete the login.

4.3 Crawl Repair
Since our crawling system triggers thousands of page loads when

exploring externally operated complex web applications, errors of-
ten occur in the crawl. The most common failures were unful-
filled HTTP requests and generic application-level server-side er-
rors. These failures result in incorrect network traces and even
structurally different state machines, since application error pages
or incomplete page loads prevent the crawler from finding new
DOM elements with which to interact.

After a series of crawls the developer selects a trial as the ground-
truth, presumably through manual analysis of the saved HTML

<preCrawl>
<url><value>http://www.google.com/health</value></url>
<input>

<id>Email</id> <value>test@xkcd.com</value>
</input>
<input>

<id>Passwd</id> <value>Tr0ub4dor&3</value>
</input>
<click><id>signIn</id></click>

</preCrawl>

Figure 6: Example Login Specification.

states. We developed an accompanying tool to examine the suspect
trials and repair the FSMs so that they are structurally equivalent.
This involves removing states and transitions that do not exist in
the selected trial and adding those as necessary. When adding new
states to imperfect crawls we choose to disadvantage the attacker
by assuming that no information was gained from that particular
state transition in that trial. If desired, one could give the advantage
to the attacker by replacing the missing data with the trace from the
designated correct trial. In practice we found that within a trial the
number of discovered errors is small; fewer than 1% of the number
of total transitions need corrections.

5. LEAK QUANTIFICATION
Once the site exploration phase is complete, the leak quantifier

analyzes the state machine of the web application to determine how
vulnerable the network traffic is to reconstruction through the var-
ious side-channels. Each state transition contains a list of network
transfers with information about the origin, destination, size, and
time of the transfer as described in Section 4.1. To determine the
similarity of two traces, we define a distance metric. Section 5.1
describes three different distance metrics we use based on different
aspects of the network traces. Then, we consider two methods to
quantify leaks in the web application: entropy (Section 5.2) and the
Fisher criterion (Section 5.3).

Assumptions. A key assumption made throughout our leak quan-
tification is that the adversary is able to track when state transitions
begin and end. This is reasonable since the adversary can search for
pauses in network traffic. For most web applications it is imprac-
tical to continually stream data between the client and the server
due to the computational overhead and the bandwidth consump-
tion, so traffic bursts reflect state transitions. For the WiFi threat
model, we assume there is no other disruptive network traffic and
that the attacker can distinguish whether packets are incoming to
or outgoing from the victim, which is essentially a matter of iden-
tifying the MAC address of the target computer. Our last assump-
tion is that the user starts at the root of the web application (e.g.,
the Google Health Dashboard or the NHS Symptom Checker wel-
come page) and makes forward progress through the application,
not clicking back or randomly reloading pages. These assumptions
favor the attacker, so potentially overestimate the amount of infor-
mation available to an attacker in practice, although it seems likely
that motivated attackers would be able to find ways to overcome
violations of these assumptions.

Formalization. To formalize the problem as a multi-class classi-
fier, we define xi to be the set of examples belonging to class i, and
x j

i to be example j from the class. A class is the action or series
of actions a user performed to reach a state in the web application.
An example from a class is the set of network traces collected while
those actions were performed. We assume the start and stop of page
transitions are identifiable, so the function t(x j

i ,k) yields the trace
from example x j

i for the kth transition. A network transfer is defined
as the uninterrupted transmission of data (generally over TCP for
our purposes) from one machine on the network to another. A trace
is a list of network transfers of the form src→ dst : bytes where
src is the source, dst is the destination, and bytes is the number of
bytes of the transfered data as taken from the IP header. Given a
transition v, v[i] yields the ith transfer.

Impact of Threat Models. The threat models dictate the amount
of information visible to the attacker. For the WiFi scenario, the
attacker can only see the size of transfers and whether they were

5



incoming or outgoing. Thus, all transfers are of the form target→
accesspoint or accesspoint → target. In the ISP threat model, the
attacker has access to the plain text IP and TCP packet headers in
in addition to the encrypted contents of the message. Since the
ISP scenario allows the attacker to see the TCP packet headers,
TCP protocol features such as ACKs and re-transmissions are eas-
ily identified. In anticipation of defenses designed to abuse these
protocol features by sending fake ACKs or initiating unnecessary
re-transmissions (as suggested by HTTPOS [22]), tests under the
ISP threat model ignore both ACKs and re-transmissions. Unlike
our other assumptions, this assumption favors the site operator by
assuming the attacker’s task is complicated by widespread deploy-
ment of these defenses, so underestimates the actual leakage in sit-
uations where these defenses are not used.

Baseline Classifier. To use as a baseline for testing the existence
and exploitability of side-channel leaks, we construct a multi-class
classifier, classifying network traces according to the action per-
formed to generate them. Our classifier uses a nearest-centroid
approach, assigning an unknown trace to the class of the nearest
class centroid, where nearest is defined according to one of the dis-
tance metrics. Since the exact distribution of each class is unknown
we estimate the centroid by attempting to create a trace that mini-
mizes the Hamiltonian distance from the examples in the class. We
validate the performance of the classifier by running K-fold cross-
validation testing. The higher the success rate of the classifier, the
more likely an attacker will be able to exploit a leak based on the
properties measured in the metric. Ideally, a well protected system
would not allow an attacker create a classifier that performs better
than is possible with random guessing.

5.1 Distance Metrics
We use different distance metrics to test different environmental

conditions and threat models to understand how conditions impact
what vulnerabilities exist and the best methods to mitigate them.

Total-Source-Destination. The Total-Source-Destination (TSD)
metric returns the summed difference of bytes transferred between
each party. In a trace containing only a server and a client, it is
the difference in the number of bytes transfered to the client, added
to the difference in the number of bytes transfered to the server, as
computed by Algorithm 1. The inputs are two transitions v and w,
and the output measures the distance between the transitions. This
metric is easily manipulated through basic packet padding which
hides the actual lengths of the packets.

Algorithm 1 TotalSourceDestination(v,w)
distance = 0
for all s ∈ Parties do

for all d ∈ Parties do
subdistance = 0
for all i = 0→ v.size do

if v[i].src = s∧ v[i].dst = d then
subdistance = subdistance+ v[i].bytes

for all i = 0→ w.size do
if w[i].src = s∧w[i].dst = d then

subdistance = subdistance−w[i].bytes
distance = distance+abs(subdistance)

Size-Weighted-Edit-Distance. The Size-Weighted-Edit-Distance
(SWED) adds robustness by tracking the control-flow of the trans-
fered information. Unlike the Total-Source-Destination metric, the
sequence of transfered data matters. Every transfer is treated as

a symbol in a string of the sequence of transfers, src→ dst. The
distance is the Levenshtein distance between the translated strings,
but in order to give weight to the transfer sizes, the cost of each
edit operation (insertion, deletion, and substitution) is the number
of bytes being inserted or deleted. A minimum weight is set at a
configuration value α , in order to lend sufficient weight to smaller
transfers (TCP ACKs). If the source and destination are the same,
the cost is simply the difference in transfer sizes.

Edit-Distance. Since the simple packet-padding defense dramat-
ically affects the size distributions of transfers, we use the Edit-
Distance (ED) metric to understand how well an attacker can do
using only on the control flow of the network transfer. Like the
previous metric, every transfer in the trace is a symbol in a string.
The Edit-Distance is the Levenshtein distance between two strings
where all edit operations have an equal cost. Since this metric is
independent of the sizes of transfers, the Edit-Distance reveals how
well an attacker can do against a perfect packet-padding strategy.

Random. The Random metric serves as a baseline in order to judge
the distinguishability gained from the distance metrics beyond the
assumption that the adversary can distinguish page breaks. In ev-
ery metric, the nearest-centroid classifier will not consider classes
that require a different number of transitions than the example in
question. The Random assigns a random distance between 1 and
1000 regardless of the two examples being compared. Hence, the
only useful classifiability gained from the Random metric is a re-
sult of the assumption that the adversary can identify when state
transitions occur.

5.2 Entropy Measurements
Previous work measured the severity of leaks using bits of en-

tropy [21, 33] or reduction power [5, 22, 33]. Both measurements
are a function of the size of the uncertainty set the attacker has
for classifying a given network trace. In other words, given a net-
work trace, how many classes can be eliminated as an impossibility
for generating that trace. Logically, bits of uncertainty indicate the
amount of ambiguity an attacker has in classifying a network trace.
Using a concrete example, if a network trace is identical for four
actions that trace is said to have log2 4 = 2 bits of entropy. Ideally
we would measure the entropy for every possible network trace,
looking at the number of classes that could possibly create each
trace. To find the entropy of the system, we sum the entropy of
each trace weighted by the probability of that trace occurring. In
practice, however, it is infeasible to enumerate every possible trace
so we use the corpus of those generated by our testing. To simplify
our model we assume that each user action is equally probable. To-
gether, the equation for calculating entropy is:

H(X) =
n

∑
i=0

log2 p(x̄i)

n

where X is the tested system containing n classes, x̄i is each cen-
troid, and p(x̄i) yields the size of the uncertainty set for the attacker.
Note that if the uncertainty set is n for every trace, the resulting en-
tropy is maximized at the desired log2 n. This is the conditional
entropy metric used by Luo et al. [22].

The key difficulty in calculating entropy lies in determining the
size of the uncertainty set for a given trace. In our analysis we take
the estimated centroid for each class, then find the threshold dis-
tance from the centroid such that a certain percentage of the sam-
ples in the class are within that distance of the centroid. We use
the threshold distance as the boundary for distinguishability. The
number of centroids that fall within the threshold distance of the
centroid yields p(xi) for this class. Figure 7 shows two classes con-

6



Figure 7: Entropy Distinguishability Threshold.
Two classes are marked by different shadings with their respec-
tive centroids indicated by the + symbols. The 75% threshold
for the dark class is the distance that contains 3/4 of the dark
points. Since the centroid of the light class is within this thresh-
old, we consider the classes indistinguishable at this threshold.

sidered indistinguishable given a threshold of of 75%.
The threshold for distinguishability in calculating entropy is of-

ten arbitrary. Depending on the choice, the resulting entropy value
may not give a good measure of the attacker’s likelihood of suc-
cessfully exploiting a particular vulnerability (as demonstrated by
our experimental results in Section 6). Additionally the boundary
between distinguishable and indistinguishable classes is not nec-
essarily strict and small changes can yield significant changes in
entropy. It is desirable for our leak quantification to capture the rel-
ative distances of classes. Ignoring the relative distances can lead
to misclassifying a system as invulnerable because each class ap-
pears indistinguishable but slight changes to the attacker strategy
may yield an accurate classifier.

Ideally, defenses should generate network traces that are either
exactly the same or entirely randomly distributed. If under the mon-
itored properties the traces are either identical or entirely randomly
distributed, the data is invulnerable to side-channel analysis. Our
measurement should yield a meaningful value for this result. How-
ever, once the entropy measurement reaches its maximum value,
each class is considered indistinguishable from every other class
ignoring any notion of how distant or different classes are from one
another. Two defenses that have maximum entropy values are not
necessarily equally good considering a defense that barely estab-
lishes indistinguishability will be given the same value as a perfect
defense. Our second metric is designed to overcome these limita-
tions of the entropy measurement.

5.3 Fisher Criterion
Since we frame the goal of the attacker as a classifier, it is natural

to borrow concepts from machine learning methods in constructing
classifiers. We adopt the Fisher criterion as our measurement of
classifiability [11]. The Fisher criterion was previously used by
Guo et al. as the fitness function for a genetic programming al-
gorithm to extract meaningful features for multi-class recognition
problems [17], but we are not aware of any previous use in side-
channel analysis.

The Fisher criterion is essentially the ratio of the between-class
variance to the within-class variance of the data [31,32]. The higher
the value, the more classifiable the data. The Fisher criterion is
used as a tool in linear discriminant analysis to construct strong
classifications. Since we are given the classifications (it is known
which user actions created the network traces), we use the Fisher
Criterion as a measurement of the severity of side-channel leaks.

The Fisher criterion is calculated as:

F(X) =
σ2

between
σ2

within
=

n
∑

i=0
m · (x̄i− x̄)2

n
∑

i=0

m
∑

j=0
(x j

i − x̄i)2

where n is the number of classes, m is the number of samples in
each class, x j

i denotes sample j in class i, x̄i is the centroid of class
i, and x̄ is the total centroid. A Fisher criterion value greater than 1
has the physical meaning that the between-class variance is greater
than the within-class variance. Although this may seem like a log-
ical threshold for distinguishable classes, as has been previously
claimed [31], our results do not support the existence of an abso-
lute threshold.

The Fisher criterion is a better measurement of the classifiabil-
ity of network traffic than previous entropy measures for two rea-
sons: (1) it incorporates the distances between classes without the
almost arbitrary distinction of distinguishable versus indistinguish-
able, increasing robustness against attack variations; (2) both the
ideal and worst-case network trace distributions have associated
values, 0 and ∞ respectively. The Fisher criterion approaches zero
because either the within-class variance approaches infinity (the
values within a class are random), or the between-class variance ap-
proaches 0 (all classes yield the same network traces). The Fisher
criterion approaches infinity when the classes are well-separated
and are well-defined, lending well to strong classifiability.

6. RESULTS
To evaluate the effectiveness of our black-box approach in side-

channel leak quantification and the value of the Fisher criterion
over conditional entropy, we tested our system on several exist-
ing web applications: search engines (Section 6.1), Google Health
(Section 6.2), and the United Kingdom’s National Health Service
Symptom Checker (Section 6.3). Some of the search engines were
tested and the Google Health application were also used in prior
work [5]; the NHS Symptom Checker was chosen because it is a
complex application that handles sensitive information.

For each application, we constructed crawl specification files as
described in Section 4.2 and ran the crawlers on a variety of com-
modity hardware including desktops, laptops, and servers. The dif-
ficultly of writing these specifications varies as a function of web-
site’s complexity and adherence to standard web design practices
such as using a RESTful [10] architecture and avoiding iframes.
The average length of the constructed specifications is 4547 LOC
(σ = 7537) according to CLOC [9]. A detailed breakdown of spec-
ification sizes can be found in Table 1. The Yahoo Search specifica-
tion was the longest (17,589 LOC) as it includes an (automatically-
generated) enumeration of three-letter combinations and the Bing
specification was the shortest (45 LOC). Once the crawlers finish
exploration of the web application, we quantified the leaks. The re-
sults of the leak quantification for each application are presented in
the following subsections. During all tests, the browser cache was
left enabled, but reset upon returning to the root of the web appli-
cation to ensure that the elements in the cache are only a function
of the pages visited from the root.

We developed our tool and helper extensions for Firefox 3.6, al-
though they could be adopted to any browser supported by Sele-
nium. In fact, comprehensive site analysis may require using mul-
tiple browsers since uneven support of web standards may signif-
icantly vary the traffic signature from one browser to another. We
have used our system on a variety of different systems running Win-
dows XP, Windows 7, Ubuntu 9.10, and Ubuntu 10.04. Crawling

7



Application Interaction Input Login
Bing Suggestions 3 41 -
Google Search Suggestions 3 38 -
Google Instant 3 38 -
Yahoo Search 3 17589 -
Google Health 31 324 82
NHS Adult Male 37 286 -

Table 1: Specification Length. The 17589-line specification for Yahoo
Search is automatically generated by enumerating all 3-letter combinations.
The other specifications are manually generated. Only the Google Health
specification includes a Login specification, since the other applications do
not require user accounts.

a web application, just like performing any depth-first search, is
trivially parallelized by assigning different instances to crawl dif-
ferent subtrees of the site. In addition to commodity desktops and
laptops we tested our setup on a 64-machine cluster, demonstrat-
ing the ability for a developer to run very large crawls consisting of
tens of thousands of pages in a matter of hours.

Section 6.4 uses our tools to analyze HTTPOS [22], a defense
against side-channel attacks on the web. In Section 6.5, we test our
results against a suite of general-purpose machine learning algo-
rithms to confirm that our domain-specific methods are better than
the best available general-purpose techniques.

6.1 Search Engine Suggestions
Chen et al. demonstrated how the Bing (http://bing.com), Google

(http://encrypted.google.com), and Yahoo (http://search.yahoo.com)
search engines leak queries through the network traffic generated
by search suggestions [5]. Suggestion fields are particularly vul-
nerable to side-channel attacks because they update with every key-
stroke. Bing and Google search suggestions begin appearing after
a single lowercase letter, so they were tested by scripting the typing
of a single letter and measuring the accompanying network traffic.
As demonstrated by Chen et al., the ability to distinguish a single
letter allows the attacker to build up the entire query [5].

In September 2010, Google introduced Google Instant, which
loads the search results as the user types a query. We evaluated
Google Instant in the same manner as Bing and Google search sug-
gestions. For Bing and Google search suggestions, classification
performance is strong, reinforcing findings in prior work.

Yahoo’s search suggestions do not begin appearing after three
characters have been typed, increasing the state space for the first
network transfer from 26 to 263 = 17,576. We tested Yahoo Search
to see how much delaying the suggestions mitigates the leak. The
output of the classifier is a set of predicted classifications for a given
example. The classification is considered correct if the actual ex-
ample class is in the set.

Table 2 shows the results of our nearest-centroid classifier under
the described metrics and proposed threat models for each search
engine. Table 3 presents the entropy results. The distinguishability
threshold greatly impacts the estimated bits of entropy in a query.
For example, the classification accuracy using the Total-Source-
Destination metric under the WiFi threat model is over 93% for
Bing. The associated entropy calculation yields an average of 0.91
bits of uncertainty, meaning that on average the attacker’s uncer-
tainty set is 20.91 = 1.88. Considering the results of our classifier,
0.91 bits of entropy underestimates the classifiability of the data
and a more appropriate 0.07 bits is only reached after ignoring the
farthest 25% of sample points from the centroid. The inherent noise
present in real world network traces shows the fragility of the en-

tropy metric in the presence of classification outliers.
The calculated Fisher criterion values for the search suggestions

in Table 4 give a more consistent view of the data while granting
us new insights into the classifiability under the various metrics.
Note that the Fisher criterion for the Edit-Distance metric is 0.00
for the search engine suggestions. This is logical considering the
nature of search suggestion network traffic where almost every net-
work trace is a short interaction between the client and the server
consisting of a request, a response, and an acknowledgment. Under
the Edit-Distance metric, each example trace is nearly identical and
so reaches the goal Fisher criterion value of zero.

6.2 Google Health
We also tested our system on Google Health’s (https://health.

google.com) “Find a Doctor” feature. The “Find a Doctor” tool
has been shown to leak the type of doctor a user searches and by
extension a user’s medical condition [5]. Since Google Health re-
quires an account to function, we used the login functionality of our
crawler described in Section 4.2. Using the application, the user in-
puts an area of medicine and a location. The crawler enumerates
the areas of medicine in a drop-down menu to trigger searches for
specialty doctors. The result of the search is a list of nearby doc-
tors specializing in the requested medical field. As in Chen et al.’s
work [5], we assume the adversary has a way to accurately deter-
mine the location (which is a reasonable assumption in cases where
the adversary either knows the target’s physical location or has ac-
cess to the target’s IP address).

The classifier performance (included in Table 4) is over 88%
on the Google Health tool using the Total-Source-Destination met-
ric, with similar results using Size-Weighted-Edit-Distance. The
Edit-Distance metric yields little classification value, since like the
search suggestions, the control-flows are largely similar. As seen
in the other web applications, the entropy values (Table 3) decrease
drastically as the threshold is decreased. However, we can observe
that simply decreasing the threshold does not guarantee a repre-
sentative result. For example, lowering the threshold to 50% with
the Total-Source-Destination metric decreases the entropy to al-
most zero. Our classifier, on the other hand, is not able to classify
roughly ten percent of the examples. Lowering the threshold in
hopes of getting more accurate entropy values ignores actual sam-
ple points, even if they are outliers, and can result in underestimat-
ing the entropy. As expected from the classifier performance re-
sults, the Fisher criterion for the Edit-Distance under the ISP threat
model is 0.00. Like the search suggestions, this is because the con-
trol flows are nearly identical for each query.

Figure 8: Performance of our Classifier. Our classifier performs
well on Google Search suggestions when using the size-based met-
rics, but almost no better than random when sized is ignored.

8



Distance Metric Bing Google Search Google Instant Yahoo Search Google Health NHS
Matches 1 10 1 10 1 10 1 10 1 10 1 10
Random 2.9 35.6 2.9 35.6 2.9 35.6 0.0 0.0 1.3 10.8 3.6 29.9

ISP
TSD 95.7 100.0 46.1 100.0 47.5 88.3 1.2 8.0 88.2 93.6 85.8 100.0
SWED 96.3 100.0 46.1 100.0 7.3 52.6 1.1 7.9 81.8 91.9 31.0 89.7
ED 3.7 37.0 3.8 39.5 7.7 56.0 0.0 0.0 2.0 11.1 5.8 38.3

WiFi
TSD 93.7 99.4 44.9 100.0 39.4 87.6 1.2 7.9 85.9 90.9 60.6 99.2
SWED 94.7 98.8 44.9 100.0 29.6 83.0 1.2 7.9 81.8 89.6 46.9 97.7
ED 3.7 37.0 3.8 38.5 31.5 86.7 0.0 0.1 2.7 19.9 46.1 98.1

Table 2: Nearest-Centroid Classifier Results. The value of Matches indicates the size of the set returned by the classifier. The results
show the percentage of the time the correct classification is included time in the returned set of the given size. The metrics are Total-Source-
Destination (TSD), Size-Weighted-Edit-Distance (SWED), and Edit-Distance (ED).

Distance Metric Bing Google Search Google Instant
Threshold 100% 75% 50% 100% 75% 50% 100% 75% 50%
Expected 4.70 4.70 4.70 4.70 4.70 4.70 4.70 4.70 4.70

ISP
TSD 0.42 0.07 0.07 0.42 0.07 0.07 4.70 1.97 1.09
SWED 0.42 0.07 0.07 0.42 0.07 0.07 4.64 3.90 3.37
ED 4.70 4.70 4.70 4.70 4.70 4.70 4.70 4.43 3.54

WiFi
TSD 0.91 0.07 0.07 2.95 2.40 0.44 4.70 2.02 1.02
SWED 0.78 0.07 0.07 1.13 0.56 0.44 4.70 2.40 1.58
ED 4.70 4.70 4.70 4.70 4.70 4.70 4.70 2.54 1.74

Distance Metric Yahoo Search Google Health NHS
Threshold 100% 75% 50% 100% 75% 50% 100% 75% 50%
Expected 14.01 14.01 14.01 6.63 6.63 6.63 8.87 8.87 8.87

ISP
TSD 7.86 6.80 5.05 0.58 0.05 0.01 5.13 2.83 1.92
SWED 7.88 6.47 5.32 0.74 0.25 0.14 6.19 4.77 3.98
ED 12.66 12.43 12.42 6.55 6.55 6.55 7.07 6.65 6.21

WiFi
TSD 7.91 6.62 5.04 0.71 0.05 0.01 4.76 2.70 1.83
SWED 7.91 6.62 5.04 1.04 0.19 0.14 6.25 4.53 3.89
ED 12.64 12.36 12.26 6.05 5.89 5.89 5.65 4.43 3.82

Table 3: Entropy Results (measured in bits of entropy).

Distance Metric Bing Google Search Google Instant Yahoo Search Google Health NHS

ISP
TSD 5.18 4.13 1.13 0.69 12.1 4.9
SWED 0.17 41.7 0.34 0.59 18.0 3.3
ED 0.00 0.00 0.22 0.56 0.0 1.8

WiFi
TSD 6.04 4.13 0.84 0.59 11.3 5.4
SWED 1.26 41.7 0.76 0.58 10.8 3.2
ED 0.00 0.00 0.79 0.51 3.0 5.0

Table 4: Fisher Criterion Results.

Application Google Search Google Instant

Distance Metric Accuracy (%) Entropy (bits) Fisher Accuracy (%) Entropy (bits) Fisher
1 3 10 100% 75% 50% Criterion 1 3 10 100% 75% 50% Criterion

ISP
TSD 3.4 12.8 38.0 4.70 4.33 4.06 0.28 43.7 66.8 87.6 4.70 3.97 3.40 0.60
SWED 3.8 11.1 38.0 4.70 4.43 3.52 0.43 8.2 20.4 51.4 4.16 3.61 3.55 0.55
ED 3.4 9.4 35.5 4.70 4.58 3.51 0.14 8.7 19.0 55.0 4.70 4.55 3.81 0.47

WiFi
TSD 6.0 17.9 48.3 4.70 4.28 3.34 0.22 37.0 59.3 85.6 4.08 3.29 2.22 0.61
SWED 3.8 11.1 35.0 4.67 4.46 3.91 0.23 27.2 47.6 82.2 4.38 3.70 2.67 0.57
ED 6.8 11.1 35.5 4.70 4.52 3.93 0.37 26.2 49.8 81.5 4.16 3.61 3.55 0.69

Table 5: Leak Quantification Results for Google Search Suggestions and Google Instant while using HTTPOS.

9



Data Set Best Classifier Accuracy Our Rate
Bing Suggestions minimalist-boost 91.2 96.3
Google Search Suggestions LogitBoost_weka_nominal 34.8 46.1
Google Instant bonzaiboost-n200-d2 66.0 47.5
Google Health Find A Doctor LogitBoost_weka_nominal 74.2 88.2
NHS Adult Male FilteredClassifier_weka_nominal 78.1 85.8
HTTPOS on Google Search bonzaiboost-n200-d2 7.1 6.8
HTTPOS on Google Instant bonzaiboost-n200-d2 15.6 43.7

Table 6: MLComp Results. Running our datasets on generic, publicly available multi-class classifiers yields similar results to our nearest-
centroid classifier. Each row of the table lists the best accuracy rate that any classifier had for that dataset as a percentage.

(a) ISP Threat Model (b) WiFi Threat Model

Figure 9: Classifier Performance on NHS Symptom Checker.

6.3 NHS Symptom Checker
To analyze our metrics on a more complex privacy-sensitive site,

we also conducted an experiment using the Symptom Checker cre-
ated by the United Kingdom’s National Health Service (NHS). The
NHS symptom checker asks a visitor a series of multiple-choice
questions in order to diagnosis a specific illness or condition or rec-
ommend the user seek medical attention. The number of questions
typically ranges from 10 to 30 before reaching a diagnosis, treat-
ment advice, or a recommendation to seek medical attention. The
answers to prior questions determine which questions are asked
later as the system narrows down the possibilities. With the excep-
tion of three emergency questions determining whether an ambu-
lance is needed urgently, the series of questions forms a tree. Using
this property we were able to fully crawl every series of answers in
the entire application.

We performed two sets of analysis for the NHS tool. The first is
the subtree of the questionnaire for an adult male, the largest sub-
tree after answering one’s gender and age (468 states). We choose
to do this in addition to the entire symptom checker for the sub-
tree’s interesting results and illustrate the power an attacker gains
when starting with just two basic pieces of known context. The
complete NHS symptom tracker has over 7300 paths through the
questionnaire, each revealing different information about the user.
Figure 9 summarizes the results.

To a much greater degree than the other web applications, the dif-
ferent threat models greatly affect classification performance. For
example, using the Total-Source-Destination is significantly more
effective in the ISP scenario than in the WiFi scenario. Loading
full web pages, unlike the simple AJAX requests in the other appli-
cations, causes a significantly greater amount of noise due to TCP
features such as ACKs and retransmissions. The inability to iden-
tify and filter out TCP features in the WiFi scenario greatly reduces
classifiability for the Total-Source-Destination and Size-Weighted-

Edit-Distance.

Edit-Distance Anomaly. Note that the Edit-Distance metric un-
der the WiFi threat model performs better than under the ISP threat
model. All metrics under in the ISP scenario ignore TCP features
such as ACKs because they are easily manipulated either through
padding the payload of ACK, by padding the transfers or by chang-
ing the TCP window size which indirectly manipulates the number
of ACKs that will be sent. In the WiFi scenario, the attacker cannot
filter out faked TCP ACKs, making classification more difficult.
However, in our experiments TCP ACKs were legitimate and so
when they are left in the trace they server as an indicator of the size
of the transfer, and not random noise as would be expected in a
strong defense system.

6.4 HTTPOS Defense
HTTPOS is a client-side defense against these attacks which

substantially manipulates browser traffic to protect against anal-
ysis [22]. We deployed a prototype version of HTTPOS in the
Firefox browser running our tests and measured its effectiveness.
HTTPOS simply acts a SOCKS proxy and so we configured Fire-
fox 3.6.17 to direct traffic through the HTTPOS system. We tested
HTTPOS on Google search suggestions and Google Instant search,
without a training phase and with all defenses enabled. The ability
to easily apply and evaluate a previously published defense shows
the flexibility of our system and the utility of the black-box ap-
proach for defense quantification and comparison.

The results of our initial tests are shown in Table 5. For search
suggestions, HTTPOS is very effective. It significantly reduces
the accuracy of our classifier across all metrics, resulting in per-
formance only slightly better than random classification. However,
in our experiments HTTPOS did not sufficiently mitigate the side-
channel for Google Instant search. The accuracy using the TSD
metric remained over 40%, which combined with successive letters

10



in a search query, we still believe the tool to remain exploitable.
This is due to the much greater variation in different flows found
in a Google Instant search due to integration of images, embedded
maps, and videos. Without a proper training phase HTTPOS is un-
aware of the degree of traffic manipulation necessary to suppress
the leak. Also noteworthy is the increase in Fisher criterion values
for the SWED and ED metrics under the ISP threat model. We were
not able to identify the specific HTTPOS defense mechanism that
causes this increase, but we advocate any new defense mechanisms
be throughly tested for accidentally created side-channels. Taken
together, these experiments validate the ability of HTTPOS to ef-
fectively manipulate network traffic to thwart side-channel attacks
on simple flows, but for complex flows and pages a training phase
is required. Such a restriction reduces the utility and real-world ap-
plicability of the defense, but the effectiveness of HTTPOS for the
search suggestions shows that a generic client-side defense is still
promising for many applications.

6.5 MLComp
MLComp (http://mlcomp.org) is a service for comparing machine

learning algorithms on shared datasets. Users upload programs and
data sets in a standard format, allowing others to test their algo-
rithms against a variety of data sets, or choose good classification
techniques for their datasets. We used MLComp to compare our
classifiers with the best available generic classifiers on the site.
Table 6 summarizes the accuracy of the best classifier for each
dataset. As expected, the results generally show worse performance
than our classifiers which are designed using domain-specific back-
ground knowledge, but in every case the best generic classifiers
perform no less than 15% worse than ours. Larger datasets, such
as Yahoo search, did not finish in the site’s maximum computation
time of 24-hours so are not included in this table.

7. CONCLUSION
Side-channel leaks of private data have been found in popular

web applications. Without tools to precisely quantify the leaks, de-
velopers cannot eliminate side-channel leaks without also sacrific-
ing the responsiveness expected of modern web applications. Our
detection system infers a web application state machine only us-
ing network traffic and the browser DOM. Our dynamic, black-box
approach allows us to experiment and identify side-channel vul-
nerabilities in real-world web applications without access to source
code. The Fisher criterion metric we propose is able to estimate the
severity of application leaks much more accurately than is possi-
ble with entropy-based metrics. We have demonstrated the appli-
cability of our approach by performing side-channel vulnerability
analysis on large systems. Mitigating side-channel leaks remains
an elusive goal, but our results provide encouraging evidence the
side-channel leaks can be found automatically in a robust way.

Availability
Our crawling framework and quantification tool is available under
an open source license from http://www.cs.virginia.edu/sca.

Acknowledgments
The authors thank Shuo Chen and XiaoFeng Wang for introduc-
ing us to the interesting problem of web application side-channel
leaks. We thank Daniel Xiapu Luo for generously providing us
with an early version of HTTPOS. This material is based upon work
partly supported by grants from the National Science Foundation
and by the Air Force Office of Scientific Research under MURI
award FA9550-09-1-0539.

8. REFERENCES
[1] Michael Backes, Markus Dürmuth, Sebastian Gerling,

Manfred Pinkal, and Caroline Sporleder. Acoustic
Side-Channel Attacks on Printers. In 19th USENIX Security
Symposium, 2010.

[2] Jason Bau, Elie Bursztein, Divij Gupta, and John Mitchell.
State of the Art: Automated Black-Box Web Application
Vulnerability Testing. In 31st IEEE Symposium on Security
and Privacy, 2010.

[3] George Dean Bissias, Marc Liberatore, David Jensen, and
Brian Neil Levine. Privacy Vulnerabilities in Encrypted
HTTP Streams. In Privacy Enhancing Technologies
Workshop, 2005.

[4] Mike Bowler. HtmlUnit. http://htmlunit.sourceforge.net/.
[5] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang.

Side-Channel Leaks in Web Applications: a Reality Today, a
Challenge Tomorrow. In 31st IEEE Symposium on Security
and Privacy, 2010.

[6] Heyning Cheng and Ron Avnur. Traffic Analysis of SSL
Encrypted Web Browsing. UC Berkeley CS 261 Final
Report, http://www.cs.berkeley.edu/~daw/teaching/cs261-f98/
projects/final-reports/ronathan-heyning.ps, 1998.

[7] James Clark and Steve DeRose. XML Path Language
(XPath). http://www.w3.org/TR/xpath/, 1999.

[8] George Danezis. Traffic Analysis of the HTTP Protocol over
TLS. http://research.microsoft.com/en-us/um/people/gdane/
papers/TLSanon.pdf, 2009.

[9] Al Danial. CLOC: Count Lines of Code.
http://cloc.sourceforge.net/, 2006–2011.

[10] Roy T. Fielding. Architectural Styles and the Design of
Network-Based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[11] Ronald A. Fisher. The Use of Multiple Measurements in
Taxonomic Problems. Annals of Eugenics, 1936.

[12] Flash-Selenium Project. A Selenium Extension for Enabling
Selenium to Test Flash Components, 2011.

[13] Jeffrey Friedman. TEMPEST: A Signal Problem.
Cryptologic Spectrum, 2007.

[14] Keita Fujii. Jpcap.
http://netresearch.ics.uci.edu/kfujii/jpcap/doc/.

[15] Grig Gheorghiu. A Look at Selenium. Better Software, 2005.
[16] Google. Google Web Toolkit.

http://code.google.com/webtoolkit/.
[17] Hong Guo, Qing Zhang, and Asoke K. Nandi. Feature

Generation Using Genetic Programming Based on Fisher
Criterion. In 15th European Signal Processing Conference,
2007.

[18] William G. J. Halfond and Alessandro Orso. Improving Test
Case Generation for Web Applications using Automated
Interface Discovery. In 6th Joint European Software
Engineering Conference and ACM SIGSOFT Symposium on
Foundations of Software Engineering, 2007.

[19] Paul C. Kocher. Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems. In 16th

Annual Conference on Advances in Cryptology, 1996.
[20] Mark Levene and George Loizou. Computing the Entropy of

User Navigation in the Web. International Journal of
Information Technology and Decision Making, 1999.

[21] Marc Liberatore and Brian Neil Levine. Inferring the Source
of Encrypted HTTP Connections. In 13th ACM Conference
on Computer and Communications Security, 2006.

11



[22] Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee,
Rocky K. C. Chang, and Roberto Perdiscio. HTTPOS:
Sealing Information Leaks with Browser-side Obfuscation of
Encrypted Flows. In Network and Distributed System
Security Symposium, 2011.

[23] Atif M. Memon, Ishan Banerjee, and Adithya Nagarajan.
GUI Ripping: Reverse Engineering of Graphical User
Interfaces for Testing. In 10th Working Conference on
Reverse Engineering, 2003.

[24] Ali Mesbah. Crawljax. http://crawljax.com/, 2008–2011.
[25] Ali Mesbah, Engin Bozdag, and Arie van Deursen. Crawling

AJAX by Inferring User Interface State Changes. In Eighth
International Conference on Web Engineering, 2008.

[26] Chunyan Mu and David Clark. Quantitative Analysis of
Secure Information Flow via Probabilistic Semantics. In
International Conference on Availability, Reliability and
Security, 2009.

[27] Linda Dailey Paulson. Building Rich Web Applications with
Ajax. Computer, October 2005.

[28] Selenium Issues. Clearing the Cache from Firefox Driver.
http://code.google.com/p/selenium/issues/detail?id=548,
2010.

[29] Selenium Project. Selenium. http://seleniumhq.org/,
2004–2011.

[30] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell,
Venkata N. Padmanabhan, and Lili Qiu. Statistical
Identification of Encrypted Web Browsing Traffic. In 23rd
IEEE Symposium on Security and Privacy, 2002.

[31] Yong Xu and Guangming Lu. Analysis On Fisher
Discriminant Criterion And Linear Separability Of Feature
Space. In International Conference on Computational
Intelligence and Security, 2006.

[32] Bing-Yi Zhang, Ya-Min Sun, Yu-Lan Bian, and Hong-Ke
Zhang. Linear Discriminant Analysis in Network Traffic
Modeling: Research Articles. International Journal on
Communication Systems, February 2006.

[33] Kehuan Zhang, Zhou Li, Rui Wang, XiaoFeng Wang, and
Shuo Chen. Sidebuster: Automated Detection and
Quantification of Side-Channel Leaks in Web Application
Development. In 17th ACM Conference on Computer and
Communications Security, 2010.

12


