
P1: jth

JWBS001C-142.tex WL041/Bidgoli WL041-Bidgoli.cls September 16, 2005 9:8 Char Count= 0

Hostile Java AppletsHostile Java Applets
David Evans, University of Virginia

Introduction 126
Java Security Overview 126

Low-Level Code Safety 127
High-Level Code Safety 127

Low-Level Code Safety Mechanisms 127
Bytecode Verification 127
Run-Time Checks 128

High-Level Code Safety Mechanisms 128
Permissions 128
Policies 129
Enforcing Policies 130

Malicious Behavior 131
Exploiting Weak Policies 131

Consuming Resources 131
Countermeasures 131

Circumventing Policies 132
Violating Low-Level Code Safety 132
Policy Association 133
Security Checking 133
Defenses 133

Conclusion 134
Glossary 134
Cross References 135
References 135

INTRODUCTION
Java was introduced in 1995 as both a high-level pro-
gramming language and an intermediate language, Java
Virtual Machine language (JVML, sometimes called Java
byte codes), and execution platform, the Java Virtual
Machine (Java VM), designed for secure execution of pro-
grams from untrusted sources in Web browsers (Gosling,
1995). These small programs that are intended to exe-
cute within larger applications are known as applets. Java
runs on a wide range of platforms scaling from the Java
Card smart card environment (Chen, 2000) to the Java 2
Enterprise Edition (J2EE) for large component-based en-
terprise applications (Singh, Stearns, Johnson, & the En-
terprise Team, 2002). This chapter focuses on the Java 2
Platform, Standard Edition (J2SE), which is the most
common platform for desktop applications and servers,
including Web browsers. Most of the security issues are
the same across all Java platforms, however. Because of
the limited functionality of the Java Card environment,
some of the security concerns with the standard edition
do not apply; the added complexity of J2EE raises addi-
tional security issues (Gong, Ellison, & Dageforde, 2003).

The Java programming language adopted most of the
syntax of C++ and semantics of Scheme. Because the
Java programming language does not provide the type
unsafe features of C++ (including pointer arithmetic and
unchecked type casts), programs written in the Java pro-
gramming language (and compiled correctly and executed
in a correct virtual machine implementation) can guar-
antee certain security properties. However, because ap-
plets are transmitted as JVML there is no guarantee that
Java applets were created using the Java programming
language. JVML programs can be created using a com-
piler for a different programming language or edited di-
rectly. Hence, all security claims made for executing Java
applets are based solely on the mechanisms provided by
JVML and the Java VM execution platform.

The Java Virtual Machine attempts to provide secu-
rity properties that enable code from untrusted sources to

be safely executed. It confines executing applets to a vir-
tual playpen (sometimes called a sandbox) that limits what
they can do and mediates access to external resources ac-
cording to a policy. Malicious applets can attempt to be-
have in ways that are detrimental to the host. The most
serious malicious applets find a way to circumvent Java’s
security mechanisms and gain complete control of the
host machine. These attack applets depend on exploiting
a vulnerability in a Java implementation. Other classes
of malicious applets may disturb the victim without cir-
cumventing Java’s security mechanisms by behaving in an
annoying or disruptive way that is within the behaviors
permitted by the policy.

The next section of this chapter presents an overview of
Java’s security mechanisms. Next, we provide an overview
of the Java security model. The next section describes
Java’s mechanisms for low-level code safety necessary to
ensure that malicious applets cannot circumvent high-
level security mechanisms. The third section describes
Java’s high-level code safety mechanisms that can im-
pose a policy on an applet execution. The fourth section
discusses hostile applets that behave maliciously without
circumventing Java’s security mechanisms, and the fifth
section considers exploit applets that damage the victim
by circumventing Java security mechanisms. The sixth
section concludes.

JAVA SECURITY OVERVIEW
Security in Java is based on a model in which code exe-
cutes in a virtual machine that mediates access to criti-
cal system resources. Instead of executing directly on the
host machine and having access to all resources a user-
level process can access on the machine, a Java applet
executes inside the Java VM. The Java VM itself is typi-
cally a user-level process running on the host machine, so
its access is limited by the underlying operating system ac-
cording to the permissions assigned to its process owner.
The Java VM, however, places additional constraints on

126

P1: jth

JWBS001C-142.tex WL041/Bidgoli WL041-Bidgoli.cls September 16, 2005 9:8 Char Count= 0

LOW-LEVEL CODE SAFETY MECHANISMS 127

what the applets it executes may do. In particular, it
mediates access to system resources that are considered
security critical.

The Java VM executes programs written in JVML, a
stack-based language with a relatively small and simple
instruction set. Although they are often produced from a
Java programming language program by a Java compiler,
JVML programs can be produced manually or from some
other language by a compiler that targets JVML.

Java security depends crucially on knowing that the
only way an applet can manipulate controlled resources is
through Java application program interface (API) method
calls that perform security checks before permitting
security-critical operations. Hence, we can divide Java se-
curity mechanisms into two categories:

� Low-level code safety mechanisms designed to ensure
that all manipulations of critical resources are per-
formed only through Java API calls

� High-level code safety mechanisms designed to enforce
an access control policy on resource manipulations done
through Java API calls.

Java’s security model has evolved since the initial 1.0 re-
lease. Java 1.0 distinguished local trusted code from un-
trusted applets, but did not provide any mechanisms for
signing code or applying different policies to different ex-
ternal code. Java 1.1 introduced code signing whereby
cryptographically signed applets could execute as trusted
code. The Java 2 platform provided richer mechanisms
for access control and policy association. It allows dif-
ferent policies to be associated with different applets run-
ning in the same Java VM. Except when specifically noted,
this chapter describes the security model provided by
version 1.4.2 of the Java 2 platform.

The next sections describe what low-level code safety
and policy-specific code safety involve, first describing
Java’s mechanisms for providing low-level code safety
and second describing Java’s mechanisms for providing
policy-specific code safety.

Low-Level Code Safety
Low-level code safety ensures that all resource manipula-
tion is done through standard method calls. It is necessary
to prevent malicious applets from circumventing Java’s
security mechanisms. Low-level code safety requires type
safety, memory safety, and control flow safety.

Type safety means that data values are always manip-
ulated in a type-consistent way. All values in Java have
a type, and different operations are possible on differ-
ent types. For example, integers can be added and ob-
ject references can be dereferenced but integers cannot
be dereferenced. If it were possible to dereference inte-
ger values, or to perform arithmetic operations on object
references, it would be possible to manipulate arbitrary
locations in memory, thereby circumventing Java’s secu-
rity mechanisms. For example, if type safety is not en-
forced, an applet could create an integer constant that
corresponds to the address where the security policy is
stored and then use that integer as an object to change
the security policy.

Memory safety means that reads and writes to memory
must be within the storage allocated for an object. With-
out memory safety, a malicious applet could access mem-
ory beyond the range allocated for an object to change
the value of some other value. The standard stack smash-
ing buffer overflow attack (Aleph One, 1996) operates this
way: by writing data beyond the space allocated for an
object, the attacker can overwrite the return address on
the stack and inject malicious code into memory. Mem-
ory safety prevents this class of attacks in Java, because it
should not be possible for a malicious applet to write to
memory beyond the allocated space for an object.

Control flow safety ensures that execution jumps are al-
ways to valid locations. In Java, this means that execution
may not jump into the middle of a method but only to the
beginning. Without control flow safety, a malicious applet
could jump directly to security critical code inside an API
method, thereby circumventing the security checks that
must be done before performing the critical operation.

High-Level Code Safety
High-level code safety is concerned with controlling ac-
cess to security-critical resources. Unlike low-level code
safety, which is necessary to ensure that security mech-
anisms are not circumvented and essentially the same
mechanisms are necessary to enforce any security policy,
high-level code safety enforces a resource control policy
that will vary by users, systems, and applications. Enforce-
ment is done using a straightforward reference monitor:
before an applet attempts a security critical operation,
checks are performed to determine whether the intended
operation is permitted by the policy. If the check fails, the
security critical operation is not permitted and a security
exception is raised. A policy is associated with code using
a ClassLoader, which controls how new classes are loaded
into a Java VM.

The two main challenges in high-level code safety are
defining a policy that allows enough access to enable ap-
plets to do useful things and associating the appropriate
policy with particular code. Later sections in this chap-
ter describe the permissions that can be granted in Java
to control access to system resources, describe how poli-
cies for different applets and executions are defined using
those permissions and how a particular policy is associ-
ated with an executing class, and explain Java’s mecha-
nisms for enforcing those policies.

LOW-LEVEL CODE SAFETY
MECHANISMS
Java enforces low-level code safety using a combination
of static and dynamic checks. Static checks are performed
by the Java bytecode verifier before a Java class file is
loaded into the Java virtual machine; dynamic checks are
performed by the Java virtual machine to check certain
properties before an instruction that could violate low-
level code safety is executed.

Bytecode Verification
The Java bytecode verifier statically checks certain prop-
erties of Java class files before they are loaded into the

P1: jth

JWBS001C-142.tex WL041/Bidgoli WL041-Bidgoli.cls September 16, 2005 9:8 Char Count= 0

HOSTILE JAVA APPLETS128

virtual machine (Lindholm & Yellin, 1999). It checks that
the class file is in the correct format and that it contains
the data it should. Most important, it checks properties
of the class file that are necessary for low-level code
safety. The bytecode verifier by itself is not sufficient to
completely guarantee low-level code safety, but it does
establish properties that in combination with the run-time
checks are enough to provide low-level code safety. These
properties include ensuring that values of the appropriate
types are on the stack before every instruction and that a
value stored in a memory location is treated as the same
type of value when it is loaded.

The bytecode verifier simulates execution of a JVML
program. In general, checking low-level code safety is an
undecidable problem that requires reasoning about all
possible executions of a program. To enable efficient veri-
fication, Java’s bytecode verifier makes some conservative
assumptions and puts off checking certain instructions
(such as type casts and array fetches) until run time. The
conservative assumptions mean that there are some safe
programs that the verifier will reject, but that there are
no unsafe programs that are accepted by a correctly im-
plemented verifier. One assumption made by the bytecode
verifier is that the type stored in a particular local memory
location is the same throughout a procedure’s execution.
This, along with a few other similar assumptions, means
that the bytecode verifier can simulate execution without
needing to follow any backward jumps (e.g., loop repe-
titions) and that each method call can be checked based
only on the type signature, without any need to simulate
the method body for each call site.

If the verifier finds a type violation or an instruction
that would cause a stack overflow or underflow, it raises
an exception and the code will not be loaded to execute
in the Java VM. If the code is accepted by the verifier, it
means that all operations except checked casts and array
assignments are type safe, all jumps are to valid locations,
and all memory loads and stores are either to valid loca-
tions or are done through instructions that will be checked
for memory safety at run time.

Run-Time Checks
Because of the limits of static analysis, some type and
memory safety properties cannot be checked by the byte-
code verifier. These properties must be checked at run
time by the Java VM. Run-time checking is typically sim-
pler and hence less prone to vulnerability than static
checking, but it imposes an execution time penalty be-
cause the checking is done during the program execution.
The other disadvantage of run-time checking is that prob-
lems will not be detected until the program has already
begun executing.

Array fetches and stores in Java use load and store
instructions that expect an array and an integer index
value that identifies the array element on the stack. Mem-
ory safety depends on the index being within the array
bounds. Arbitrary computations can calculate the index
value, so it is impossible for the bytecode verifier to de-
termine whether the index is within range. Hence, the
Java VM must check at run time that all array indexes
are within bounds. If the index is not in bounds, an

ArrayIndexOutOfBoundsException is raised and the at-
tempted array access is prevented.

Type casts are necessary in Java to change the apparent
type of an object to a subtype of its apparent type. The ac-
tual type of the object must be a subtype of the cast type,
but it is not always possible to determine the actual type
of an object at verification time. For type casts that are not
known to be safe at compile time, the Java compiler pro-
duces a checkcast instruction that changes the apparent
type of an object for bytecode verification but is checked
at run time to ensure that the actual type of the object
matches the cast type.

The final run-time low-level code safety check per-
formed by the Java VM is for stores into elements of array
parameters. Java’s type system allows an array of type S
elements to be passed as a parameter whose type is an
array of T elements if S is a subtype of T. However, if the
method body stores a value of type T into the array, it
may not be of type S and would violate the array element
type. The verifier checks the method body according to the
apparent type of the array parameter, but the actual type
is not known at verification time. Hence, the array store
must be checked at run time. If the type of the value stored
in the array is not a subtype of the actual element type of
the array, the array store is prohibited and an ArrayStore-
Exception is raised.

In conjunction with the bytecode verifier, the run-time
safety checks provided by the Java VM are designed to en-
sure that Java applets cannot violate type safety, memory
safety, or control flow safety. As long as they are imple-
mented correctly (see the Violating Low-Level Code Safety
section for a discussion of hostile applets that exploit bugs
in the bytecode verifier) and the assumptions they make
about the computing environment are true (that section
includes a description of an example attack that depends
on violating those assumptions), they prevent hostile ap-
plets from being able to manipulate resources without go-
ing through the high-level code safety mechanisms.

HIGH-LEVEL CODE SAFETY
MECHANISMS
Low-level code safety mechanisms prevent hostile applets
from circumventing the high-level code safety mecha-
nisms provided by the Java VM. Those high-level code
safety mechanisms are designed to impose a policy on an
executing applet that limits its access to system resources.
Depending on the level of trustworthiness associated with
the applet, a different policy may apply that enables and
disables permissions appropriately. The next sections de-
scribe the types of policies Java can impose and how they
are defined, how a particular policy is associated with
code, and how the Java VM enforces a high-level code
safety policy on an execution.

Permissions
A Java policy specifies what actions an applet may per-
form. Particular actions require specific permissions. If
an applet attempts an action, but does not have the asso-
ciated permission, the action will not be permitted and a
security exception is raised.

P1: jth

JWBS001C-142.tex WL041/Bidgoli WL041-Bidgoli.cls September 16, 2005 9:8 Char Count= 0

HIGH-LEVEL CODE SAFETY MECHANISMS 129

Java supports 19 permission classes for specifying
different actions; many of these permissions can be
parameterized (Sun 2002a). For example, the java.io.
FilePermission class represents permissions related to file
input and output. An instance of the class is a pathname
and a set of actions (selected from read, write, execute,
and delete) permitted for that pathname.

Summarizes all the permissions that can be granted
by a Java security policy. Many of the permissions are
inherently dangerous: if they are granted, a hostile ap-
plet could use them to obtain other permissions. For ex-
ample, granting the ReflectPermission permits an applet
to use Java’s reflection methods to access field and call
methods without normal access checks being performed.
A hostile applet could use this permission to manipulate
other resources in ways that circumvent the security pol-
icy. For example, reflection could be used to invoke the pri-
vate java.io.File.delete0 method to delete a file regardless
of whether the applet has the required permission (nor-
mally, the java.io.File.delete method first checks whether
the caller has permission to delete the file and then invokes
delete0 to delete the file). The permission RuntimePermis-
sion.setSecurityManager allows an applet to replace the se-
curity manager with a custom security manager, thereby
circumventing any checking done by the original security
manager.

Policies
When loading a class in Java, a subclass of the abstract
class, ClassLoader, is responsible for creating the associa-
tion between the loaded class and its protection domain.
These static permissions are associated with the class at
run time through a protection domain (PD). Each Java
class will be mapped to one PD, and each PD encapsu-
lates a set of permissions. A PD is determined based on
the person running the code, the code’s signers, and the
code’s origin. If two classes share the same context (prin-
cipal, signers, and origin), they will be assigned to the
same PD, because their set of granted permissions will be
the same.

Policies are sets of rules that determine whether a par-
ticular action is permitted. To assign permissions, the
class loader checks the security policy defined, and the
policy grants specific permissions to code based on cer-
tain code attributes and then associates the permissions
with the class by a PD. Prior to J2SE 1.4, permissions
were assigned statically at load time by default, but now
dynamic security permissions are supported (Sun, 2003).
This provides more flexibility, but increases complexity
and makes reasoning about security policies difficult.

Java policies are defined by specifying the permissions
granted in a policy file. The policy file specifies permis-
sions to be granted based on properties of an execution:
the origin of the code, the digital signers of the code (if
any), and who is executing the code. A user can edit the
policy files with a normal text editor or the PolicyTool.
Java’s policies are also affected by a system-wide prop-
erties file, java.security, that specifies paths to other pol-
icy files, a source of randomness for the random number
generator, and other important properties. These security
properties should not need to change often, but they are

important in understanding how the policy is configured.
Changes to this file could greatly influence the system’s
policy, since a user could change which files are used for
the actual policy in this file.

The policy file contains a list of grant entries. Each
grant entry identifies a context that determines when
the grant applies and then lists a set of permissions that
are granted in that context. The context may specify the
signers of the code (a list of names, all of whom must
have signed the code for the context to apply), the origin
of the code (code base uniform resource locator [URL]),
and one or more principals (on whose behalf the code is
executing). If no principals are listed, the context applies
to all possible principals.

The following is an example grant entry:

grant signedBy "John" {
permission java.io.FilePermission

"C:\\temp*", "read, write";
};

This grants all applets signed by “John” permission to read
and write files in the C:\temp\ directory. The grant entry

grant codebase "http://www.cs.virginia.edu",
principal javax.security.auth.x500.

X500Principal "cn=evans" {
permission java.io.FilePermission

"/usr/evans/*", "read, write";
};

grants applets from URLs within the www.cs.virginia.edu
domain permission to read and write files in the /usr/evans/
directory when they are running on behalf of principal
“evans.”

Java is installed with one system-wide policy file, but
if a user adds his or her own policy file, that file will also
be taken into account. The granted permission set is the
union of the permissions granted in all the policy files,
so the default permissions is the union of both of these
policy files’ granted permissions. This is dangerous, be-
cause a user may have a difficult time of actually deter-
mining what permissions are actually being granted. Fur-
ther, it means a user can make the policy less restrictive
than the system policy, but cannot make the policy more
restrictive.

Because most users are unlikely to change the secu-
rity policy themselves, hostile applets target the default
system security policy. Sun’s default Java security policy
(J2SE 1.4.2) grants all permissions to code loaded from
the lib/ext subdirectory of the Java installation on the lo-
cal file system and grants several permissions to all applets
(including untrusted applets):

� Listen on unprivileged ports (port numbers 1024–65535)
� Stop its own thread
� Read standard system properties including the Java ver-

sion and vendor and operating system.

In addition, most containers permit applets to make
network connections back to their originating host.

P1: jth

JWBS001C-142.tex WL041/Bidgoli WL041-Bidgoli.cls September 16, 2005 9:8 Char Count= 0

HOSTILE JAVA APPLETS130

Everything else such as file system operations, network
sockets (except to the originating host), and audio is for-
bidden.

Enforcing Policies
The Java VM enforces policies on executions using the
SecurityManager, which uses the AccessController class to
check that code has the necessary permission before a
controlled operation is executed. When a controlled oper-
ation is requested in Java, the call to the SecurityManager’s
checkPermission method simply calls on the AccessCon-
troller and the AccessController grants or denies access

according to the applicable security policy based on
the code’s protection domain, as determined from its
associated ClassLoader. Security depends on the Java API
calling the appropriate SecurityManager check method be-
fore every controlled operation and on the checking code
associating the correct policy with the executing code.

When deciding to grant a permission to execute a
requested action, the AccessController must determine
which policy should apply to the request. Because code
with different trust levels may be executing in the same
Java VM, associating a policy with a request requires ex-
amining the stack to determine which code is responsi-
ble for the request. Every thread’s stack consists of a set

Table 1 Java Permissions

Resource Permission Class (Target) Actions Controlled

General resources AllPermission All permissions. Granting AllPermission effectively turns off
all access control security.

SecurityPermission Altering the security policy including setting the policy, setting
security properties, and retrieving private keys.

UnresolvedPermission Used to represent permissions that are not resolved until run
time (actual permission class does not exist when the policy
is initialized).

AuthPermission Managing credentials and invoking code using
a different identity

File System FilePermission Reading, writing, executing and deleting files.
Network SocketPermission Creating network sockets. Controls the ability to connect to

specific hosts and ports, and to listen on local ports.
NetPermission Various network actions: control how authentication is done,

stream handling, and requesting passwords.
SSLPermission Accessing SSL session contexts

Display AWTPermission
(showWindow-
WithoutWarning,
readDisplayPixels)

Creating pop-up windows that are not marked with a warning
that indicates that they were created by an untrusted
program; examine pixels on the display.

System Clipboard AWTPermission
(accessClipboard)

Reading from and writing to the system clipboard.

Keyboard, Mouse AWTPermission
(listenToAllAWTEvents,
accessEventQueue,
createRobot)

Examining, altering, and creating events in the system
event queue.

System properties PropertyPermission Reading and writing system properties (environment variables)
Speaker, Microphone AudioPermission Playing and recording sounds
Printer RuntimePermission

(queuePrintJob)
Sending jobs to the printer

Application-Specific
Resources

SQLPermission Accessing the SQL log

ServicePermission, Delegation
Permission

Using and delegating Kerberos services

PrivateCredentialPermission Accessing private credentials associated with
a specific subject

Java-Specific Resources LoggingPermission Altering system logging levels
ReflectPermission Using Java reflection to directly access fields and methods in

a class. (Allows code to access private methods and fields.)
RuntimePermission Creating class loaders, setting class loader contexts, changing

the security manager, altering threads, dynamic loading
SerializablePermission Alter the way objects are serialized by overriding

the serialization methods.

P1: jth

JWBS001C-142.tex WL041/Bidgoli WL041-Bidgoli.cls September 16, 2005 9:8 Char Count= 0

MALICIOUS BEHAVIOR 131

of stack frames built by a sequence of method calls. The
AccessController must not only verify that the current stack
frame has the required permission, but also that the pre-
viously invoked stack frames have the permission. In this
way, previously called methods cannot gain privileges by
calling higher privileged code.

When the AccessController performs a security check,
it examines the call stack to determine which protection
domain should apply and then checks if it grants the
appropriate permissions. This is known variously as
stack introspection (Wallach, Balfanz, Dean, & Felten,
1997), stack inspection (McGraw & Felten, 1999) and
stack walking. Because every Java method belongs to a
class, and there is a protection domain associated with
every class, each stack frame has an associated protection
domain. A frame may also have dynamically granted
permissions. If any stack frame has not been granted the
permission for the requested access, then the request will
be denied by throwing an exception. The AccessController
checks permissions by calling a method to indirectly
return an object encapsulating the current protection
domains on the stack and then checking the associated
permissions.

MALICIOUS BEHAVIOR
The simplest strategy for an attacker is to attempt to
achieve the attack goals without violating the security pol-
icy. If the attacker’s goal is just to obtain free computing
resources or annoy the victim, then it is possible to do
so without circumventing any security mechanisms. This
section will consider hostile applets that have negative
consequences without needing to violate typical security
policies.

Exploiting Weak Policies
The challenge in defining a good security policy is to dis-
allow all undesirable behavior while permitting all use-
ful behavior. It is impossible to define a policy that does
this exactly—all policies must either allow some undesir-
able behavior, disallow some useful behavior, or both. This
is especially problematic when a generic, one-size-fits-all
policy is applied to all applets, regardless of their intended
purpose. For example, it would be appropriate (and nec-
essary) for a chat room applet to send data entered by the
user over the network but it may be unacceptable for a
mortgage calculator applet to do so.

The default policy for typical Java implementations
allows untrusted applets to perform many potentially
detrimental actions. For example, standard security poli-
cies permit untrusted applets to make any number of
network connections to the originating host and transmit
any amount of data to the network. Because very few users
are likely to customize their policy settings, a hostile ap-
plet that does these things without violating the default se-
curity policy is likely to succeed in victimizing most users
who execute it.

Consuming Resources
Java’s standard security manager supports only absolute
permissions: an action is either permitted or not; if the

action is permitted it is always permitted. This means
that Java security policies provide no constraints on re-
source consumption, beyond what the underlying oper-
ating system provides. On typical consumer operating
systems, such as Windows XP, there are no per-process
resource constraints, so an untrusted Java applet could
effectively consume all available system resources. Al-
though we know of no cases in which a malicious re-
source consumption attack was discovered in the wild,
one can imagine hostile applets designed to consume ex-
cessive amounts of almost any machine resource.

An applet that enters an infinite loop will continue to
consume processor cycles as long as it executes. How
damaging this is depends on the operating system’s sched-
uler. On an operating system without preemptive multi-
tasking (such as the Macintosh before OS X), a process
that enters an infinite loop can prevent any other process
from executing. With more recent operating systems and
virtual machines, the processing time allotted to a given
process is controlled by the operating system. Hence, even
if a thread enters an infinite loop it will be preempted by
the operating system and another thread will be given a
chance to execute. Nevertheless, hostile applets can still
consume substantial central processing unit (CPU) cycles
on modern operating systems. An attacker can use the
stolen CPU cycles to perform a computation valuable to
the attacker on the victim’s machine such as attempting
to do a brute-force key search.

A thread that is set to the highest priority (MAX
PRIORITY) will be given all available CPU cycles by most
schedulers. Java applets can also create new threads to
consume more host resources. Normally, when a browser
leaves a Web page, all the applets running on that page
will be terminated. This is done by the containing appli-
cation invoking each thread’s stop method. However, since
an applet can override the stop method (for example, to
do nothing), it is possible for a hostile applet to continue
executing after the browser leaves its page. Recent imple-
mentations (such as Netscape Navigator 7.1) mitigate this
attack by forcing the threads to terminate after the page
is left even if their stop method does not.

Hostile applets could also consume other system re-
sources such as memory (by allocating objects in a loop
and holding live references to them to prevent the garbage
collector from reclaiming the storage) and the display (by
creating windows to fill the screen). If the security policy
permits the applet to open a file for writing, the applet may
write as much data as it wants to the file, filling up the vic-
tim’s disk. If any network connections are permitted, the
applet can send data at the maximum rate possible and
consume much of the victim’s network bandwidth. Mark
LaDue’s collection of hostile applets provides examples
of many different resource consumption attacks (LaDue,
2004).

Countermeasures
Because there are no permissions associated with con-
suming CPU cycles, creating threads, consuming mem-
ory, and creating windows (except for creating windows
without warning markings), none of these attacks can be
mitigated using standard Java security policies. Attacks

P1: jth

JWBS001C-142.tex WL041/Bidgoli WL041-Bidgoli.cls September 16, 2005 9:8 Char Count= 0

HOSTILE JAVA APPLETS132

that consume network or file system resources can be pre-
vented by prohibiting all network or file system access,
but there is no way to define a policy that allows an applet
to open a network connection without also allowing it to
send unlimited amounts of data over that connection.

One strategy to limit the damage resource consump-
tion attacks can accomplish is to use the underlying
operating system to place limits on the total resources
consumed by the Java VM. An operating system with a
preemptive scheduler, such as Windows XP, will be less
vulnerable to a CPU consumption attack because even if
the hostile applet is able to consume all available cycles
of the Java VM, it will not receive more system CPU
cycles than the Java VM is allocated. Operating systems
can also place limits on the memory, network bandwidth,
and other resources a process may consume. This can
prevent the hostile applet from interfering substantially
with non-Java applications running on the host, but does
not prevent it from interfering with the execution of other
Java applets.

Java VM implementations could also monitor resource
consumption and terminate applets that are exceeding
set resource limits. Accounting for resource consumption
by individual applets is not necessarily straightforward,
however, because applets may interact in ways that make
it difficult to account for which applet is responsible for
a particular resource use. JRes is a resource accounting
mechanism that can be implemented on top of a Java VM
(Czajkowski & von Eicken, 1998). It accounts for CPU,
memory, and network use by individual threads and al-
lows a user to enforce a policy that takes actions when a
thread exceeds usage limits.

Accounting for memory consumption is difficult be-
cause the thread that allocates an object may not be the
thread responsible for it remaining in memory. Code from
one applet may hold references to objects created by other
applets, and a memory consumption attack could exploit
this by holding on to references to objects created by an-
other applet. Price, Rudys, and Wallach (2003) developed
a technique for accounting for memory consumption by
applets by modifying a garbage collector to measure the
amount of storage attributable to each applet.

A more general defense strategy is to extend Java’s se-
curity mechanisms to support more expressive policies.
Java policies are limited by the defined permissions, but
more fundamentally they are limited by the need to insert
calls to SecurityManager checks in the Java API before
every controlled operation. This means extending Java to
support permissions associated with allocating memory,
consuming processor cycles, reading or writing bits to a
file (as opposed to opening a file for reading or writing),
or transmitting data over the network (on a socket that
is already open) would involve a substantial performance
penalty. The costs associated with checking the permis-
sions would be necessary for every operation, regardless
of whether the policy in effect places any constraints on
consumption of that resource. One solution to this is to
use an inlined reference monitor (Erlingsson, 2003). This
approach involves inserting checking code directly into
an untrusted applet (or a policy-specific Java API). The
inserted checking code performs the necessary security
checks to enforce a policy before each security-critical
action. Because the checking code is inserted to enforce

a specific policy, it is possible to express a large class of
policies that provide arbitrary constraints on use and con-
sumption of any resource visible through code instruc-
tions. Two systems that adopt this approach to provide
fine-grained policies on Java applets are Naccio (Evans
& Twyman, 1999) and SASI (Erlingsson & Schneider,
1999).

CIRCUMVENTING POLICIES
This section describes several strategies a hostile applet
may use to circumvent Java’s security mechanisms. In
McGraw and Felten’s (1999) terminology, these are known
as attack applets. The attacker’s goal is to be able to per-
form some action that is not permitted by the safety pol-
icy. An attacker may be able to circumvent those mech-
anisms by finding a way to violate low-level code safety
properties, by exploiting a vulnerability in the Java VM
to make it associate the wrong policy with the executing
code, or by exploiting a flaw in the Java API implemen-
tation that allows a critical resource to be manipulated
without checking the appropriate permission.

Violating Low-Level Code Safety
A hostile applet can violate low-level code safety by
exploiting a bug in the bytecode verifier that allows
type-unsafe code to pass verification. At least 4 of the 31
known Java security bugs (13%) from February 1996 to
December 2003 were due to bugs in the bytecode verifier
that allows code that violates type safety to execute in
a Java VM (Sun 2002b, 2004). These bugs often involve
mistakes in implementing the verification of complex
instructions. For example, a bug in the Java bytecode ver-
ifier found in 2001 involving the invokespecial instruction
(Sun, 2002c) affected many implementations of the Java
VM and could be exploited to violate type safety (“Last
Stage of Delirium,” 2002). Exploiting a bytecode verifier
bug to achieve a hostile goal is generally possible if the
attacker can obtain two references to the same object
with different apparent types. The hostile applet can then
proceed to access fields of the object through either ref-
erence. If the types of the fields of the first reference type
and the second reference type are different, the attack can
access arbitrary locations in memory by following refer-
ences in the actual type that correspond to integers in the
apparent.

A hostile applet may also circumvent Java’s secu-
rity mechanisms by violating control flow safety. Mul-
tiple bugs have been found within the implementation
of the exception-handling mechanism of Java. One flaw
in exception-handling subroutines was discovered in the
Microsoft Java VM in 1999 (“Last Stage of Delirium,”
2002). The jsr and ret instructions are used to implement
finally clauses in Java. Control flow safety depends on the
correct return addresses being on the stack when the ret
instruction executes. A flaw in the bytecode verifier al-
lowed an applet to use two jsr instructions to put two ad-
dresses on the stack and then to use a swap instruction to
exchange the addresses (a correct verifier implementation
would disallow this). Then, the swapped return address is
used by the ret instruction to return to the instruction that
is now referenced by the address. The verifier verifies the
method as if the correct return was done. In this case,

P1: jth

JWBS001C-142.tex WL041/Bidgoli WL041-Bidgoli.cls September 16, 2005 9:8 Char Count= 0

CIRCUMVENTING POLICIES 133

violating control flow safety leads to the ability to violate
type safety because after the switched return the stack can
contain values of different types than is expected by the
verifier’s analysis.

Another strategy for violating low-level code safety is to
break one of the assumptions the verifier relies on. For ex-
ample, bytecode verification for type safety assumes that
values in memory cannot be altered except through Java
instructions. This seems like a reasonable assumption be-
cause all memory allocated to the applet is controlled by
the Java VM process, so as long as the operating system
provides virtual memory it should be impossible for an-
other process to alter values in the memory accessible to
an executing applet. However, it is possible for this as-
sumption to be violated if bits in memory flip due to faulty
hardware. Govindavajhala and Appel (2003) invented an
attack based on violating this assumption. By filling mem-
ory with objects of a particular type, they were able to
create a situation in which a random bit flip had a high
probability (about 70%) of being exploitable by a hostile
applet to violate type safety. After type safety is violated in
this way, the hostile applet can change the value stored in
arbitrary locations in memory. For example, an attacker
could replace the reference to the current security man-
ager with null, thereby circumventing all successive pol-
icy checking. Random bit flips can be induced in typical
memory hardware simply by heating the memory chips
(for example, with a light bulb or hair dryer). This re-
quires physical access to the host machine, which may
not be likely for remote desktop attacks, but is a serious
concern for Java VMs that attempt to execute isolated ap-
plets on smart cards to which a potential attacker readily
has physical access.

Policy Association
A hostile applet can obtain permissions beyond its trust
level if it can confuse the Java VM into assigning it to the
wrong protection domain. When a class is loaded, the pro-
tection domain is assigned based on the apparent origin of
the code, its signers, and the principal executing the code.
If a hostile applet can either alter the ClassLoader associ-
ated with a particular class or forge the origin or signers
of a class, it can prevent the Java VM from associating the
appropriate policy with the code.

Vulnerabilities in Java’s class loading mechanism have
been fairly common. Four of the 31 known Java secu-
rity bugs are directly attributable to ClassLoader issues
(Sun 2002b, 2004). Java 1.0 assumed that all code loaded
from a trusted path (set by the CLASSPATH environment
variable) was fully trusted and obtained all permissions.
The Java 2 platform treats code loaded on the CLASSPATH
as any other application, but uses the bootclasspath to
identify fully trusted code. This is necessary to bootstrap
the class loader, but poses the risk that an attacker who
can store a file on the bootclasspath can circumvent all
access controls.

The ClassLoader is also responsible for ensuring that
there are never two different classes loaded with the same
name. If this property is violated, low-level code safety
properties can be violated because the two classes will
type check according to their matching names, but may
be implemented differently.

Security Checking
Security checking happens when Java API methods call
SecurityManager check methods before performing crit-
ical operations. A hostile applet may be able to exploit
mistakes in the way the Java API calls those methods or
in the way the checks are implemented to circumvent and
intended security policy. Types of possible flaws in Java se-
curity implementations include allowing access to a pro-
tected resource indirectly without the necessary security
checking (for example, an applet can read a protected file
by instead loading a font with a peculiarly constructed
name), race conditions that allow system changes to oc-
cur between the time a check is made and the protected
resource is used (for example, a file is checked and then re-
placed with a symbolic link before it is opened), or checks
that make incorrect assumptions about resources.

One example of an exploitable security checking flaw
was the Java domain name sytem (DNS) bug discovered
by Drew Dean, Ed Felten, and Dan Wallach (1996). The se-
curity policy permitted an applet to open network connec-
tions to its originating host. However, connections were
checked based on the DNS name, not the Internet protocol
(IP) address. Netscape Navigator 2.0’s Java implementa-
tion would use DNS to lookup a list of IP addresses corre-
sponding to the originating host and a list of IP addresses
corresponding to the host the applet is attempting to con-
nect to and would allow the connection if there are any
common IP addresses between the two lists. An attacker
who can create bogus DNS mappings can then exploit this
flaw to connect to arbitrary network hosts.

Defenses
The best defense against hostile applets that exploit vul-
nerabilities in the Java VM implementation is to obtain
a Java VM implementation with no bugs. Of course, pro-
ducing bug-free code is beyond our current capabilities,
so it is worth considering techniques that can mitigate the
damage a hostile applet can produce if it successfully cir-
cumvents Java’s security mechanisms. Below, we describe
five approaches.

Virus Scanners. Traditional virus scanners analyze un-
trusted programs to see if they contain strings that match
a database of known hostile programs. Although commer-
cial virus scanners focus on Windows platform exploits,
most do include some hostile Java applets in their virus
database (McAfee, 2004; Symantec, 2004). The string-
matching approach works against known threats, but pro-
vides little protection against new attacks.

Malicious Behavior Detectors. To detect attacks from
unknown threats, the system must observe the behavior
and identify behavior that is likely to be malicious. Be-
cause several Java applets may be running concurrently
in one Java VM, it is awkward to apply standard intru-
sion detection techniques to detect anomalous behavior
of Java applets. The actions caused by a particular applet
are not clear, because applets may interact through shared
data structures and multiple threads. Soman, Krintz, and
Vigna (2003) proposed a thread-level auditing facility for
a Java VM that enables precise accounting for actions and
detection of malicious behavior from Java applets. Note,

P1: jth

JWBS001C-142.tex WL041/Bidgoli WL041-Bidgoli.cls September 16, 2005 9:8 Char Count= 0

HOSTILE JAVA APPLETS134

however, that this assumes the hostile applet is not able
to violate type safety, because an attack applet that could
do so could also interfere with the auditing mechanisms.

Firewalls. Firewalls monitor network traffic and can pre-
vent harmful incoming packets from reaching system ap-
plications and harmful outgoing packets from reaching
the network. Firewalls can prevent hostile applets from
behaving harmfully in the same way they would prevent
other applications from doing so. A firewall can also be
designed to prevent potentially hostile Java applets from
executing by blocking Java applets when they arrive on
the network (Martin, Rajagopalan, & Rubin, 1997).

Isolation. Another approach is to execute possibly hos-
tile applets in an isolated environment. Malkhi, Reiter,
and Rubin (1998) propose running untrusted applets on a
dedicated machine. The interface to the applet will appear
in the users’ browser in a way that provides users with the
illusion that it is running on their own machine. Because
the applet is executing on a separate machine and has
only limited access to the outside world through the net-
work, it cannot carry out any hostile actions on the user’s
machine. If a dedicated machine is not available, simi-
lar security properties can be achieved by executing un-
trusted applets in a way that isolates their effects. Liang,
Venkatakrishnan, and Sekar (2003) describe a system that
allows untrusted programs to execute in an environment
in which all changes they make to the system are recorded.
When the execution completes, the user can inspect the
changes and decide whether to approve them.

Proof-Carrying Code. The size and complexity of the
Java VM make implementing a correct Java VM difficult,
so one approach to improving security is to reduce the
complexity of the trusted computing base. Proof-carrying
code attempts to do that by using a small and simple ver-
ifier to check a proof that is included with an untrusted
program (Necula, 1997; Necula & Lee, 1996). Because it
is easier to check a proof than to create one, the trusted
computing base can be reduced by requiring programs to
provide a proof that they satisfy required security proper-
ties. Automatically producing proofs of complex security
policies and representing proofs in a condensed way re-
main challenging research problems, however.

CONCLUSION
Although numerous hostile applets have been proposed
by security researchers, hostile applets are very rare in
the wild. Reports of intentionally hostile Java applets are
rare and only minor incidents have been reported. Com-
pared to the damage caused by e-mail worms, viruses
that exploit buffer overflows in Windows and common
server applications, and cross-site scripting attacks, the
actual damage caused by hostile Java applets is minis-
cule. Symantec’s security response site reports 44 threats
discovered in January 2004, none of which involved Java.
Their entire database includes only two Java applet at-
tacks that have been found in the wild: Java.Nocheat and
Trojan.ByteVerify. Both are exploit applets that exploited a
vulnerability in the Java VM included with Microsoft In-
ternet Explorer (Microsoft, 2003). No significant damage

was caused by either attack, and fewer than 50 infections
were known.

The lack of instances of actual Java applet attacks is
not terribly surprising given the motivations and techni-
cal capabilities of most malicious attackers. E-mail worms
are comparatively very easy to write and far more effec-
tive in causing damage; buffer overflow attacks require
a bit more sophistication, but can be created by nonex-
perts using widely available tools and can readily give the
attacker complete control over the victim’s machine. By
contrast, most Java exploits depend on subtle flaws in the
bytecode verifier or class-loading mechanisms, which are
both harder to identify and often difficult to exploit even
after the flaw is identified. As a result, most of the work on
finding vulnerabilities in Java has been done by nonma-
licious researchers interested in improving the security
of the platform, not by malicious attackers interested in
causing harm.

Java’s security mechanisms are certainly not perfect,
and there are many ways a malicious applet can cause
harm. Some of these exploit vulnerabilities in Java im-
plementations to violate low-level code safety and en-
able the attacker to circumvent the security mechanisms;
others work within the security mechanisms, but exploit
weak policies that provide insufficient limits on resource
consumption and access. Ongoing work in industry and
academic research labs is developing techniques for effi-
ciently enforcing precise policies that can control resource
consumption, accurately account for resources consumed
by applets, and execute untrusted programs in protected
environments. As with most security issues, understand-
ing new attacks leads to new work on defensive coun-
termeasures, and new defensive countermeasures lead to
new approaches to attacks.

GLOSSARY
Applet Small program intended for execution inside a

container (such as a Web browser).
Control Flow Safety Property of a platform or pro-

gramming language that ensures that attempts to
jump to instruction addresses always jump to valid
locations.

Denial-of-Service Attack Attack intended to prevent le-
gitimate users from accessing a resource.

Dynamic Checking Analysis done on program execu-
tions.

Java Platform Platform that includes the Java virtual
machine intended for executing programs written in
JVML.

Java virtual machine langauge (JVML) Stack-based
intermediate language.

Low-Level Code Safety Properties necessary to pre-
vent circumvention of high-level security mechanisms.
Comprises type safety, memory safety, and control flow
safety.

Malicious Code Code created with the intention of
causing harm to someone who executes it.

Memory Safety Property of a platform or programming
language that ensures that attempts to read and write
to memory are to valid locations.

Safety Policy Set of rules that specify behavior that is
permitted. If the safety policy is enforced correctly,

P1: jth

JWBS001C-142.tex WL041/Bidgoli WL041-Bidgoli.cls September 16, 2005 9:8 Char Count= 0

REFERENCES 135

programs are prevented from actions that are not per-
mitted by the policy.

Static Checking Analysis done by examining programs
directly without executing them.

Type Safety Property of a platform or programming
language that ensures that values of a particular type
can only be used with operations that expect values
of that type. In particular, type safety prevents forging
pointers.

Virtual Machine A program that provides an abstract
platform for executing programs to enable portability,
simplicity, and security. The Java virtual machine in-
terprets programs written in JVML.

CROSS REFERENCES
See Computer Viruses and Worms; Hackers, Crackers and
Computer Criminals; Hoax Viruses and Virus Alerts; Mobile
Code and Security; Spyware; Trojan Horse Programs.

REFERENCES
Aleph One. (1996). Smashing the stack for fun

and profit. Phrack Magazine, 7(49). Retrieved from
http://www.insecure.org/stf/smashstack.txt

Chen, Z. (2000). Java card technology for smart cards:
Architecture and programmer’s guide. Reading, MA:
Addison-Wesley.

Czajkowski, G., & von Eicken, T. (1998, October). JRes:
A resource accounting interface for Java. Proceedings
of ACM Conference on Object-Oriented Programming
Systems, Languages and Applications.

Dean, D., Felten, E., & Wallach, D. (1996, May). Java secu-
rity: From HotJava to Netscape and beyond. IEEE Sym-
posium on Security and Privacy, Oakland, CA.

Erlingsson, Ú. (2003). The inlined reference monitor ap-
proach to security policy enforcement (Technical Report
2003-1916). Ph.D. thesis, Department of Computer Sci-
ence, Cornell University, Ithaca, NY.

Erlingsson, Ú., & Schneider, F. B. (1999, September). SASI
enforcement of security policies: A retrospective. Pro-
ceedings of the New Security Paradigms Workshop.

Evans, D., & Twyman, A. (1999, May). Policy-directed code
safety. Proceedings of the IEEE Symposium on Secu-
rity and Privacy.

Gong, L., Ellison, G., & Dageforde, M. (2003). Inside Java
2 platform security: Architecture, API design, and imple-
mentation (2nd ed.) Reading, MA: Addison-Wesley.

Gosling, J. (1995, February). Java: An overview (Sun
Microsystems White Paper). Santa Clara, CA: Sun
Microsystems.

Govindavajhala, S., & Appel, A. (2003, May). Using mem-
ory errors to attack a virtual machine. IEEE Sympo-
sium on Security and Privacy.

LaDue, M. (2004). A collection of increasingly hostile ap-
plets. Retrieved from http://www.cigital.com/hostile-
applets/

Last Stage of Delirium Research Group. (2002, Oc-
tober). Java and virtual machine security: Vulnera-
bilities and their exploitation techniques. Retrieved
from http://www.lsd-pl.net/documents/javasecurity-
1.0.0.pdf

Liang, Z., Venkatakrishnan, V. N. & Sekar, R. (2003,
December). Isolated program execution: An applica-
tion transparent approach for executing untrusted pro-
grams. 19th Annual Computer Security Applications
Conference.

Lindholm, T., & Yellin, F. (1999). The Java virtual machine
specification (2nd ed.). Reading, MA: Addison-Wesley.

Malkhi, D., Reiter, M., & Rubin, A. (1998, May). Secure ex-
ecution of Java applets using a remote playground. Pro-
ceedings of the 1998 IEEE Symposium on Security and
Privacy.

Martin, D. M., Jr., Rajagopalan, S., & Rubin, A. (1997).
Blocking Java applets at the firewall. Internet Society
Symposium on Network and Distributed Systems Se-
curity.

McAfee Security. (2004, January). Virus information li-
brary. Retrieved from http://us.mcafee.com/virusInfo/

McGraw, G., & Felten, E. (1999). Securing Java: Get-
ting down to business with mobile code. New York:
Wiley.

Microsoft. (2003, June 27). Flaw in Microsoft VM could
enable system compromise (Microsoft Security Bulletin
MS03-011). Redmond, WA: Author.

Necula, G. (1997). Proof-carrying code. Proceedings of the
24th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages.

Necula, G., & Lee, P. (1996). Safe kernel extensions without
run-time checking. Proceedings of the Second USENIX
Symposium on Operating Systems Design and Imple-
mentation.

Price, D. W., & Rudys, A., & Wallach, D. S. (2003). Garbage
collector memory accounting in language-based sys-
tems. 2003 IEEE Symposium on Security and Privacy,
Oakland, CA.

Singh, I., Stearns, B., Johnson, M., & the Enterprise Team.
(2002). Designing enterprise applications with the J2EE
platform. Reading, MA: Addison-Wesley.

Soman, S., Krintz, C., & Vigna, G. (2003). Detecting
malicious Java code using virtual machine auditing.
Proceedings of the 12th USENIX Security Symposium.

Sun Microsystems. (2002a). Permissions in the Java
2 SDK. Retrieved from http://java.sun.com/j2se/
1.4.2/docs/guide/security/permissions.html

Sun Microsystems. (2002b, November 19). Chronology
of security-related bugs and issues. Retrieved from
http://java.sun.com/sfaq/chronology.html

Sun Microsystems. (2002c). Sun security bulletins arti-
cle 218. Retrieved from http://sunsolve.sun.com/pub-
cgi/retrive.pl?doc=secbull/218

Sun Microsystems. (2003). Java 2 platform, standard edi-
tion: 1.4.2 API specification. Retrieved from http://java.
sun.com/j2se/1.4.2/docs/api/

Sun Microsystems. (2004, January). Sun alert notifi-
cations. Retrieved from http://sunsolve.sun.com/pub-
cgi/search.pl, category:security java

Symantec Corporation. (2004, January). Virus threats
page. Retrieved from http://www.symantec.com/
avcenter/vinfodb.html

Wallach, D. S., Balfanz, D., Dean, D., & Felten, E. W. (1997,
October). Extensible security architectures for Java. Pro-
ceedings of the 16th Symposium on Operating Systems
Principles.

