
 1 

Improving Security Using Extensible Lightweight Static Analysis  
David Evans and David Larochelle  

University of Virginia  
 

Abstract 
Most security attacks exploit instances of well-
known classes of implementation flaws.  Many 
of these flaws could be detected and eliminated 
before software is deployed.  These problems 
continue to be present with disturbing frequency, 
not because they are not sufficiently understood 
by the security community, but because 
techniques for preventing them have not been 
integrated into the software development 
process.  This paper describes an extensible tool 
that uses lightweight static analysis to detect 
common security vulnerabilities (including 
buffer overflows and format string vul-
nerabilities) and can be readily extended to 
detect new vulnerabilities. 
 
Keywords: static analysis, security vulnerabil-
ities, checking, buffer overflows, format bugs. 
 
1. Software and Security 

Building secure systems involves a myriad 
of complex and challenging problems 
ranging from building strong cryptosystems 
and designing authentication protocols to 
producing a trust model and security policy.  
Despite all these hard problems, the vast 
preponderance of security attacks exploit 
either human weaknesses (e.g., poorly 
chosen passwords, careless configuration, 
social engineering) or software implemen-
tation flaws.  It is hard to do much about 
human frailties, although education, better 
interface design, and security-conscious 
defaults can help here.  Software implemen-
tation flaws, however, typically involve 
well-understood and preventable problems.   
 
An analysis of any vulnerability database 
quickly reveals that most software 
vulnerabilities are not the result of clever 
attackers discovering new classes of 
software flaws.  Instead, the vast prepon-
derance of vulnerabilities constitute repeti-
tive instances of well-known problems.  The 
Common Vulnerabilities and Exposures list 
contains 190 entries from 1 January 2001 
through 18 September 2001 [3], summarized 

in Figure 1.  Of these 37 are standard buffer 
overflow vulnerabilities (including three 
related memory access vulnerabilities).  
Section 4 describes how Splint detects 
buffer overflow vulnerabilities.  Eleven 
entries involve format bugs, described in 
Section 5.1.  Most of the other vulnerabili-
ties also reveal common flaws that could be 
detected using static analyses including 
resource leaks (11 vulnerabilities), problems 
with file names (19) and symbolic links 
(20).  Only four of the vulnerabilities 
stemmed from cryptographic problems.    
Analyses of other vulnerability and incident 
reports reveal similar repetition – Wagner et. 
al., found that buffer overflow vulnerabil-
ities account for approximately 50% of 
CERT advisories [19]. 
 
So why do developers keep making the 
same mistakes?  Some may be put down to 
carelessness or lack or awareness of security 
concerns on the part of developers, others to 
legacy code, but even experienced security-
aware developers make these mistakes.  The 
problem is that although security vulner-
abilities such as buffer overflows are well 

Figure 1. Entries in Common Vulnerabilities 
and Exposures, 1 Jan 2001 – 18 Sept 2001. 
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understood, the techniques for avoiding 
them are not codified into the development 
process.   Even conscientious programmers 
can overlook security issues, especially 
when security issues rely on undocumented 
assumptions about procedures and data-
types.  Instead of relying on programmers’ 
memories, we should strive to produce tools 
that codify what is known about common 
security vulnerabilities and can integrate it 
directly into the development process.  This 
article describes Splint, a tool that represents 
a step towards those goals.   
 
2. Mitigating Software 

Vulnerabilities 

Our recommendation now is the same as our 
recommendation a month ago, if you haven't 
patched your software, do so now. 

Microsoft’s security program manager on the 
buffer overflow vulnerability in IIS that was 
exploited by the Code Red worm to acquire 
over 300,000 zombie machines to launch a 
distributed denial-of-service attack on the 
White House web site. 
 

One way to deal with security vulnerabilities 
is suggested by the above quote – wait until 
the bugs are exploited by an attacker, 
produce a patch that you hope fixed the 
problem without introducing any new bugs, 
and then whine when system administrators 
don’t install patches quickly enough.  Not 
surprisingly, this approach has proven 
largely ineffective. 
 
More promising approaches for reducing the 
damage caused by software flaws can be 
grouped into two categories – mitigate the 
damage flaws can cause or eliminate some 
of the flaws before the software is deployed.  
Techniques that limit the damage software 
flaws may cause include modifying program 
binaries to insert run-time checks or running 
applications in restricted environments that 
limit what they may do.  Variations on this 
approach include the Janus [10] and Naccio 
[9].  In addition, several projects have devel-
oped safe libraries [1] and compiler modi-
fications [5] specifically for addressing 

classes of buffer overflow vulnerabilities.  
These approaches all reduce the risk of 
security vulnerabilities while requiring only 
minimal extra work from application 
developers.   
 
One disadvantage of run-time damage-
limitation approaches is that they require 
some performance overhead.  A more 
serious weakness of damage-limitation 
approaches is that they do not eliminate the 
flaw but replace it with a denial-of-service 
vulnerability.  It is usually not possible to 
recover from a detected problem without 
terminating the program.  Hence, although 
damage-limitation techniques should be 
used in security-sensitive applications, they 
do not supplant techniques for eliminating 
the flaws.  
 
Techniques for detecting and correcting 
software flaws include human code reviews, 
testing, and static analysis.  Human code 
reviews are time-consuming and expensive, 
but can find the types of conceptual 
problems it would be impossible to find 
automatically.  They are likely to miss, how-
ever, more mundane problems that even 
extraordinarily thorough people will over-
look.  Code reviews depend on the expertise 
of the humans involved, whereas automated 
techniques can benefit from expert know-
ledge codified in tools.  Testing typically is 
not effective in finding security vulnerabili-
ties.  These vulnerabilities are revealed 
when attackers attempt to exploit weak-
nesses in the systems the designers did not 
think about; hence, they are not likely to be 
found through standard testing. 
 
Static analysis techniques take a different 
approach.  Rather than observe executions 
of the program, they analyze the source code 
directly.  This enables them to make claims 
about all possible executions of a program 
instead of just the particular execution 
observed in a test case.  From a security 
viewpoint, this is a significant advantage.   
 
There is a wide range of static analysis 
techniques, offering a tradeoff between the 
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effort required to use them and the com-
plexity of the analyses they are able to 
perform.  Standard compilers perform type 
checking and other simple program 
analyses.  This represents the low-effort end 
of the design spectrum.  At the other 
extreme, full program verifiers attempt to 
prove complex properties about programs.  
They typically require a complete formal 
specification and use automated theorem 
provers.  These techniques have been 
effective, but are nearly always too 
expensive and cumbersome to use on even 
security-critical programs.   
 
Our approach is to use lightweight static 
analysis techniques that require increment-
ally more effort than using a compiler, but a 
fraction of the effort required for full 
program verification.  This requires certain 
compromises, in particular the use of 
heuristics to assist the analysis.  Our design 
criteria eschew theoretical claims in favor of 
useful results.  Detecting likely vulnerabil-
ities in real programs depends on making 
compromises that increase the class of 
properties that can be checked while sacri-
ficing soundness and completeness.  This 
means that our checker will sometimes 
generate false warnings and sometimes miss 
real problems – our goal is to produce a tool 
that produces useful results for real 
programs with a reasonable effort.   
 
3. Splint 

Splint1 is a lightweight static analysis tool 
for ANSI C.  It is designed to be as fast and 
easy to use as a compiler.  It is able to do 

                                                 
1 This paper describes Splint Version 3.0.1.  
The latest version is available as source code 
and binaries for several platforms under 
GPL from http://splint.cs.virginia.edu.  
Previous versions of Splint were known as 
LCLint.  The name is an extraction of 
“SPecification Lint” and “Secure 
Programming Lint”.  The original Lint [11] 
was developed to overcome the lack of type 
checking for function calls in early versions 
of C.  

checking no compiler can do, however, by 
exploiting annotations added to libraries and 
programs that document assumptions and 
intents.  Splint will check that source code is 
consistent with the properties implied by 
annotations. 

3.1. Annotations  
Annotations are denoted using stylized C 
comments identified by an @ character fol-
lowing the /* comment marker.  Annota-
tions can be associated syntactically with 
function parameters and results, global 
variables and structure fields.  
 
For example, the annotation /*@notnull@*/ 
can be used in a pointer declaration 
syntactically like a type qualifier.  In a 
parameter declaration, the notnull annotation 
documents an assumption that the value 
passed for this parameter is not NULL.  Splint 
would report a warning for any call site 
where the actual parameter might be NULL.   
In checking the implementation of the 
function, Splint could assume that the initial 
value of the notnull-annotated parameter is 
not NULL.  On a return value declaration, a 
notnull annotation would indicate that the 
function never returns NULL.  Splint would 
report a warning for any return path that 
might return NULL, and check the call site 
assuming the function result is never NULL.  
In a global variable declaration, a notnull 
annotation would indicate that the value of 
the variable may not be NULL at an interface 
point – that is, it may be NULL within the 
body of a function, but may not be NULL at a 
call site or return point.  Failure to handle 
possible NULL return values can be exploited 
in denial of service attacks, and is often not 
detected in normal testing. 
 
Annotations can also document assumptions 
over the lifetime of an object.  For example, 
the only annotation is used on a pointer 
reference to indicate that the reference is the 
sole long-lived (there may be temporary 
local aliases) reference to the storage it 
points to.  An only annotation implies an 
obligation to release storage.  This can be 
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done either by passing the object as a 
parameter annotated with only, returning the 
object as a result annotated with only, or 
assigning the object to an external reference 
annotated with only.  Each of these transfers 
the obligation to some other reference.  The 
library storage allocator malloc is annotated 
with only on its result, and the deallocator 
free takes an only parameter.  Hence, one 
way to satisfy the obligation to release 
storage returned by malloc, is to pass it to 
free.  Splint reports a warning for any code 
path on which the obligation to release 
storage is not satisfied since it would cause a 
memory leak.  Memory leaks do not 
typically constitute a direct security threat, 
but they may be exploited to increase the 
effectiveness of a denial-of-service attack.  
Three of the CVE entries for the first half of 
2001 involve memory leaks that can be 
exploited in denial of service attacks (CVE-
2001-0017, CVE-2001-0041 and CVE-
2001-0055).  Not all storage management 
can be modeled with only references; some-
times programs need to share references 
across procedure and structure boundaries.  
Splint provides annotations for describing 
different storage management [8].  

3.2. Analysis 
There are both theoretical and practical 
limits on what can be analyzed statically.  
Precise analysis of most interesting 
properties of arbitrary C programs depends 
on several undecidable problems including 
reachability and determining possible aliases 
[15].  We could either limit our checking to 
issues that do not depend on solving 
undecidable problems (for example, type 
checking), or admit some imprecision in our 
results.  Since our goal is to do as much 
useful checking as possible, we choose to 
allow checking that is both unsound and 
incomplete.  This means Splint produces 
both false positives and false negatives.  
Warnings are intended to be as useful as 
possible to the programmer, but there is no 
guarantee that all messages indicate real 
bugs or that all bugs will be found.  We 
make it easy for users to configure checking 

to suppress particular messages and weaken 
or strengthen checking assumptions.  
 
Designers of static analyses face a tradeoff 
between precision and scalability.  In order 
for our analysis to be fast and to scale to 
large programs certain compromises are 
made.  The most important is to limit our 
analysis to dataflow within procedure 
bodies.   Procedure calls are analyzed using 
information in annotations that describe 
preconditions and postconditions.  Another 
compromise is between flow-sensitive 
(consider all program paths) and flow-
insensitive (ignore control flow) analyses.  
Splint considers control flow paths, but to 
limit the blowup of analysis paths it merges 
possible paths at branch points.  Loops are 
analyzed by using heuristics to recognize 
common idioms.  This enables Splint to 
correctly determine the number of iterations 
and bounds of many loops without the need 
for loop invariants or abstract evaluation.  
The simplifying assumptions made by Splint 
are sometimes wrong; often this reveals con-
voluted code that is a challenge for both 
humans and automated tools to analyze.  It 
is important to provide easy ways for 
programmers to customize checking 
behavior locally and suppress spurious 
warnings that result from imprecise analysis. 
 
4. Buffer Overflows  
As discussed in Section 1, buffer overflow 
vulnerabilities are perhaps the single most 
important security problem for the past 
decade.  The simplest buffer overflow 
attack, stack smashing, overwrites a buffer 
on the stack to replace the return address.  
When the function returns, instead of 
jumping to the return address, control will 
jump to the address that was placed on the 
stack by the attacker.  This gives the attacker 
the ability to execute arbitrary code.  Buffer 
overflow attacks can also exploit buffers on 
the heap, but these are less common and 
harder to create.  Splint detects both stack 
and heap-based buffer overflow vulnerabili-
ties in the same way.    
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Programs written in C are particularly 
vulnerable to this type of attack.  C was 
designed with an emphasis on performance 
and simplicity, rather than security and 
reliability.  It provides direct low-level 
memory access and pointer arithmetic 
without bounds checking.   Worse, the ANSI 
C library provides unsafe functions (such as 
gets) that write an unbounded amount of 
user input into a fixed size buffer without 
any bounds checking.  Buffers stored on the 
stack are often passed to these functions.  To 
exploit such vulnerabilities, an attacker 
merely has to enter an input larger than the 
size of the buffer and encode an attack 
program binary in that input. 

4.1. Use Warnings 
The simplest way to detect possible buffer 
overflows is to produce a warning whenever 
library functions susceptible to buffer 
overflow vulnerabilities are used.  The gets 
function is always vulnerable so it seems 
reasonable for a static analysis tool to report 
all uses of gets.  Other library functions, 
such as strcpy may be used safely, but are 
often the source of buffer overflow 
vulnerabilities.  Splint provides the anno-
tation warn flag-specifier message that can 
be associated with a declaration to indicate 
that a warning should be produced whenever 
the declarator is used.  For example, the 
Splint library declares gets with 
   /*@warn bufferoverflowhigh           
        "Use of gets leads to … "@*/ 

to indicate that a warning message should be 
produced whenever gets is used if the 
bufferoverflowhigh flag is set. 
 
Several security scanning tools provide 
similar functionality including Flawfinder 
[21], ITS4 [18], and the Rough Auditing 
Tool for Security (RATS) [16].  Unlike 
Splint, these tools use lexical analysis 
instead of parsing the code.  This means 
they will report spurious warnings if the 
names of vulnerable functions are used in 
other ways (for example, as local user-
defined functions).  The main limitation of 
use warnings, however, is that they are so 

imprecise.  They alert humans to possibly 
dangerous code, but provide no assistance in 
determining whether a particular use of a 
possibly dangerous function is safe or 
dangerous.  To improve the results, we need 
a more precise specification of how a 
function may be safely used, and a more 
detailed analysis of program values. 

4.2. Describing Functions  
Consider the strcpy (char *s1, char 
*s2) function – it takes two char * param-
eters, and copies the string pointed to by the 
second parameter into the buffer pointed to 
by the first parameter.  A call to strcpy 
overflows the buffer pointed to by the first 
parameter if it is not large enough to hold 
the string pointed to by the second 
parameter.  This property can be described 
by adding a requires clause to the 
declaration of strcpy: requires maxSet(s1) 
>= maxRead(s2).  
 
This precondition uses two buffer attribute 
annotations, maxSet and maxRead.  The 
value of maxSet (b) is the highest integer i 
such that b[i] may be safely used as an 
lvalue (e.g., on the left side of an assignment 
expression).  The value of maxRead (b) is 
the highest integer i such that b[i] may be 
safely used as an rvalue.  The nullterminated 
annotation on the s2 parameter indicates that 
it is a null-terminated character string.  This 
implies that s2[i] must be a NUL character 
for some i <= maxRead (s2). 
 
At a call site, Splint will produce a warning 
if a precondition is not satisfied.  Hence, a 
call strcpy (s, t) would produce a warn-
ing if Splint cannot determine that 
maxSet(s) >= maxRead(t).  The warning 
would reveal that the buffer allocated for s 
may be overrun by the call to strcpy. 

4.3. Analyzing Program Values 
Splint analyzes a function body and deter-
mines if the annotated preconditions are 
sufficient to ensure that the function is used 
correctly.   Preconditions and postconditions 
are generated at the expression level in the 
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parse tree using internal rules or annotated 
descriptions in the case of function calls.    
The declaration char buf[MAXSIZE] gene-
rates the postconditions  

         maxSet(buf) = MAXSIZE – 1 and  
         minSet(buf) = 0. 
 
Where the expression buf[i] is used as an 
lvalue, Splint generates the precondition 
maxSet(buf) >= i.  All variables appearing in 
constraints also identify particular code 
locations.  Since the value of a variable may 
change, it is important that the analysis can 
distinguish between values at different code 
points.   

Preconditions are resolved using post-
conditions from previous statements and any 
annotated preconditions for the function.  If 
a generated precondition cannot be resolved 
at the beginning of a function, or a 
documented postcondition is not satisfied at 
the end, a descriptive warning about the 
unsatisfied condition is produced.  Hence, 
Splint would produce a warning if it cannot 
determine that the value of i is between 0 
and MAXSIZE – 1.   

Constraints are propagated across statements 
using an axiomatic semantics.  In addition, 
constraint-specific algebraic rules such as  

maxSet(ptr + i) = maxSet(ptr) - i  

are used to simplify constraints.     
 
To handle loops, we use heuristics that 
recognize common loop forms [12].  Our 
experience indicates that a few heuristics 
can match a large number of loops in real 
programs.  This allows us to effectively 
analyze many loops without needing loop 
invariants or expensive analyses. 
 
5. Extensible Checking 
In addition to the built in checks, Splint pro-
vides mechanisms for defining new checks 
and annotations to detect new vulnerabilities 
or violations of application-specific proper-
ties.  A large class of useful checks can be 
described in terms of attributes associated 

with program objects or the global execution 
state.  Unlike types, the values of these 
attributes may change along an execution 
path.   
 
Splint provides a general language for de-
fining attributes that may be associated with 
different kinds of program objects, and for 
defining rules that constrain the values of 
attributes at interface points and specify how 
attributes change.  Because user-defined 
attribute checking is integrated with Splint’s 
normal checking, it can take advantage of 
other analyses done by Splint such as alias 
and nullness analysis.  The limited 
expressiveness of user attributes means that 
user-defined properties can be checked 
efficiently.  Here, we illustrate the potential 
for user-defined checks to detect new 
vulnerabilities or application-specific 
constraints by showing how Splint can be 
extended to detect format bugs using a 
taintedness attribute.  We have also used 
extensible checking to detect misuses of the 
files (e.g., failing to close a FILE, failing to 
reset a read/write file between certain 
operations), sockets, and incompatibilities 
between Unix and Win32 [2]. 

5.1. Taintedness 
A new class of vulnerability was discovered 
in June 2000 known as a “format bug” [4].  
If an attacker can pass hostile input as the 
format string for a variable arguments 
routine such as printf, the attacker can 
write arbitrary values to memory and gain 
control over the host in a manner similar to a 
buffer overflow attack.  The “%n” directive 
is particularly susceptible to attack – it treats 
its corresponding argument as an int *, and 
stores the number of bytes printed so far in 
that location. 
 
A simple way to detect format vulner-
abilities is to provide warnings for any 
format string that is not known at compile 
time.  Splint provides this checking – if the 
+formatconst flag is set, Splin t will report 
a warning for any format strings that are not 
known at compile time.  This will produce 
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spurious messages, however, since there 
may be format strings that are not known at 
compile time but are not vulnerable to 
hostile input. 
 
A more precise way to detect format bugs is 
to only report warnings when the format 
string is derived from potentially malicious 
data (that is, it came from the user or 
external environment).  Perl’s taint option 
[20] suggests a way of doing this.  When it 
is used (by running Perl with the -T flag), 
Perl considers all user input to be tainted, 
and produces a run-time error (and halts 
execution) if a tainted value is used in an 
unsafe way.  Untainted values can be 
derived from tainted input by using Perl’s 
regular expression matching. 
 
With Splint’s extensible checking, we can 
detect dangerous operations with tainted 
values at compile time.  We can define a 
taintedness attribute associated with char * 
objects.  We introduce the annotations 
tainted and untainted to indicate assump-
tions about the taintedness of a reference.  A 
similar approach was taken by Shankar, et. 
al., [17].  Instead of using attributes with 
explicit rules, they used type qualifiers.  
This enables them to take advantage of type 
theory, and in particular, to use well-known 
type inference algorithms to automatically 
infer the correct type qualifiers for many 
programs.  Splint’s attributes are more 
flexible and expressive than type qualifiers. 
 
The complete attribute definition is shown in 
Figure 2.  The first three lines define the 
taintedness attribute that is associated with 
char * objects and can be in one of two 
states: untainted or tainted.  The next clause 
specifies rules for transferring objects 
between references, for example, by passing 
a parameter or returning a result.  The 
tainted as untainted ==> error rule indicates 
that a warning should be reported whenever 
an object with taintedness tainted is 
transferred to a reference declared as 
untainted.  This would occur if a tainted 
object were passed as an untainted 
parameter or returned as an untainted result.  

All other transfers (for example, untainted as 
tainted) are implicitly permitted and leave 
the transferred object in its original state.  
Next, the merge clause indicates that combi-
ning tainted and untainted objects produces 
a tainted object.  This is used to determine 
that if a reference is tainted along one 
control path, and untainted along another 
control path, checking should assume that it 
is tainted after the two branches merge.  It is 
also used to merge taintedness states in 
function specifications (as in the strcat 
example in the next section). 
 
The annotations clause defines two anno-
tations that can be used in declarations to 
document taintedness assumptions.  In this 
case, the names of the annotations match the 
taintedness states.  The final clause specifies 
default values that will be used for 
declarators without one of the taintedness 
annotations.  The default values are chosen 
to make it easy to start checking an unanno-
tated program.  By assuming unannotated 
references are possibly tainted, Splint will 
produce a warning where these references 
are passed to functions that require untainted 
parameters.  This indicates either a format 
bug in the code, or a place where an 
untainted annotation should be added to the 
code.  Running Splint again after adding the 
annotation will propagate the newly 
documented assumption through the 
program. 
 
attribute taintedness 
   context reference char * 
   oneof untainted, tainted 
   annotations 
     tainted reference ==> tainted 
     untainted reference ==> untainted 
   transfers 
     tainted as untainted ==> error "Possibly... 
   merge 
      tainted + untainted ==> tainted 
   defaults 
      reference ==> tainted 
      literal ==> untainted 
      null ==> untainted 
end 

Figure 2.  Defining Taintedness. 
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5.2. Specifying Library Functions  
For library code where source code is not 
available, we cannot rely on the default 
annotations since Splint would not detect 
inconsistencies without source code.  We 
need to provide annotated declarations that 
document taintedness assumptions for 
standard library functions.  This is done by 
providing annotated declarations in the 
tainted.xh file.  For example, 

int printf  
   (/*@untainted@*/ char *fmt, ...); 

indicates that the first argument to printf 
must be untainted.  We can also use ensures 
clauses to indicate that a value is tainted 
after a call returns.  For example, the first 
parameter to fgets is tainted after fgets 
returns: 

char *fgets 
   (/*@returned@*/ char *s, int n, 
    FILE *stream) 

/*@ensures tainted s@*/ ; 

The returned annotation on the parameter 
means the return value aliases the storage 
passed as s, so the result is also tainted (this 
information is also used by Splint’s alias 
analysis.) 

We also need to deal with functions that 
may take tainted or untainted objects, but 
where the final taintedness states of other 
parameters and results may depend on the 
initial taintedness states of the parameters.  
For example, strcat is annotated: 
char *strcat  
   (/*@returned@*/ char *s1,   
     char *s2)   
 /*@ensures s1:taintedness = 
     s1:taintedness | s2:taintedness 
   @*/ 

Since there are no annotations on the 
parameters, they are implicitly tainted 
according to the default rules, and it is 
acceptable to pass either untainted or tainted 
references as parameters to strcat.  The 
ensures clause means that after strcat 
returns, the taintedness of the first parameter 
(and the result because of the returned 
annotation on s1) will be the result of 
merging the taintedness of the two 

parameters before the call.  The merge is 
done using the rules in the attribute defin-
ition – hence if the actual parameter passed 
as s1 is untainted and the parameter passed 
as s2 is tainted, the result and first parameter 
will be tainted after strcat returns. 
 
6. Experience 

Using Splint is an iterative process.  
Running Splint produces warnings that lead 
to either changes in the code or annotations.  
Then, Splint is run again to check the 
changes and propagate the newly 
documented assumptions.  This process 
continues until no warnings are produced.  
Since Splint checks approximately 1000 
lines per second, the need to run Splint again 
is not burdensome. 
 
Earlier versions of Splint have been used to 
detect a range of problems not specifically 
focused on security including data hiding 
[7]; memory leaks, uses of dead storage, and 
null dereferences [8] on programs com-
prising hundreds of thousands of lines of 
code.  Splint is used by working program-
mers, especially in the open source develop-
ment community [13, 14].   
 
Our experience with the buffer overflow 
checking and extensible checking so far is 
limited, but encouraging.  We have used 
Splint to detect both known and previously 
unknown buffer overflow vulnerabilities in 
wu-ftpd, a popular ftp server, and BIND, 
libraries and tools that comprise the 
reference implementation of DNS.   
 
Here we summarize our experience analy-
zing wu-ftpd version 2.5.0, a 20,000 line 
program with known (but not known 
specifically to the authors when the analysis 
was done) format bugs and known and 
unknown buffer overflows.  It takes less 
than 4 seconds to check all of wu-ftpd on a 
1.2GHz Athlon machine.  
 
Format Bugs.  Running Splint on wu-ftpd 
version 2.5.0 with only taintedness checking 
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turned on produces two warnings, the first 
one is: 

ftpd.c: (in function vreply) 
ftpd.c:4608:69: Invalid transfer from implicitly 
   tainted fmt to untainted (Possibly tainted 
   storage used as untainted.):  
      vsnprintf(..., fmt, ...) 
   ftpd.c:4586:33: fmt becomes implicitly 
       tainted 

In tainted.xh, vsnprintf is declared with 
an untainted annotation on its format string 
parameter.  The passed value, fmt, is a pa-
rameter to vreply, hence it is possibly 
tainted according to the default rules.  We 
add an untainted annotation to the fmt pa-
rameter declaration of vreply to document 
the assumption that it must be passed an 
untainted value.   
 
After adding the annotation, Splint reports 
three warnings for possibly tainted values 
passed to vreply in reply and lreply.   
This leads us to add three additional annota-
tions.  Running Splint again produces five 
warnings – three of which involve passing 
the global variable globerr as an untainted 
parameter.  Adding an untainted annotation 
to the variable declaration directs Splint to 
check that globerr is never tainted at an 
interface point.  The other warnings concern 
possibly tainted values passed to lreply in 
site_exec.  Since these values are obtained 
from a remote user, this constitutes a serious 
vulnerability (CVE-2000-0573). 
 
The second message produced by the first 
Splint execution reports a similar invalid 
transfer in setproctitle.  After adding an 
annotation and re-running Splint, this leads 
us to two additional format string bugs in 
wu-ftpd.  These vulnerabilities are described 
in CERT CA-2000-13 and can be easily 
fixed by using the %s constant format string. 
 
We also ran Splint on wu-ftpd 2.6.1, a 
version that fixes the known format bugs.  
After adding eight untainted annotations, 

Splint runs without reporting any format bug 
vulnerabilities.2 
 
Buffer Overflow Vulnerabilities.  Running 
Splint on wu-ftpd 2.5 without adding anno-
tations produces 166 warnings for potential 
out of bounds writes.   
 
After adding 66 annotations using an itera-
tive process like the one described for 
checking taintedness, we found 25 messages 
that indicated real problems.   There were 76 
messages considered spurious, summarized 
in Table 1.  Six of these resulted from Splint 
being unaware of assumptions external to 
the wu-ftpd code.  For example, wu-ftpd 
allocates an array based on the system con-
stant OPEN_MAX, which specifies the maxi-
mum number of files a process may have 
open.  This buffer is then written to using 
the integer value of the file descriptor of an 
open file stream as the index.  This is safe 
because the value of the file descriptor is 
always less than OPEN_MAX.  Without a more 
detailed specification of the meaning of file 
descriptor values, there is no way for a static 
analysis tool to determine that the memory 
access is safe. 
 
Ten false warnings resulted from loops 
which were correct but which did not match 

the loop heuristics.  To some extent this 
could be addressed by incorporating 
                                                 
2 Splint does find two legitimate buffer overflow 
vulnerabilities in wu-ftpd 2.6.1.  They had 
already been corrected in the latest development 
version. 

 Number Percent 

External Assumptions  6 7.9 

Arithmetic Limitations 13 17.1 

Alias analysis  3 3.9 

Flow control 20 26.3 

Other 24 31.6 

Loop heuristics 10 13.2 

Table 1.  False warnings checking wu -ftpd. 
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additional loop heuristics into Splint, 
however there will always be some 
unmatched loops.  The remaining 60 
spurious messages resulted from limitations 
of Splint’s ability to reason about arithmetic, 
control flow and aliases.  We are optimistic 
that many of these limitations can be 
overcome without unacceptably sacrificing 
the efficiency and usability goals using 
known techniques that have not yet been 
implemented in Split.  It is impossible, 
though, to eliminate all spurious messages 
because of the general undecidability of 
static analysis.  
 
An impediment to widespread adoption is 
the effort involved in annotating programs.  
Providing an annotated standard library 
solves part of the problem, but does not 
remove the need to add annotations where 
correct use of standard library functions 
depend on assumptions that cross interface 
boundaries.  Much of the work in annotating 
legacy programs is fairly tedious and 
mechanical, and we are currently working 
on techniques for automating this process.  
Techniques for combining run-time infor-
mation with static analysis to automatically 
guess annotations show some promise [6]. 
 
7. Conclusion 
The vast majority of security attacks exploit 
vulnerabilities in software that are well 
understood and can be eliminated.  
Lightweight static analysis is a promising 
technique for detecting likely vulnerabilities 
so they can be fixed before software is 
deployed, not patched after attackers have 
exploited them.   
 
Although static analysis is an important 
approach to security, it is not a panacea.  It 
does not take the place of run-time access 
controls, systematic testing and careful 
security assessments.  Splint can only find 
problems that are revealed through inconsis-
tencies between the code, language 
conventions, and assumptions documented 
in annotations.  Occasionally these inconsis-
tencies will reveal serious design flaws, but 

Split offers no general mechanisms for 
detecting high-level design flaws that could 
lead to security vulnerabilities. 
 
No tool will eliminate all security risks – but 
lightweight static analysis should in-
creasingly become part of the development 
process for security-sensitive applications.  
It is our hope that the security community 
will develop a tool suite that codifies 
knowledge about security vulnerabilities in a 
way that makes it accessible to all 
programmers.  In future, newly discovered 
security vulnerabilities should not lead to 
just a patch to fix the problem in a particular 
program, but also to checking rules that 
detect similar problems in other programs 
and prevent the same mistake in future 
programs.  Lightweight static checking will 
play an important part in codifying security 
knowledge and moving from today’s 
penetrate-and-patch to a penetrate-patch-
and-prevent model where once understood, a 
security vulnerability can be codified into 
tools that detect it automatically.   
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