
In 3rd IEEE Conference on Privacy, Security, Risk and Trust, Boston, October 2011

Auditing Information Leakage for Distance Metrics
Yikan Chen

University of Virginia
yc2r@virginia.edu

David Evans
University of Virginia
evans@virginia.edu

Abstract—Many useful scenarios involve allowing untrusted
users to run queries against secret data, so long as the results do
not leak too much information. This problem has been studied
widely for statistical queries, but not for queries with more
direct semantics. In this paper, we consider the problem of
auditing queries where the result is a distance metric between
the query input and some secret data. We develop an efficient
technique for estimating a lower bound on the entropy remaining
after a series of query-responses that applies to a class of
distance functions including Hamming distance. We also present
a technique for ensuring that no individual bits of the secret
sequence is leaked. In this paper, we formalize the information
leakage problem, describe our design for a query auditor, and
report on experiments showing the feasibility and effectiveness
of our approach for sensitive sequences up to thousands of bits.

I. INTRODUCTION

We consider the problem of providing query access to
sensitive data while limiting the amount of information that
leaks about the sensitive data. We are particularly concerned
with the scenario where a server operator owns a secret
sequence and untrusted clients may submit requests to the
server consisting of candidate sequences. The server computes
the distance between the secret sequence and each candidate
sequence using some distance metric (e.g., Hamming distance)
and either responds with the distance value or blocks the
response if it is determined to leak too much information.
For example, the server may have a binary sequence encoding
an iris image and allow clients to run queries against that
sequence to identify a matching individual without revealing
the server’s sequence [16]. Other possible applications include
genomic analysis where one party holds a sensitive sequence
and allows external queries against that sequence.

Our strategy is to estimate the number of possible secret val-
ues that are consistent with all the information available to the
adversary. For a single query and simple distance metric, this is
straightforward. For a series of queries, however, determining
the number of possible sequences that are consistent with all
revealed information quickly becomes intractable. We present
methods for efficiently bounding the information a client can
learn from a series of such queries.

Figure 1 illustrates the structure of our query auditor. The
server owns a sensitive data sequence, X. A possibly malicious
client sends a series of query sequences, Qi, to the server. The
server computes a function f (X, Qi) and optionally sends the
output to the client. The query auditor audits every query and
dynamically predicts how much information is leaked from

the response, based on both this query and response and the
history of past queries and responses. The risk in releasing the
response is based on determining the remaining entropy of the
sensitive sequence. This is the number of possible sequences
that are consistent with all queries and responses seen so
far. If the entropy would drop below a set threshold with
this response, the query auditor blocks the response and no
information (other than a failure indicator) is sent to the client
(actually determining a reasonable value for this threshold
depends on the data and risk tolerance, and is beyond the scope
of this paper). We assume that the server can authenticate
clients and that clients do not collude by sharing information
from each other’s queries. If this assumption does not hold, our
approach can still be used but the query auditor must consider
all previous responses. For simplicity, the rest of this paper
assumes a single client.

In addition to considering total entropy, we also consider the
importance of leaking individual bits of the sensitive sequence.
For example, an adversary can design a set of sequences to
reveal a particular bit while keeping the amount of information
leaked for the whole sequence below the threshold. In some
cases, a particularly sensitive bit may leak too much informa-
tion. For example, some diseases are associated with a single
nucleotide polymorphism (SNP) [24] in a DNA sequence. So,
in addition to testing the total entropy remaining, our query
auditor also tests whether any particular bits are determined
by the query responses.

Contributions. First, we give a formal definition of the
Sequence Leakage Problem (SLP) that captures the goal of our
query auditor and define the class of additively decomposable
functions that we target in this paper (Section II).

Qi
f

Query 

Auditor

Server Client

f(X, Qi) or ^
Previous 

Responses

X
Sensitive Data

Fig. 1: Query Auditing Structure



We show that the SLP for Hamming distance can be
reduced to a binary feasibility counting problem, revealing
an important connection between the problem of measuring
information leakage and a special case of a well-understood
integer programming problem (Section III). Each bit in the
sensitive sequence is represented as a variable and each query
sequence is represented as a linear equation. We explore the
complexity of this problem by applying two possible methods
to exactly determine the number of sequences consistent with a
given series for query-response pairs (Section IV). The exact
methods cannot scale to large problems, so we develop an
efficient method for computing a lower bound on the number
of possible sequences using a divide-and-merge algorithm
(Section V). In addition to considering the total entropy of
the secret sequence, we also propose a sieving method to
efficiently test if any single bit is fully determined by the query
responses (Section VII).

We evaluate the accuracy and efficiency of our algorithms
by implementing a query auditor and testing it on a range of
both synthetic and real data (Section VI). Our results show
our query auditor that runs fast enough to enable on-line use
and can give useful lower bounds for realistic series of queries
for sequences with over a thousand bits.

II. PROBLEM DEFINITION AND ANALYSIS

Our goal is to understand how much information can be
inferred about a secret sequence from a series of distance met-
ric query responses. We define this as the Sequence Leakage
Problem (SLP) (Σ denotes the sequence alphabet, typically we
use Σ = {0, 1}):

Given a sensitive sequence, X ∈ ΣN , a function

f : (ΣN , ΣN)→ R

and a set of M query and response pairs:

S = {(Q1, f (X, Q1)), . . . , (QM, f (X, QM))}

where Qi ∈ ΣN , output the number of satisfying
sequences, vj ∈ ΣN , such that

∀i∀j, f (vj, Qi) = f (vj, f (X, Qi)).

This definition is inspired by the notion of k-anonymity [21].
Whereas k-anonymity measures how many individuals are
indistinct given some data, SLP gives the number of possible
sequences that are consistent with all observed data. If the
value of SLP for a given series of queries exceeds a set
threshold, it means that an adversary with access to all of
the queries and responses (but no other information), cannot
reduce the number of possible secret sequences below the SLP
result.

The complexity of this problem depends on the function f .
To make the problem tractable, we limit our focus to a class
of functions we call additively decomposable:

A function, f (A, B), where A, B ∈ ΣN , is additively
decomposable if ∀i ∈ [0, N],

f (A, B) = f (A0:i, B0:i) + f (Ai:N , Bi:N).

This definition can be applied recursively, so any addi-
tively decomposable function can be computed by summing
independent results of all its subsequences. Functions that
are additively decomposable include the Squared Euclidean
Distance and the Manhattan distance between two points in
an n-dimensional Euclidean space. We can always compute
these distance functions by computing different dimensions
separately and adding them together. Distance metrics that
involve comparisons between different positions such as edit
distance are not decomposable since the result depends on
the positions of certain bits. Also some distance functions
containing max or min operations are not decomposable such
as Chebyshev distance and Lee distance.

For the rest of this paper, we focus on the SLP problem
where the function is the Hamming distance between two
sequences, represented as H(A, B). The Hamming distance
function is decomposable since

H(A, B) = H(A0:i, B0:i) + H(Ai,N , Bi,N).

We refer to the SLP problem for Hamming distance as SLP-H.
We focus on Hamming distance because of its simplicity, as
well as its many privacy-sensitive applications including face
recognition [25], iris recognition [1], and HIV epidemiology
research [14]. We assume that all query sequences have
the same length as the sensitive sequence (although simple
padding schemes could be used when this is not the case). We
also assume the sequences are binary sequences (Σ = {0, 1}).
However, the algorithm can be extended to larger alphabets
such as DNA sequences (Σ = {A, C, G, T}).

III. REDUCTION TO BINARY SOLUTIONS

When a function is additively decomposable, we can divide
the query sequence into independent segments that are small
enough to be analyzed exhaustively. Since the segment size
can be as small as one bit, we can define very simple mapping
functions to describe this influence. All sequences consistent
with previous sequences can be built by flipping some bits in
the sensitive sequence. To maintain consistency, the sum of
the flipped bits in the new sequence should always sum to 0.
Thus, our basic idea is to convert an SLP problem to a set of
homogeneous equations. Specifically, for SLP-H, we consider
the Binary Solutions problem:

Given input A ∈ {−1, 1}M×N , output the number
of binary solutions K where AK = 0.

We show how SLP-H can be reduced to a Binary Solutions
problem by build the matrix A for a binary solutions problem
that corresponds to an SLP problem:

Aij =

{
−1, Xj = Qij

1, Xj 6= Qij

where Xj is the jth bit of X and Qij is the jth bit of Qi in
SLP. We prove that any solution for the equation AK = 0
represents a sequence consistent with all the query results in
SLP and any consistent sequence in SLP represents a solution
in AK = 0.

2



Assume the set V is the set of all sequences consistent with
all previous query sequences. Obviously X ∈ V, since this is
the case where no bits are flipped. Since all the sequences in
V are binary sequences, all the other sequences in V can be
obtained by flipping certain bits of X. We represent the flipping
pattern as a vector K with N unknown Boolean variables
k1, k2, . . . , kN where ki = 1 means flipping the ith bit of X
and ki = 0 means keeping the ith bit of X unchanged. For
example, when X =1111 and K =0111, applying K to X
generates the sequence 1000.

According to the definition of SLP,

∀i∀t, H(Vt, Qi) = H(X, Qi).

Suppose Vt can be obtained by applying Kt to X and Ktp = 1.
When Xp = Qip, ktp = 1 makes the Hamming distance
between Vt and Qi increase by one, and Xp 6= Qip makes the
Hamming distance decreases by one. To make this sequence
have exactly the same distance to each Qi as X does, all of
these influences must sum to 0. That means the final linear
homogeneous equation set will be AK = 0 and the answer
will be the number of binary solutions for K. Conversely,
any binary solution for K represents one possible method of
flipping X, which generates a consistent sequence for SLP.

For example, assume X=1111, Q1=0011 and Q2=0001.
The linear homogeneous equation set for k we built will be:

k1 + k2 − k3 − k4 = 0
k1 + k2 + k3 − k4 = 0

There are three 0-1 solutions for this set of equations:
{k1 = k2 = k3 = k4 = 0} will always be a solution because
it represents X itself; {k1 = 0, k2 = 1, k3 = 0, k4 = 1}
corresponds to the solution 1010; and {k1 = 1, k2 = 0, k3 =
0, k4 = 1} corresponds to the solution 0110.

Finding one possible 0-1 solution for a set of linear equa-
tions is known as the 0-1 feasibility problem [3]. Our problem
is slightly different since we already know the all-zero vector
will always be a solution and we need to know the number
of 0-1 solutions, but we can take advantage of techniques
developed for the 0-1 feasibility problem.

IV. EXACT METHODS

This section presents and analyzes two methods for ob-
taining an exact answer to SLP-H problems. The first uses a
simple exhaustive search; the second uses the Gröbner Basis
to improve efficiency. Although neither of them can scale to
large inputs, they illustrate much an adversary can infer over
a series of queries.

A. Exhaustive Search

The most straightforward way to obtain an exact answer
to the SLP-H problem is exhaustive search. We use the
reduction to the Binary Solutions problem described in the
previous section. We perform an experiment with this method
to show how much information could be inferred by an
adversary for short sequences. In this experiment, we assume
the attacker picks a sequence that minimizes the expectation

1

2

4

8

16

32

64

128

256

512

1024

0 1 2 3 4 5 6 7 8 9 10

N
o

. 
o

f 
P

o
ss

ib
le

 S
eq

u
en

ce
s

No. of Queries

Fig. 2: Uncertainty Reduction

of entropy after this query as the query sequence using the
smallest entropy strategy [19]. Figure 2 shows the result of
100 experiments using exhaustive search with random secrets
where N = 10. Each line shows the number of 10-bit boolean
sequences consistent with the Hamming distance responses
over a sequence of queries chosen using the smallest entropy
strategy. The number of sequences consistent with previous
responses typically decreases sharply, decreasing to only the
single secret sequence after about six queries.

The exhaustive method finds an exact result but it is
exponential in the length of sequence, N. In our experiments,
solving a 24-bit SLP-H problem took over 20 minutes running
on a typical laptop with 4GB RAM and 2.13 GHz CPU.
For an actual genome comparison problem, N exceeds 1000
(for example, the length of the HIV-1 nucleotide sequence is
1497 [14]), which is far beyond what can be done using an
exhaustive search.

B. Gröbner Basis

Another way to obtain an exact answer to a Binary Solutions
problem is to use the Gröbner basis [3]. The Gröbner basis of
an ideal (a small subset of a ring) I in a polynomial R over a
field has the property that it shares the same solution set with
I = 0 and it has a much simpler reduced form.

For example, suppose we want to know all the 0-1 solutions
for this set of equations:

−x1 + x2 − x3 − x4 − x5 = 0
x1 + x2 + x3 − x4 − x5 = 0

We first find Gröbner basis for:

J =<− x1 + x2 − x3 − x4 − x5, x1 + x2 + x3 − x4 − x5,

x2
1 − x1, x2

2 − x2, x2
3 − x3, x2

4 − x4, x2
5 − x5 >

The first two equations come from the original equation set.
The other five equations, x2

i − xi = 0, constrain the xi values
to be 0 or 1. Bertsimas et al. proved that the reduced Gröbner
basis has a much simpler form and it is possible to enumerate
solutions efficiently [3]. Algorithms for finding the Gröbner
basis have been developed and optimized for many years. One
of the best, the F4 algorithm, is provided by Maple. We use
the F4 algorithm [9] to find the Gröbner basis for J:

G = [x2
4 − x4, x4x5, x2

5 − x5, x1, x2 − x4 − x5, x3].

3



Three possible solutions are found from the Gröbner basis:
{x1 = x2 = x3 = x4 = x5 = 0}, {x1 = x3 = x5 = 0, x2 =
x4 = 1}, and {x1 = x3 = x4 = 0, x2 = x5 = 1}.

Hence, the Gröbner basis provides an approach to solve
the Binary Solutions problem which also solves the SLP-H
problem using the reduction. Although this method is better
than exhaustive search, the complexity of this algorithm is
still exponential in the sequence length N. In our experiments,
finding the Gröbner basis for an equation set with 15 variables
(N=15) takes about 5 minutes on the same laptop and the
running time grows rapidly to more than 1 hour when the
number of variables N is 25.

V. ESTIMATION-BASED QUERY AUDITOR

Finding exact answers to large SLP problems appears to
be intractable. However, to build a effective query auditor it
is not necessary to determine the exact number of consistent
sequences. It is only necessary to know whether too much
information would leak if a particular series of queries is
answered. A lower bound on the number of consistent se-
quences is enough for a conservative query auditor. If this
lower bound is larger than a set threshold, it is known that it
is safe to reply this query. If the lower bound is smaller than
the threshold, the query auditor blocks the response. Hence,
our goal is to compute as high a lower bound as possible,
to allow as many queries as possible that do not exceed the
leak threshold. Next, we present an algorithm that computes
a sufficiently tight lower bound for use in an effective query
auditor. Section V-B analyzes its complexity. In Section VI,
we experimentally evaluate its accuracy and running time.

A. Divide-and-Merge Algorithm

The central idea of our divide-and-merge algorithm is to use
matrix decomposition. Matrix decomposition is an important
way to process very large matrices and can be found in
many well known methods of linear algebra such as LU
decomposition, QR decomposition and eigendecomposition.
There are also some classical integer programming meth-
ods based on the decomposition idea including the Dantzig-
Wolfe decomposition method [5] and Benders’ decomposition
method [2]. These two methods decompose the original large
matrix into a master problem and several subproblems where
each column in the new master problem represents a solution
to one of the subproblems.

In the divide-and-merge algorithm, we apply matrix decom-
position to the matrix A in the set of equations AK = 0.
The coefficient matrix A is additively decomposable since the
input function of the reduction algorithm in Section III is
decomposable. With this property, each decomposed matrix
block can be very small and its output combinations and
corresponding number of solutions can be enumerated exhaus-
tively. With the output distribution of each block, the divide-
and-merge algorithm keeps merging two blocks and updating
their output distributions until all blocks are merged into the
original matrix. To make the computation tractable, only the
most promising part of the distribution is kept at each merge.

Fig. 3: Example Illustrating Divide-and-Merge Algorithm

The closest elements are kept as determined by the distance
between each element and the target output. This eliminates
some possibly correct solutions, but guarantees that the result
is a lower bound while enabling it to be computed efficiently.

Figure 3 illustrates a simple example when X=11111111,
Q1=10110111, Q2=11000011 with parameters b = 2, r = 3.
The result is 10, indicating that there at least ten possible
sequences consistent with f (X, Q1) and f (X, Q2).

First, the coefficient matrix A is divided into several blocks,
each containing M rows and b columns. For each block, the
query auditor exhaustively explores the outputs it contributes
in left side of the equation set AK = 0 and finds the
corresponding number of solutions. This is shown as the
Exhaustive Search step in Figure 3.

If the exhaustive search for a block produces more than r
outputs, the result is reduced to only keep the best r outputs.
The best outputs are selected based on the Euclidean distance
between the result and the all-zero vector, which is the target
output. We use Euclidean distance as the metric to determine
output priority to maximize the likely number of eventual so-
lutions. The number of solutions for each output is determined
by the binomial distribution. Outputs far away from the center
corresponds to fewer eventual solutions. Euclidean distance
penalizes outputs far away from the average output of the
block since the average output is close to the all-zero output.

For example, the first block in Figure 3 contains two
columns corresponding to the variables k1 and k2 in AK = 0.
Each column is multiplied by the row vector [k1, k2] and
the possible value of k1 and k2 is either 1 or 0. So, this
block has four different possible outputs and each output
corresponds to one possible input which means this output
has one solution. The output [0 2]T is discarded to keep the
number of outputs within the threshold r since it has the largest
Euclidean distance (

√
22 + 02 = 2) to the all-zero vector.

After all blocks have their outputs and number of solutions
ready, every two adjacent blocks merge their outputs together
and form a new output block, shown as the Merge step in
Figure 3. This step is done by simply adding every output

4



in the first block to every output in the second block. For
example, [0 0]T output in the first block after the first merge
step can be obtained by either adding [0 0]T to [0 0]T or adding
[1 −1]T to [−1 1]T in previous two blocks. So the number
of solutions for the merged [0 0]T output is 1× 1 + 1× 2 =
3. Similarly, if the number of merged outputs exceeds r, all
outputs are sorted by their Euclidean distance to the all-zero
vector and only r best outputs are kept.

These block merging and output selecting operations are
repeated until all blocks are merged into a single block. The
first column of the final block contains a lower bound on
number of solutions for the set of equation AK = 0, which
is 10 in Figure 3. The Appendix gives pseudocode for the
algorithm.

After the query auditor obtains this lower bound, it com-
pares this bound with the selected leakage threshold. If this
lower bound is larger than the minimum number of consis-
tent sequences required, it is safe to release this response.
Otherwise, the query auditor randomly permutes the sequence
X and all corresponding bits in the query sequences Qi and
reruns the algorithm. Randomly permuting the sequence and
queries does not change the number of consistent sequences
since Hamming distance does not depend on position, but
does change the results of the divide-and-merge algorithm. By
rerunning the algorithm several times with different random
permutations, we increase the likelihood of finding a lower
bound that exceeds the leakage threshold. Our experiments
show that ten random permutations is usually enough to find
a good lower bound (see Section VI).

B. Analysis

The running-time of the divide-and-merge algorithm de-
pends on the input size and the parameter r, which selects
the maximum number of outputs closest to target output after
merging two blocks and allows us to trade-off accuracy for
efficiency. For each pair of blocks with r outputs, combining
them costs r2 steps and each step is composed of M additions
where M is the number of queries. The total number of
combination operations is

N
b
+

N
2b

+
N
4b

+ . . . + 2 + 1 =
2N

b− 1
.

We assume b is a constant since, based on our experiments,
b = 4 is enough. Hence, the overall running time is in
O(N(M · r)2). Hence, it can easily scale to problems with
more than 1000 bits.

Another advantage of this algorithm is its tunability. We
can trade-off the tightness of the lower bound and execution
time. Increasing r increases the computational cost, but finds
a tighter lower bound. The nature of the algorithm ensures
that the execution time is predictable regardless of how the
query sequences are distributed. This is important since other
approaches we tried, including the Gröbner basis, perform very
badly on some query sequences.

VI. EVALUATION

We implement the divide-and-merge algorithm using Matlab
R2010b and perform experiments to test its performance. The
first experiments test the tightness of the lower bound as we
vary r and the number of permutations. Next, we evaluate how
performance depends on the sequence length and number of
queries. Finally, we explore the difference between operating
on random data and more realistic data taken from an iris
database. All of the experiments are run on a laptop with 4 GB
RAM and a 2.13 GHz Intel Core i3 CPU. The reported data
are averages from five experiments with parameter b = 4.

A. Accuracy

Figure 4 shows the results of experiments evaluating the
tightness of the lower bound found by the divide-and-merge
algorithm. Since we can only get exact answers for very
small N, we compare how close the lower bound is to the
exact answer as we vary r for sequences of length N from
12 to 24. Both the secret sequence and the query sequences
are randomly chosen. For small N, the divide-and-merge
algorithm returns a fairly tight lower bound, even for relatively
low r. For larger N, a larger r is needed to obtain a lower
bound within about 80% of the actual value.

We also want to understand how robust the results are to
changes in the sequences that do not effect the Hamming
distance. We can apply any permutation to both the secret
sequence and all query sequences without changing the result
(indeed, this property follows from our definition of additive
decomposable). Figure 5 summarizes the results from an
experiment where we try 100 random permutations of the
sequence and queries for N = 24, M = 3 and r = 50. The
results from five independent experiments are shown as lines in
the graph. On average, running ten random permutations finds
a lower bound 1.1x larger than just the original sequence.

B. Performance

Figure 6 shows the running time as the sequence length
increases. As expected, the computing time grows almost
linearly with the sequence length and it grows quadratically
with the number of queries M. When M = 3, the divide-and-
merge algorithm is fast enough to solve problems with over
1000 bits in 30 seconds on a typical laptop.

N=12

N=16

N=20

N=24

Fig. 4: Tightness of Divide-and-Merge Lower Bound

5



1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

L
o

w
er

 B
o

u
n

d
 I

n
cr

ea
se

Number of Permutations

Fig. 5: Variation with Random Permutations. The y-axis
represents the ratio of the largest lower bound seen so far
to the first computed lower bound.

C. Realistic Data

For our experiments so far, we used random sequences for
both the secret and queries. In real applications, though, we
cannot assume the secret and query sequences are randomly
distributed. The distribution of the query sequences impacts
the performance of our query auditor. To understand how
our approach works with realistic sequences, we evaluate
our methods using a biometric dataset. Use use the CASIA-
IrisV1 [4] iris database which contains 756 iris images from
108 eyes. Each eye is captured 7 times with different con-
ditions. Libor developed a system for converting a standard
iris image into a binary representation and using Hamming
distance to judge the similarity between different irises [16],
which we use in our experiments.

In our experiments, we randomly pick M+ 1 sample image
sequences from the whole database, randomly set one of them
as the sensitive sequence and set other M sequences as query
sequences. This setting models the scenario when scanned
irises are checked against a reference iris.

Figure 7 compares the results for different thresholds when
N = 1024 and M = 3 for both random sequences and
sequences from iris database. Sequences extracted from iris
images are correlated, so the realistic query sequences have
smaller Hamming distances to the sensitive sequence than
random sequences. Thus, the number of solutions found is
much lower, but still well above a reasonable leakage threshold
(e.g., over 10150 even for r = 10). The running time of the
divide-and-merge algorithm is slightly faster for realistic data.

M=3

M=5

M=7

Fig. 6: Computing Time vs. Sequence Length

Fig. 7: Comparing Random and Realistic Data

VII. SINGLE BIT INFORMATION LEAKAGE

In addition to limiting overall information leakage, we also
consider the problem of limiting the amount of information
leaked about particular bits. Without this, an adversary could
construct two queries with only one bit difference and fully
determine that bit from the responses. In this section, we
define this problem and propose a library-based approach and
evaluate our approach.

A. Problem Definition

We define the Single-Bit Leakage problem as:
In an SLP with parameters M and N, the kth bit in
the sensitive sequence is leaked if and only if there
is no sequence, A ∈ ΣN , that can meet both of the
following two requirements:

1) Ak 6= Xk.
2) ∀i ∈ [1, M], f (A, Qi) = f (X, Qi).

That is, if all sequences consistent with the observed queries
and responses contain the same value in position k, an ad-
versary can determine that bit’s value. We do not address the
more sophisticated situation where the attacker can guess a
particular bit with better than even probability or can determine
a relationship between several bits. For example, after several
queries, the attacker may know that one of the first two
bits in the sequence could be 1. This may leak too much
information in some cases (especially if the attacker may be
able to determine some bits in the secret sequence through
external context), but we only consider the situation where a
particular secret bit is learned with certainty based only on
the information available from the responses. We assume the
attacker has no knowledge about the sensitive sequence other
than what is obtained from the query responses.

An attacker with some contextual information may be
able to combine that with the query responses to uniquely
determine particular sensitive bits. We assume the attacker has
no knowledge about the sensitive sequence at all before the
first query. That is not necessarily always true. As a result, we
cannot detect potential information leakage when the attacker
has already known some bits in the secret and use these bits
as additional inputs to determine other bits. Further, we define

6



a particular bit as leaked only when it is fully determined. It
may be the case that nearly all possible consistent sequences
require a certain value, so that attacker has a high probability
of guessing this bit correctly even though it is not completely
determined by the observations. We present a first step towards
a more general solution, but our current solution only provides
a guarantee that any bits that are completely determined by the
observed responses will be identified as leaked.

B. Method

We use the same reduction introduced in Section III to de-
tect information leakage for a single bit. If a bit is determined
it means that only one value for that bit is consistent with the
observed responses. This means the corresponding variable
ki in the set of homogeneous linear equations can only be
0. To test whether bit i is fully determined, we just need to
know if there are any 0-1 solutions for the equation set where
ki = 1. Performing an exhaustive test on each bit would be
too expensive, so we devise a more efficient test.

Observe that if the set of homogeneous linear equations
AK = 0 has solutions, each of these solution must contain
an even number of ks that are equal to 1. Otherwise, the
whole equation cannot sum to 0. With this claim, we could
check every bit in the sequence by exhaustively checking the
situation when the solution contains 2, 4, 6, . . . , N variables
equal to 1. If a certain variable cannot find one or several
complimentary variables for every possible combination, we
know the bit in the sensitive sequence corresponding to this
variable is fully determined. If we find several complimentary
variables, all of the bits corresponding to these variables and
this variable are not fully determined since they can be either
0 or 1. However, checking combinations for a certain variable
is intractable when the number of variables needed to form
this combination is large.

In real applications, it is reasonable to assume the number
of queries M is much smaller than the length of sequences, N.
With this assumption, we can find a tight lower bound of bits
that are guaranteed safe without checking all complimentary
combinations.

When M is small, the number of possible outputs for
a single bit, 2M, is relatively small. As a result, normally
complimentary combinations with a large number of vari-
ables equal to 1 are often composed by some complimentary
combinations with small number of variables equal to 1.
For example, a complimentary combination containing four
outputs [−1 1]T , [1 1]T , [1 −1]T and [−1 −1]T is composed
of two complimentary combinations with two outputs each:
([−1 1]T , [1 −1]T) and ([1 1]T , [−1 −1]T). So, our query
auditor only checks the case for possible solutions with a small
number of variables equal to 1 and our experiments show that
combinations with only two or four variables equal to 1 are
sufficient to cover most bits in the sensitive sequence.

Nevertheless, even if we only check very simple solutions,
the computing resources required are huge. For example, when
N = 1000 and we want to check solutions composed of

Synthetic Data Iris Data

M 6 6 7 7 6 6 7 7
N 16 64 32 128 16 64 32 128

Cb 0.42 1.0 0.9 1.0 0.35 0.94 0.29 1.0
Cc 0.43 1.0 0.92 1.0 0.38 0.94 0.30 1.0

Time (s) 0.64 0.73 4.08 4.47 0.61 0.65 4.11 4.27

TABLE I: Single Bit Information Leakage Detection.
Cb is the fraction of bits that are labeled safe by our approach in all
variables. Cc is the fraction of output combinations that find complimentary
combinations in all combinations in the linear equation set. A value of 1.0
means all bits are proven to be undetermined.

six variables equal to 1, for each variable, we have to check
C6−1

1000−1 = 8.2× 1012 possible combinations.
Our solution is to build libraries for all possible combi-

nations. For a certain M, a set of libraries store all possible
complimentary combinations with 2, 4, . . . number of variables
equal to 1, respectively. The key point here is that these values
do not depend on the length of the sequences N or the content
of the sensitive sequence or query. So, we can precompute
them once and reuse the resulting library for all queries. When
N is large, the number of library entries is much smaller than
the number of trials for exhaustive checking. For example,
we will build a library containing all possible solutions for
M = 7 and the number of variables equal to 1 is four.
There are 9632 complimentary combinations. When we are
checking possible solutions with four variables equal to 1,
we can simply transverse these 9632 solutions and mark all
variables contained in these solutions no matter how large N
is.

With these precomputed libraries, if a certain set of queries
has passed the divide-and-merge algorithm test, we run the
single bit information check and mark all the bits with corre-
sponding variable combinations that are contained in libraries.
If any of the bits are fully determined, the response is blocked.

C. Evaluation

We implement this method in Matlab and test it with the
same settings as in Section VI. For practical applications,
M << N, and normally 2M < N. When query sequences
are randomly chosen, it is extremely unlikely that any bits are
fully determined. That is because there are in total 2M possible
coefficient combinations for each variable and if the number
of variables N is larger than 2M, it is very likely that every
bit is able to find its fully complimentary bit. As a result, no
bits are fully determined.

To test the performance in tougher situations, we set the
sequence length N to 2M

2 and 2M

4 . Table I shows the results
for both randomly selected data and the CASIA-IrisV1 data.
As expected, achieving full coverage for realistic data is more
difficult than for the random data, but is still possible for
reasonable values of N and M.

The results in Table I are obtained by reading the library of
possible complimentary combinations containing two variables
equal to 1 and four variables equal to 1. As expected, the
coverage of bits grows as the problem size grows. With larger

7



M, most combinations can be obtained with just two or four
bits equal to 1 even if N is much smaller than 2M. This is
much more challenging than is the case for typical applications
where N is much larger than M. For smaller M, we can
increase the coverage by examining solutions with six or
more bits equal to 1. Also, for smaller M, a low coverage
is reasonable because smaller M will give a smaller N in our
experiment and it is common that a bit is uniquely determined.

For the iris application, a standard iris image generates a
40 × 480 0-1 matrix. After applying the mask vector, the
matrix size shrinks to 20× 480 (9600 bits). To test the perfor-
mance of the single bit information leakage auditor, we select
short subsequences from the whole sequences. For example,
when M = 7, for each test we randomly pick eight samples
from the database, set one of them as the sensitive sequence
and set other seven sequences as query sequences. This models
the realistic scenario in which someone registers her iris in the
database and irises from other individuals are used as queries.
Queries similar to the sensitive sequence leak much more
information. As a result, we are able to find complimentary
bits for fewer of the sequence bits. But, the auditor can still
cover most bits when N = 2M

2 . That implies that for realistic
applications, when the querying system is running with benign
users, there will be no single bit information leakage and it will
be possible for the query auditor to prove than all sequences
bits are uncertain. When an adversary tries to detect single
bit information with maliciously designed queries, the lack of
uncertainty in particular bits will be discovered by the auditor
since the it will not be able to find complimentary variables
corresponding to the leaked bits.

This approach sometimes generates false positives since we
are only checking solutions with a small number of bits equal
to 1. Our experiments, however, show that for realistic data
most of bits can be fully covered. Also, for bits that cannot be
shown to be undetermined, we can recheck them individually
by setting the bit to 1 and running the divide-and-conquer full
entropy algorithm on the new sequence.

VIII. RELATED WORK

Data Privacy. Query auditing was introduced in 1976 [12],
[20] to check for possible compromises when a database is
queried or shared. It remains an active research area [8] [7]
[18] [15]. Unlike this work, most work in this area focuses
on protecting privacy of entries in a database when aggregate
statistical queries such as mean, sum and max are allowed
over the whole database. For example, Wang et al. show two
possible attack schemes to genome-wide association studies
by analyzing some published statistical data of the database
even without querying [22]. Nabar et al. provide a useful
survey [17].

Other approaches to data privacy include differential privacy
[6] and k-anonymity [21]. Differential privacy describes the
data privacy of a database by observing if the output is
sensitive to the existence of a certain entry in this database
and k-anonymity measures how many individuals are indistinct
after a release of data.

Our paper shares some ideas about Boolean variables with
Kleinberg et al.’s work [13]. They analyze the problem of
auditing databases supporting statistical sum queries over
Boolean attributes. Similarly to our work, they convert their
problem to the problem of determining 0-1 solutions for a set
of equations.

Sequence Query Auditing. Some mathematical abstrac-
tions aim to measure information leakage from sequence
queries. Goodrich explored possible strategies of an attacker
for the problem when the function f (X, Qi) is the length
of straight-match and longest common sequence (LCS) [11]
[10]. The attacking strategies in these two papers abstract the
problem to a Mastermind game. It shows how quickly a secret
can be obtained by an adversary under the assumption that
the attacker can send arbitrary sequences of queries to the
database. He did not consider using a query auditor to limit
the queries the data owner responds to.

Wang et al. propose a query auditor for a secure genomic
computation protocol [23]. They use symbolic execution to
simplify the computation process and a query auditor to
control information leaks by analyzing the simplified result
after symbolic execution from the data consumer with a
constraint solver. However, their query auditor assumes the
data consumer is honest, which means the data consumer will
always send back correct symbolic execution result, so could
be easily compromised by a malicious data consumer.

IX. CONCLUSION

Making sensitive data valuable requires allowing certain
queries to be computed against that data while limiting the
information about the sensitive data that a client may infer
from the query responses. We provide an efficient approach
for bounding the information leakage from Hamming dis-
tance queries against a sensitive sequence. Our approach
is conservative, in that it does not make any assumptions
about the adversary’s inference strategy while providing a
lower bound on the amount of uncertainty remaining after
a series of responses. Preventing inference about particular
properties is more challenging. Our single-bit leakage solution
demonstrates a first step towards stronger and more general
approaches.

ACKNOWLEDGMENTS

This work was partially supported by grants from the
National Science Foundation (TC: Large: Collaborative Re-
search: Practical Secure Two-Party Computation: Techniques,
Tools, and Applications, Award #CNS-1111781) and Air Force
Office of Scientific Research (MURI award FA9550-09-1-
0539), but does not necessarily represent the views of the US
government.

8



REFERENCES

[1] S. E. Baker, A. Hentz, K. W. Bowyer, and P. J. Flynn. Contact Lenses:
Handle with Care for Iris Recognition. In IEEE Third International
Conference on Biometrics: Theory, Applications, and Systems, pages 1–
8. IEEE, 2009.

[2] J. F. Benders. Partitioning Procedures for Solving Mixed-Variables
Programming Problems. Numerische Mathematik, 4(1):238–252, 1962.

[3] D. Bertsimas, G. Perakis, and S. Tayur. A New Algebraic Geometry
Algorithm for Integer Programming. Management Science, pages 999–
1008, 2000.

[4] Chinese Academy of Sciences Institute of Automation. CASIA
Iris Image Database Version 1.0. http://biometrics.idealtest.org/
dbDetailForUser.do?id=1/.

[5] G. B. Dantzig and P. Wolfe. Decomposition Principle for Linear
Programs. Operations Research, 8(1):101–111, 1960.

[6] C. Dwork. Differential Privacy. Automata, Languages and Program-
ming, pages 1–12, 2006.

[7] A. Elshiekh and P. Dominic. A New Auditing Scheme for Securing
Statistical Databases. In International Symposium on Information
Technology, volume 1, pages 1–5. IEEE, 2008.

[8] A. Elshiekh and P. Dominic. Three Audit Stages for Securing Statistical
Databases. In International Conference on Information Management and
Engineering, pages 283–286. IEEE Computer Society, 2009.

[9] J. C. Faugere. A New Efficient Algorithm for Computing Gröbner Bases.
Journal of Pure and Applied Algebra, 139(1-3):61–88, 1999.

[10] M. T. Goodrich. Learning Character Strings via Mastermind Queries,
with a Case Study Involving mtDNA. arXiv:0904.4458, 2009.

[11] M. T. Goodrich. The Mastermind Attack on Genomic Data. In 30th
IEEE Symposium on Security and Privacy, pages 204–218. IEEE, 2009.

[12] L. J. Hoffman. Modern Methods for Computer Security and Privacy.
Prentice-Hall, 1977.

[13] J. Kleinberg, C. Papadimitriou, and P. Raghavan. Auditing Boolean
Attributes. In Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, pages 86–91. ACM, 2000.

[14] F. Lewis, G. J. Hughes, A. Rambaut, A. Pozniak, and A. J. Leigh Brown.
Episodic Sexual Transmission of HIV Revealed by Molecular Phylody-
namics. PLoS Medicine, 5(3):e50, 2008.

[15] J. Marecki, M. Srivatsa, and P. Varakantham. A Decision Theoretic Ap-
proach to Data Leakage Prevention. In IEEE International Conference
on Privacy, Security, Risk and Trust (PASSAT), pages 776–784, 2010.

[16] L. Masek. Recognition of Human Iris Patterns for Biometric Identifica-
tion. Bachelor of Engineering Thesis, School of Computer Science and
Software Engineering, University of Western Australia, 2003.

[17] S. U. Nabar, K. Kenthapadi, N. Mishra, and R. Motwani. A Survey of
Query Auditing Techniques for Data Privacy. Privacy-Preserving Data
Mining, pages 415–431, 2008.

[18] S. U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Motwani. To-
wards Robustness in Query Auditing. In 32nd International Conference
on Very Large Data Bases, pages 151–162. VLDB Endowment, 2006.

[19] E. Neuwirth. Some Strategies for Mastermind. Mathematical Methods
of Operations Research, 26(1):257–278, 1982.

[20] J. Schlorer. Confidentiality of Statistical Records: a Threat-Monitoring
Scheme for On Line Dialogue. Methods of Information in Medicine,
15(1):36, 1976.

[21] L. Sweeney. k-Anonymity: A Model for Protecting Privacy. Interna-
tional Journal of Uncertainty Fuzziness and Knowledge Based Systems,
10(5):557–570, 2002.

[22] R. Wang, Y. F. Li, X. F. Wang, H. Tang, and X. Zhou. Learning
Your Identity and Disease from Research Papers: Information Leaks in
Genome Wide Association Study. In 16th ACM Conference on Computer
and Communications Security, pages 534–544. ACM, 2009.

[23] R. Wang, X. F. Wang, Z. Li, H. Tang, M. K. Reiter, and Z. Dong.
Privacy-Preserving Genomic Computation through Program Specializa-
tion. In 16th ACM Conference on Computer and Communications
Security, pages 338–347. ACM, 2009.

[24] Zhen Wang and John Moult. SNPs, Protein Structure, and Disease.
Human Mutation, 17(4):263–270, 2001.

[25] H. Yang and Y. Wang. A LBP-Based Face Recognition Method with
Hamming Distance Constraint. 2007.

APPENDIX

The divide-and-merge algorithm is shown in Algorithm 1
and Algorithm 2. Algorithm 1 shows the Merge function that
takes outputs and corresponding number of solutions of two
coefficient matrix blocks and a threshold parameter r as input
and outputs r merged outputs closest to the all-zero vector.
Algorithm 2 divides the coefficient matrix A into blocks,
lists their outputs exhaustively and recursively calls the Merge
function until the final answer is obtained. In the pseudocode
blockA stores blocks after dividing the original coefficient
matrix A, X stores the output at each step and blocksol stores
corresponding number of solutions for each block.

Algorithm 1: Merge function
Input: x1, x2, v1, v2, r
output is a matrix of [M][r2] integers
solution is an array of r2 integers
for col1=0 to numberOfColumns(x1) - 1 do

for col2=0 to numberOfColumns(x2) - 1 do
for i=0 to M - 1 do

sum[i]=x1[i][col1]+x2[i][col2]
end
sol=v1[col1]*v2[col2]
if sum exists as a column in output then

j=getIndex(sum,output)
solution[j]=solution[j]+sol

else
add sum as a new column in output
add sol as a new element in solution

end
end

end
if numberOfColumns(output) < r then

continue
else

Sort outputs by Euclidean distance to all-zero vector
Pick first r outputs and corresponding solutions

end
return output, solution

9



Algorithm 2: Divide-and-Merge Algorithm
Input: A, r, b
blockA is a matrix of [dN/be][M][b] integers
X is a matrix of [dN/be][M][r] integers
blocksol is a matrix of [dN/be][r] integers
for i=0 to dN/be-2 do

for j=0 to M− 1 do
for k=0 to b− 1 do

blockA[i][j][k]=A[j][b ∗ i + k]
end

end
end
for i=0 to M− 1 do

for j=0 to N − (dN/be − 1) ∗ b do
blockA[dN/be − 1][i][j]=A[i][(dN/be − 1) ∗ b + j]

end
end
output is a matrix of [M][r] integers
solution is an array of [r] integers
for i=0 to dN/be-1 do

exhaustively search sum outputs of blockA[i] and store results in output
list corresponding number of solutions in solution
if numberofColumns(output)< r then

continue
else

Sort all possible outputs by their Euclidean distance to all-zero vectors in ascending order
Pick first r outputs and corresponding number of solutions

end
X[i]=output
blocksol[i] = solution

end
for i = 1 to dlogN/b

2 e do
j = 0
while j < (N/b)/2i−1 do

if j + 1 ≥ (N/b)/2i−1 then
X[j/2] = X[j]
blocksol[j/2] = blocksol[j]

else
(X[j/2], blocksol[j/2]) =Merge(X[j], X[j + 1], blocksol[j], blocksol[j + 1], r)
j = j + 2

end
end

end
return blocksol[0][0]

10


