
In Second International Workshop on Security and Privacy in Cloud Computing, Minneapolis, MN. 24 June 2011.

Private Editing Using Untrusted Cloud Services
Yan Huang and David Evans

University of Virginia
MightBeEvil.com

Abstract—We present a general methodology for protecting the
confidentiality and integrity of user data for a class of on-line editing
applications. The key insight is that many of these applications
are designed to perform most of their data-dependent computation
on the client side, so it is possible to maintain their functionality
while only exposing an encrypted version of the document to
the server. We apply our methodology to Google Documents and
describe a prototype extension tool that enables users to use a
cloud application to manage their documents without sacrificing
confidentiality or integrity. To provide adequate performance, we
employ an incremental encryption scheme and extend it to support
variable-length blocks. We analyze the security of our scheme and
report on experiments that show our extension preserves most of
the cloud application’s functionality with less than 10% overhead
for typical use.

Keywords-cloud security, incremental cryptography, data privacy.

I. Introduction

The idea of software-as-a-service, combined with client side
technologies that make rich content web pages possible, enables
web applications to supplant their desktop peers. Example appli-
cations include Google Docs [16], Microsoft Office Live [24],
and the Mozilla Bespin code editor [27]. Moving document
editing applications to external servers offers many advantages
including availability (documents are accessible from any Internet
connection), reliability (cloud providers use redundancy to pro-
vide resilience to failure), reduced cost (most of these services
are free to end-users), low maintenance costs (the service can
be transparently updated by the server), as well as enhanced
opportunities for collaboration.

Despite these advantages, many people are understandably re-
luctant to hand over their confidential documents to a third party.
Unlike local files, the user must fully trust the service provider and
delegate the file’s access control to the web application. Trusting
users may rely on the provider’s privacy policies, but even if a user
trusts the provider to behave responsibly, service implementation
errors can lead to data compromise. For example, Google Docs
makes embedded images publicly available and leaks information
about previous versions of documents [1]. In March 2009, a bug in
Google’s server inadvertently shared some documents in Google
Docs contrary to the user’s selected permissions [20].

The goal of our work is to provide a way for users to benefit
from the advantages of using cloud applications to edit documents
without requiring them to expose their sensitive data to the service
provider. Our approach is to encrypt the submitted user content
communicated between the client and server. Instead of storing
the plaintext document in the cloud, the cloud stores the ciphertext

document which is decrypted by a trusted extension running in
the client. Messages to the server that update the document are
transformed into messages that produce the corresponding update
on the ciphertext document.

To evaluate the feasibility and efficiency of our approach we
develop a prototype browser extension for Google Documents that
satisfies these design goals:

1) The contents of the file are protected (both confidentiality
and optionally integrity) even against attacks from a possi-
bly malicious cloud service provider.

2) The extension has minimal impact on the existing function-
ality of the cloud application and requires no cooperation
from the application provider. Section IV describes our
Google Documents extension; to demonstrate the generality
of our approach, we also built similar extensions for Mozilla
Bespin and Adobe Buzzword.

3) The incurred runtime and bandwidth costs are acceptable
for typical uses. We achieve this by using a new data struc-
ture that supports variable-length blocks in an incremental
encryption scheme (Section V). Section VII reports results
from our performance experiments.

Section II describes our threat model. Our design is secure
against an adversary who does not maliciously manipulate the
client application, which limits the adversary but is a realistic
threat model for many cloud application scenarios. Providing full
confidentiality against an adversary who maliciously constructs
the client is probably infeasible as it requires defeating a rich set
of possible covert channels as we discuss in Section VI-B. We
do not aim to improve availability here. Our approach still relies
on the cloud provider to store the user’s data, so a malicious or
incompetent cloud provider can easily prevent users from access-
ing their documents. This could be addressed using replication
with multiple cloud providers, but this is outside the scope of
this paper. Our goal is to protect users from cloud providers that
expose or alter their data. This could happen because of malicious
actions by the service provider, in response to a subpoena, as part
of a business model to provide targeted advertising, or through a
bug in the server application’s implementation.

Prior Work. Most previous secure storage systems were built
around existing OS file systems [5, 23, 25, 26]. Our work relies on
the presumption that we can treat the web application server as a
storage server, at least for a restricted set of contents. In addition,
our work resembles Blaze’s [5] and Microsoft’s [25] in that the
storage server is not trusted. However, our research is distinct

from previous work our focus on security issues of contents in on-
line editors presented in the form of web applications, instead of
the file system component in a operating system. Here the support
for incremental cryptographic operations is of great importance.

In addition, several other projects consider security issues in
cloud computing. The work most similar to ours is CoClo [12],
which provided a lightweight, client-side tool for preserving pri-
vacy in cloud applications including Google Docs. Compared to
their work which requires reencrypting and transmitting the entire
document for every update, we focus on integrating incremental
encryption which is vital for efficiently editing medium to large
size documents. We also develop a novel data structure to reduce
ciphertext size explosion associated with incremental encryption.
Section VIII covers more broadly related work.

Contributions. The main contributions of this work are:
1) We describe an easily-deployable, lightweight solution to

mitigate the threat of data compromise inherent in all cloud
computing document editing applications. Our approach
works for an important class of such applications, and
requires no modification of the service or client program
(Section III).

2) To enable an efficient solution, we develop a technique
that integrates incremental encryption with a tree-based
data structure (Section V). The multiple-character block
extension enables performance tradeoffs between ciphertext
size and encryption time (Section V-C).

3) We develop and analyze a prototype browser extension
that demonstrate our approach for several representative
applications. We provide an analysis of the security (Sec-
tion VI) and performance of our extension for Google
Documents (Section VII). For most user editing operations,
the performance overhead is less than 10%.

Target Applications. Our approach can be applied to a broad
category of web applications. The common characteristic of those
applications is that the server can be thought of just a glorified
data store that does not do any processing of data but merely
provides storage and retrieval. That is, none of the computations
done by the server depend on the actual data so it maintains its
core functionality even if the data is encrypted.

Many web applications are designed this way, driven by the
design philosophy that the server should offload as much work as
possible to the client to improve application responsiveness. The
server performs computation only when necessary, usually for
information portability reasons. Example applications that mostly
fit this model include Google Documents, Mozilla Bespin, and
Adobe Buzzword. Nearly all of their essential functionality of
these applications can be maintained with encrypted data.

To verify the generality of our approach, we developed proof-
of-concept extensions for the Google Documents1 word pro-
cessor; Adobe Buzzword, a document editing application; and

1Google’s document service is confusingly named: Google Docs refers to the
suite of applications which includes word processor (originally known as Writely
before it was purchased by Google), spreadsheet, and presentation applications.
The word processor, which is our target, is known as Google Documents.

Mozilla Bespin, an on-line source code editing tool. Section IV
describes our extension for Google Documents in detail. We chose
Google Documents for demonstration not only because it is a very
widely-used on-line office application, but also because it adopts
an incremental document update protocol that enables an efficient
and interesting approach to secure updates.

Our approach does not work for applications where core
functionality is performed by the server. For example, Google’s
spreadsheet application performs computations on cell contents
at the server side. Encrypting cell contents would break essential
features such as computing sums of cell values. Providing privacy
with a spreadsheet application would require either moving this
functionality to the client-side, or providing heavyweight mech-
anisms to support computation on encrypted data.

II. ThreatModel

Our work is focused on the scenario where an end user wants to
use a cloud computing application to manage and edit documents,
but does not want to trust the application provider with confiden-
tial data. We consider security threats that come from the cloud
service provider, including attackers that compromise the service
provider’s infrastructure or use legal mechanisms like a subpoena
to obtain access to stored data. We assume an adversary with
computational power equivalent to a probabilistic polynomial-
time Turing machine who fully controls all the data users store at
the server as well as all the messages between the server and the
client. The adversary can launch both passive and active attacks
on the application’s users.

We consider two different threat models: benign client, where
the web application’s client-side code is trusted to be non-
malicious; and malicious client, where there are no assumptions
about the client-side code. The benign client model is appropriate
for the scenario where the client code is received from a fairly
trusted service provider, but the threats are external attacks against
the service provider or security vulnerabilities in the server’s
implementation.2 This scenario also applies in cases where neither
the server nor the client application provider is trusted, but they
are independent parties that are not expected to collude. The
malicious client model assumes the service provider controls the
client-side application code and can construct a malicious client
specifically to transmit confidential data back to the server using
covert channels. We do not claim any strong defense against such
a powerful adversary, but do provide mechanisms that can limit
the amount of confidential data they could obtain.

We assume our browser extension along with the client’s
browser and host is not compromised. Attacks such as installing
a keylogger on the client’s machine are outside the scope of our
work and better dealt with anti-malware approaches.

Many cloud servers operate without SSL/TLS protection to pro-
vide improved performance and reduce server costs.3 This opens

2Contrary to what our project’s domain name, mightBeEvil.com, might suggest,
this is a reasonable threat model for most users of Google Documents.

3In addition, some jurisdictions force ISPs to block specific services over
SSL/TLS. The first author has observed this actually happening in China for
Google Docs. China currently seems to block all HTTPS access to Google Docs
but allows HTTP access.

2

the door for any malicious party to eavesdrop on client/server
communication easily. For these scenarios, our tool also provides
some protection against network eavesdropping and tampering.
Our focus, however, is on the malicious or buggy cloud provider
threat which is not reduced by using SSL to protect the client-
server traffic.

In our prototype, users control the security of their data using
per-document passwords and may select either a confidentiality-
only scheme or one that provides both confidentiality and in-
tegrity. Poor selection and management of user passwords is
often the weakest link in a security system, but improving this is
outside the scope of our work. In our scheme, sharing encrypted
documents requires also sharing passwords. We assume parties
sharing a document can securely establish a shared password,
although there are many better ways of managing passwords for
shared documents.

III. Approach

Applying our idea to an on-line editing web application in-
volves two main steps: (1) reverse engineering the application-
specific transmission protocol used by the web application; and
(2) intercepting all client-server traffic and modifying messages to
encrypt all data related to the document’s contents. For security,
all requests other than those that can be interpreted and encrypted
must be blocked.

The reverse engineering can be done by observing network
traffic or analyzing the client code. We do this manually, although
several recent works indicate that it may be possible to automate
the task of reverse engineering network protocols [7, 10, 22].

Several different approaches are possible for the traffic inter-
ception and modification:

1) Standalone proxy. This is the most general approach, which
could work for even non-browser applications (e.g., com-
ponents of Microsoft Office Live). The main disadvantage
of using a proxy is the difficulty in handling encrypted
SSL/TLS communication.

2) Browser extension. A browser extension can be easily
deployed for web applications, and can be implemented
using the fairly mature browser extension infrastructure.

3) User JavaScript. User JavaScript [21, 29] is a convenient
way to inject a piece of JavaScript to run with the same
privilege as scripts originally coming from a web site.
However, it provides no interface to directly manipulate
network traffic. Implementing the transformer using User
JavaScript requires deeper understanding of the client code
and rewriting relevant components.

We implement our tool as a Firefox browser extension because
it is the easier for individual users to deploy than a proxy and
the Firefox extension model provides mechanisms for processing
SSL-encrypted packets before encryption or after decryption.

Next, we describe the extensions for Bespin and Buzzword,
both of which can be built straightforwardly using this approach.
Supporting incremental updates, as done by Google Documents,
is more interesting, and described in more detail in Section IV.

Bespin. Mozilla Bespin [27] is an on-line source code editing
tool developed by Mozilla Labs. It is designed to be an extensible
code editing tool inside a browser. All the cosmetic work and
editing-related functions (e.g., code highlighting) are provided by
extensible client-side JavaScript/CSS modules, while the server
is only used as backend storage. The APIs between the client
and server are well-defined and open [28]. It simply uses HTTP
PUT requests to send user content back to the server stored as a
file. No incremental update mechanisms are found in Bespin. By
wrapping the PUT request with code that encrypts all user data,
the server only sees encrypted contents.

Buzzword. Adobe Buzzword is a document editing service
similar to Google Documents. On every update, the client sends
back the whole document content as a XML file encapsulated
in a HTTP POST request. By encrypting the text embedded in
<textRun> tags, we keep submitted document content secure.

IV. Extension for Google Documents

Figure 1 illustrates the design of the extension we built to
provide privacy with Google Documents.

A. Analyzing Network Traffic

To protect the confidential content, we need to ensure that
no messages are sent to the network that contain unencrypted
information about the document’s contents. This requires under-
standing the network traffic well enough to encrypt sensitive data
without altering the control parts of messages. To analyze the
network communication between a Google Documents client and
server, we set up a Squid proxy [32] to mediate requests and
responses. Each function is tested separately to examine relevant
messages. We observed that only a few of the features provided
by Google Documents generate server requests (including “save”,
“download as”, and “check spelling”), while most actions (e.g.,
content formatting) are taken care of by client scripts.

Client/Server Communication Overview. The client/server
update messages appearing in a typical editing session are visible
in the right side of Figure 1 (ignoring the messages between the
extension and client). When we create a new document or open
an existing document, a new edit session is initiated as a POST
request sent to http://docs.google.com/Doc?docID=id. This editing
session lasts until the document is closed. In each editing session,
the first save command always results in a POST request in
which the docContents field contains the entire document contents.
All subsequent save commands in the edit session trigger POST
requests that only carry document difference information in the
delta parameter. Update deltas are periodically sent back to the
server due to automatic save requests triggered by client side
timeouts.

The server responds to the content update messages with an
Ack message that contains contentFromServer and contentFrom-
ServerHash fields, conveying the current content to the best of
the server’s knowledge. We did not reverse engineer these fields,
but instead found that in a single user editing session the client
works flawlessly when the values are replaced with an empty

3

Fig. 1. Private Editing. The server maintains the ciphertext document, C. The browser extension intercepts all client-server traffic, encrypting as necessary.

string for contentFromServer, and 0 for contentFromServerHash.
When multiple users edit the same document simultaneously, this
causes unnecessary conflicts (see Section VII-A).

Incremental Updates. The document text is represented as a
one-dimensional string. For presentation purposes, we introduce
an imaginary cursor. For each incremental update, the cursor is
initially at position 0, the beginning of the string. The update is
described by a delta message, a sequence of operations, separated
by tabs. Three types of operations are supported:

=num move the cursor forward num characters.
+str insert the string str at the current position and advance

the cursor to the end of the inserted string.
num delete num characters starting from the current cursor.

For example, a delta value of “=2 -5” turns “abcdefg” into “ab”;
and the value “=2 -3 +uv =2 +w” turns “abcdefg” into “abuvfgw”.

B. Extension

Our extension intercepts all messages generated by the client.
Unrecognized messages are blocked, and messages that contain
document contents are modified to use the ciphertext document.
Figure 2 shows pseudocode for intercepting relevant requests and
replacing their contents with encrypted data. The enc_scheme

object provides three public interfaces: encrypt, decrypt, and
transform_delta. It also maintains a copy of the state of the
ciphertext document which is needed to transform the delta.
Section V describes the encryption scheme.

C. Using the Extension

Our tool is available at mightBeEvil.com as a Firefox extension.
To use the extension, a user first installs the extension and
activates it (by clicking an item in “Tools” menu). Then, the
user goes to docs.google.com and uses its existing interface to
“Create new Document”. The extension intercepts this request
and prompts the user to set a password. The newly created
document is now an encrypted document. The user can edit
it normally using Google Documents, but the server only sees

Mediator.prototype = {
onModifyRequest : function (oHttp) {
... // error checking elided
var clientString = this.getPostData(oHttp).body;
if (clientString.match('docContents=')) { // full update
var content = clientString.match(/docContents=([^&]*)&/)[1];
var ctxt = Base32.encode(enc_scheme.encrypt

(decodeURIComponent(content)));
this.sendRequest(oHttp,

clientString.replace
(content, encodeURIComponent(ctxt)))

} else if (clientString.match('delta=')) { // incremental update
var p_delta = clientString.match(/delta=(.*?)&/)[1];
var c_delta = enc_scheme.transform_delta

(decodeURIComponent(unescape(p_delta)));
clientString = clientString.replace

(original_delta, encodeURIComponent(deltaContent));
this.sendRequest(oHttp, clientString);

} else { this.dropRequest(oHttp); } // drop all unknown requests
...

Fig. 2. Request Mediation Code Sketch

the encrypted contents of the document. When a document is
loaded, our extension prompts the user with a dialog asking for
various encryption parameters (e.g., password and schemes). If
the document is an encrypted document, it appears as ciphertext
unless the user enters the correct password.

Users can share an encrypted document by sharing the docu-
ment in Google Docs, and then sharing the password using some
other secure channel. This is, admittedly, not the most secure
way to establish a shared secure document, but better ways of
establishing a shared key outside the scope of this work.

V. Encryption

To prevent exposing the document contents to the application
provider, the version of the document stored by the provider is
encrypted with a key known only to the client. Our extension
supports insert and delete update operations. To save both CPU

4

time and network bandwidth, we use incremental encryption to
produce updated ciphertext.

A. Incremental Encryption

An incremental encryption scheme is a 4-tuple:

(K ,Enc,Dec, IncE)

where K , Enc, Dec conform respectively to the key generation
function, encryption function, and decryption function as defined
in traditional encryption schemes [19]. The fourth element IncE
is the incremental encryption function that takes an edit operation
Op and optionally the previous plaintext M and ciphertext C, and
computes an updated ciphertext.

Bellare, Goldreich, and Goldwasser introduced incremental
symmetric encryption and gave a specific case study for incremen-
tal hashing and signing [2]. Incremental encryption schemes gen-
erally support three types of updates: replace, insert, and delete.
Early research efforts focused mainly on inventing incremental
MAC schemes restricted to the easier replace updates [2, 4]; later
schemes also supported insert and delete updates [3, 6, 15]. In
our scenario, we need all three types of update.

An incremental encryption scheme is called ideal if its IncE
function has running time that is independent of |M| and |C|.
Nevertheless, in view of Enc’s time complexity linear to the
length of the plaintext, it may still be desirable to have an non-
ideal but sub-linear time (in terms of |M| and |C|) IncE function.

Another property of incremental encryption schemes for sign-
ing is whether or not they prevent substitution attacks. A sub-
stitution attack is possible because in order for an incremental
signing algorithm to be ideal, it does not have adequate time
to verify the integrity of the supplied (message, signature) pair.
For instance, the hash-then-sign [2] and XOR [3] schemes are all
subject to substitution attacks. On the other hand, IncXMACC [15]
and the hash tree [3] schemes achieve true tamperproofing but at
the cost of O(n) size of signature, and O(log(n)) time complexity,
where both n refers to the length of the entire document. Fischlin
gave a proof that for an single block accessing, incremental
signing scheme supporting replace update to prevent substitution
attack, the signature size is Ω(n) [15]. In our application, we are
more interested in confidentiality-only and confidentiality-and-
integrity services, than integrity-only services. The good news
is that integrity can be obtained at marginal cost if it is added
onto a confidentiality-only services.

B. Transforming Updates

For Google Documents, we see a delta in the client’s outgoing
messages, which describes the edits that transform a document
from its previous version to the latest one. Therefore, what we
need is a translation function that maps delta into cdelta, a
corresponding delta value for the ciphertext document.

As depicted in Figure 1, the ciphertext document is maintained
by the application provider; the plaintext document is what the
client sees and edits. The extension mediates all client-server
traffic, encrypting the document contents and updates as necessary
for the server to maintain the ciphertext document.

We support different encryption schemes for confidentiality-
only and for both integrity and confidentiality. For confidentiality-
only scenarios, we use the randomized ECB (rECB) encryption
mode [6]. Let the original document be (d1,d2, · · · ,dn), where di
are characters of the document. With rECB mode of encryption,
the ciphertext blocks are:

Fsk(r0),Fsk(r0⊕ r1,r1⊕d1),Fsk(r0⊕ r2,r2⊕d2),
. . . ,Fsk(r0⊕ rn,rn⊕dn)

where ri’s are nonces and Fsk is a secure block-cipher with key
sk. We xor each plaintext block with a 64-bit random nonce and
encrypt the result with AES. To decrypt the block dk, it suffices
to decrypt the first ciphertext block (to get r0), the 2k + 1th (to
get rk), and the 2k + 2th cipher block (to get dk).

For scenarios that require integrity, we use the RPC mode [6]
with a security amendment to thwart some forgery attacks [35].
This uses slightly more, but constant, extra resources compared
to rECB scheme. The main idea of RPC mode is to use random
nonces to chain together neighboring plaintext blocks before
applying a block cipher like AES. The amendment suggests
always include the length of the document in the last ciphertext
block. Using RPC mode, the ciphertext is:

Fsk(r0,α,r1),Fsk(r1,d1,r2),Fsk(r2,d2,r3),
. . . ,Fsk(rn,dn,r0),Fsk(⊕n

i=0ri,⊕
n
i=1di,⊕

n
i=1ri)

where α is an arbitrary symbol used to mark the start, ri’s are
random nonces, di’s concatenate to form the plaintext document.

C. Multiple-Character Blocks

With a one-character per block rECB (or RPC) scheme, every
8-bit character is encapsulated in a 128-bit AES block, so the
ciphertext blow-up is 16x. Since Google currently enforces a
maximum file size of 500 kilobytes, this blow-up greatly limits the
size of documents, as well as increasing the bandwidth required.
To reduce the ciphertext blow-up, we combine multiple characters
into a single encryption block. This slightly increases the time
overhead for incremental encryption.

Our design groups plaintext into blocks of up to b characters,
where b is a user-adjustable parameter. The main challenge is
to manage the blocks so that asymptotically fast insert/delete
by index operations can be provided. No data-structure exists
that can simultaneously provide both constant time updates and
indexing. A straightforward approach would require re-aligning
and re-encrypting all subsequent blocks when a single character
is inserted or deleted. This would require re-encrypting the entire
document for each edit, rendering incremental encryption useless.

We developed a data structure, called an IndexedSkipList,
to cope with this dilemma. It is based on the SkipList data
structure [30]. The idea of indexing could also be applied to any
of the well-known balanced tree data structures (e. g., AVL tree,
2-3 tree, etc.) to develop a similar non-probabilistic data structure.

A SkipList stores a list of elements in order and associates a
pole of probabilistic height with each element. Searching over a

5

Fig. 3. SkipIndexList Insertion (insert “xy” at index 3 of “abcfghijk”)

SkipList starts from the highest poles, descending down the poles
as the position of searched element is known more precisely.

An IndexedSkipList insertion is illustrated in Figure 3. In our
implementation, a skip_count field is associated with every list
pointer at all levels (shown as numbers over the pointers in the
figure).

The algorithm used to implement the IndexedSkipList Find
operation is shown in Algorithm 1. It is similar to that for a normal
SkipList except for the four highlighted lines. Line 3 shows the
searching is based on index instead of a search key. At lines 4
and 7, the index is adjusted using the skip_count, and in the end
the indexed value is returned immediately, unlike in a SkipList
which checks if the input value is found. The Insert and Delete
algorithms are adapted similarly. Following the analysis of the
original SkipList algorithms [30], the Find, Insert, and Delete
operations on an IndexedSkipList also have running times that
are logarithmic (on average) in the number of blocks.

The IndexedSkipList data structure supports blocks of arbitrary
size. However, if the block size is not statically fixed, we have
to store the block character counters so that we remember block
boundaries. Due to the fixed block size of AES, we choose a
maximum of 8 characters (64 bits) per block for our incremental
encryption scheme. With a block cipher of different width, other
block sizes might be desirable.

VI. Security Analysis
We first discuss the security properties of our extension tool

against an adversary who does not have malicious control of the
client application (the benign client threat model introduced in
Section II. Then, we consider a stronger threat model in which
the client program itself could be malicious.

A. Benign Client Application
We assume AES is secure and that there is a good source of

cryptographic random numbers. We also assume the encryption

Algorithm 1 Find(list, index)
1: x← list.head;
2: for i := list.level downto 1 do
3: while index > x.forward[i].skip_count do
4: index ← index − x.forward[i].skip_count;
5: x ← x.forward[i].point_at;
6: end while
7: index ← index − x.forward[i].skip_count;
8: x ← x.forward[i].point_at;
9: return x.value[index];

10: end for

key is always kept secure on client computers. The security proof
of the basic incremental encryption scheme is given by Buonanno
et al. [6]. We consider all four categories (ciphertext-only, known
plaintext, chosen-plaintext, chosen-ciphertext) of attacks.

In a ciphertext-only attack, the server is only allowed to infer
information from its observation of received contents. Since each
block is padded with a nonce before encryption, the scheme is
secure against a ciphertext-only attack under the assumption that
the AES cipher is secure. Even if the server knows some plaintext-
ciphertext pairs, or can obtain any desired plaintext-ciphertext
pairs as in known plaintext and chosen-plaintext attacks, it doesn’t
help in understanding unknown ciphertext because of the random
padding. A chosen-ciphertext attack cannot be successful if the
privacy-and-integrity encryption scheme is used, because invalid
decryption requests will be distinguished and declined, making
the attack equivalent to a chosen-plaintext attack.

The nonce length n serves as an important parameter that affects
the security of the encryption schemes. We set the n to 64 bits.
If the attacker does a brute-force search to find r0 and the secret
key, they can decrypt the whole document. So, assuming AES is
secure, attacker needs to search 264 possible r0 values with 2128

possible keys.
In addition to passively guessing information from ciphertext,

the server could launch active attacks such as replicating part
of the ciphertext, threatening content integrity. Our privacy-only
encryption scheme cannot withstand these attacks, but the privacy-
and-integrity scheme does. This type of active modification attack
is thwarted by circular-chaining the plaintext blocks together with
nonces. As long as the AES cipher is secure, the adversary cannot
guess the chaining nonce and any modification will be detected.

Information Leaks. Our schemes reveal positional and timing
information about edits. For optimizing performance, the client
sends encrypted deltas, which contain plaintext information on
the edit operation type and position. These updates necessarily
reveal information to the server, that could be used to infer
aspects of the document. However, in most cases these edits
will not reveal significant confidential information. The Google
Documents client sends periodic updates at regular intervals, so
does not leak precise timing information on edits. In addition,
when using multi-character blocks, the precise information about
update positions is no longer revealed.

6

Availability. The server could also destroy user-submitted con-
tent, so that documents cannot be retrieved appropriately. We
do not address this type of denial of service attack, because we
assume that the server provides a reliable storage service hence
this attack already indicates disruption of ordinary services. We
assume the server stores user-submitted content literally. This is
reasonable since even though the server could process and store
the content in any format it defines, for a subset of all possible
content (e.g., the hexadecimal codes of ciphertext), the client has
to be able to render exactly what the user submitted in order for
the editor to work correctly.

The server could recognize the use of encryption and refuse
to store any content that appears to be encrypted. To cope with
this situation, our tool could be extended using existing results in
stenography to make it difficult for the server identify encrypted
documents. We have not yet investigated this possibility, though,
and it may be impractical for realistic applications.

A web application could also thwart our approach by obfus-
cating its communication protocols to make reverse engineering
more difficult. Users seeking privacy, however, would be disin-
clined to use a service that intentionally obfuscates its protocols
to thwart privacy extensions.

B. Malicious Client Application

The benign client model assumes the client application software
is trusted by the user. Since this software typically is provided by
the application provider, though, the application provider could
maliciously construct the client software to leak information about
the user’s documents back to the server.

Overt channels are blocked by the extension directly. Only
messages that match a specified narrow interface are permitted
to be sent back to the server, and all variable parts of those
messages are encrypted content. This leaves the possibility of
covert channels. It is nearly impossible to completely eliminate
covert channels in such a scenario, but can take countermeasures
to limit the bandwidth of undetectable covert channels.

One possible covert channel is the update messages. The length
of the encrypted update is a function of the plaintext update (now
controlled by the adversary), so could be used as a covert channel.
The timing of the update messages could also be used as a covert
channel. To disrupt these covert channels, we could add random
delays (without noticeably disrupting the user experience since the
updates are asynchronous) to every outgoing update request and
could randomly pad the content (without affecting the correctness
of the content) before encryption.

A more challenging covert channel is the delta values them-
selves. Although these values are encrypted, the encrypted values
still contain information that could be used as a covert channel.
For example, many different sequences of delta commands could
produce the same editing outcome, so the malicious client could
select different sequences to encode additional information. As
an extreme example, consider a client that when the user enters
character q sends a sequence of Ord(q) (where Ord(q) is the
ordinal of q in the alphabet) single-character inserts followed by
Ord(q) deletes followed by the actual insert. From the number
of consecutive deletes in the message, the server knows the

character that was entered. This could be mitigated by maintaining
each group of delta updates and merging them into a canonical
form before sending an update to the server, or by using trusted
code to compute the delta values from the two versions of the
document directly instead of using the delta values computed by
the provided client.

Finally, the document itself could be used as a covert channel.
Since the server only sees the encrypted document, the only aspect
of the document that is visible to the server is its length, which
is roughly preserved by the encryption. A malicious client can
add invisible content to the document (for example, formatting
codes) to modify the actual document length. The updates would
necessarily reveal the length of the encrypted document, since that
is maintained by the server. This could be used to transmit a few
bits of information with each edit. The extension can mitigate this
by making the length of the encrypted document a less predictable
function of the length of the plaintext document.

Discovering and disrupting covert channels is a seemingly
unending arms race. In our situation, we have the advantage
that the interface between the client and server can be arbitrarily
narrow and is controlled by the extension, so the maximum
bandwidth available for covert channels is limited. To thwart such
powerful attacks completely, however, the user probably needs to
use a client provided by a trusted third-party.

VII. Results and Evaluation

Our proof-of-concept tool is available as a Firefox extension.
It preserves most of the functionality of Google Documents
with low performance overhead. Our implementation uses a fast
JavaScript implementation of AES developed by Stanford [33].

A. Functionality

Because the Google Documents server now only has access to
an encrypted document, some features now become unavailable:
(1) translation; (2) spell checking; (3) drawing pictures (the
client sends drawing primitives to the server, where pictures
are generated and sent to the client); and, (4) exporting to a
document format. It is not surprising that these features (at least
except for drawing pictures) require the server to manipulate the
plaintext document since they depend on a large amount of data
maintained by the server. Other core features such as various
content formatting tools and the word counting tools work fine
with our extension since they operate on the client side.

Collaborative editing is partially functional in that every passive
reader gets automatic content refreshing. Simultaneous editing by
different parties leads to client’s complaints of multiple people
editing the same region of the document. This is due to the fact
that the extension does not update the contentFromServerHash
value sent by the server (based on the encrypted document) to
a value that is correct for the plaintext document. The SPORC
project [14] investigated the problem of collaborative editing us-
ing untrusted server and developed a solution. The main difference
from our work is that they assumed control over the server and
designed a new server with well-defined limited assumptions,
whereas we aimed to add privacy to existing commercial services
over which we have no control.

7

B. Micro-Benchmarks

We created micro-benchmarks to measure the performance of
cryptographic operations inside a browser. The benchmark aims
to model user editing operations using probabilistically generated
test cases. Each test case is a pair of strings (D,D′). The strings
D and D′ are chosen randomly with length uniformly distributed
between 100 and 10000. For every (D,D′) pair, a delta string
is derived such that it transforms D to D′. We measured the
time to encrypt D, the time to transform delta, and the time to
decrypt D′. Figure 4 shows the wall clock encryption time per
character. The experiments are done on a typical desktop (Intel
core 2 dual E6550 2.33GHz, 2GB Memory, and Firefox 3.0.15).
The average throughput is 9.1–11.8kB of plaintext per second.
The performance of confidentiality-only mode is slightly better
than RPC, which provides both confidentiality and integrity.

Average (per char)
encryption (D) .091ms
decryption (D′) .085ms

incremental encryption .110ms

Fig. 4. Micro-benchmark Results for RPC Mode (averages from 1000 tests).

C. Macro-Benchmarks

The macro-benchmarks model user experience better in that
they account for not only the time spent by our extension for
mediating the messages, but also the time spent on waiting for
server’s responses. A test case in the macro-benchmark is a whole
document save followed by either replacing an existing sentence
with a different one or inserting or deleting an arbitrary sentence
or group of sentences. Using the Selenium scripting tool [31], we
ran macro-benchmarks on both small (≈ 500 characters) and large
(≈ 10000 characters) files. We executed each test case both with
and without our extension enabled, and measured the latency. The
results are shown in Figure 5.

The overhead required for the initial loading is significant, but
this is only done once at the beginning of an editing session.
For the majority of editing operations, the performance overhead
is less than 10%, with a maximum overhead of 13% associated
with running RPC mode encryption with relatively large files.
The performance impact of cryptographic manipulations is offset
by communication and server processing time. Since all editing
update requests are sent asynchronously, the user can continue to
edit without waiting for the server acknowledgments.

D. Multi-character Incremental Encryption

Figure 6 shows the performance of our multi-character incre-
mental encryption scheme using a synthesized micro-benchmark
similar to that of Section VII-B, except that we fixed the length
of the original document to be 10000 characters. We evaluate
the performance impact of block size for each type of encryption
operation. The underlying encryption mode is rECB.

The cost of encryption decreases as the block size increases,
as expected for all categories. There is some noise due mainly to
the probabilistic nature of the SkipIndexList and the variability in

Small (≈ 500 characters) files
rECB RPC

mean dev. mean dev.
initial load 25.0% .044 24.0% .065
inserts only 6.2% .049 7.0% .040
deletes only 3.1% .012 4.5% .019

inserts & deletes 7.4% .059 9.0% .053
Large (≈ 10000 characters) files

rECB RPC
mean dev. mean dev.

initial load 43.0% .051 45.0% .085
inserts only 8.2% .050 10.0% .047
deletes only 3.9% .014 4.3% .023

inserts & deletes 11.0% .059 13.0% .060

Fig. 5. Macro-benchmark Results (performance degradation).

the location of edits. Even though our JavaScript implementation
of SkipIndexList introduces appreciable overhead for the editing
operations (compared to those offered by the built-in JavaScript
Array and String), as evidenced from the data for 1-char blocks,
this cost is well compensated by setting the block size to 7 or
above. The ciphertext blowup is reduced substantially as shown
in Figure 7. The actual reduction is less than the ideal reduction
due to fragmentation.

Figure 8 shows the performance results of running the macro-
benchmark using the 8-character per block rECB incremental
encryption scheme. Compared to Figure 5, the performance
overhead increases slightly, but the ciphertext blowup is reduced
from 23x to less than 5x.

VIII. RelatedWork

We covered related work on secure file systems and the CoClo
project in the introduction, and on incremental encryption in
Section V. Here, we briefly survey other related work on cloud
computing security and computing on encrypted data. These
works have similar goals to ours in enabling computing services
to be used without exposing confidential data, but differ from
our work in the tradeoffs they make between performance and
generality and the amount of cooperation they need from the
service provider.

Hsu and Chen [17] proposed a cloud service paradigm in which
the file storage systems are separated from web applications to
solve the problem in general. This only mitigates the third-party
data control threat since users still have to trust at least one of the
secure file system service providers, and any web application still
gets access to users’ plaintext data once granted. Wang et al. [34]
considered the problem of allowing a third party to provide a
user data auditing service without compromising the privacy of
user contents. They also investigated the problem of using a
trusted third party to efficiently audit dynamically changing user
data [36]. Erway et al. [13] devised protocols that enable a cloud
server to efficiently generate proofs that it possesses an integral
version of dynamically updating user data. Similar to our work,

8

(a) Encrypting Whole Documents (b) Incremental Updates

Fig. 6. Impact of Block Size

block size 1 2 3 4 5 6 7 8
blowup 21.00 10.71 7.35 6.09 4.83 4.41 3.78 3.75

reduction 0% 49% 65% 71% 77% 79% 82% 82%

Fig. 7. Ciphertext Blowup Reduction

file size ≈10000 rECB
characters mean dev.
initial load 18% .047
inserts only 8.8% .058
deletes only 7.5% .034

inserts and deletes 12.6% .082

Fig. 8. Macro-benchmark results of Multi-character Incremental Encryption
(performance degradation).

one of their protocols was also built on a variant of the skip list
data structure.

The FireGPG [11] browser add-on provides a convenient user
interface for applying GnuPG to web content in the browser. It
offers an integrated interface to GMail cloud service to allow
using GPG’s function directly in webmail. However, it provides
no support for incremental updates.

Many efforts aim to resolve data privacy and integrity issues
merged with web services [8, 9, 12, 18, 37]. SIF presented an
approach to use language-based information flow analysis and
automatic program partition technique to provide data confiden-
tiality and integrity for the server against malicious clients [8].
Xu et al. present a formal framework for specifying data privacy
policies and usage models in a composite web service involving
multiple participants [37]. They also assume a trusted service
provider. Christodorescu depicted a blueprint for inserting a
cryptographic layer between display-related and network-related
components and suggested a list of open research problems on
utilizing untrusted servers [9]. iDataGuard [18] gives a middle-
ware level solution to outsource user data files to untrusted
internet data services. Compared to our work, these works as-
sumed availability of each service’s APIs, and focused on tackling
services’ heterogeneity issues.

IX. Conclusion

Though on-line document editing and management web ap-
plications offered as cloud services have many advantages, they
require users to trust the provider with the contents of their
documents. The goal of this work is to enable users to use on-line
document editing services without needing to trust the application
provider with their confidential data.

Our approach requires reverse engineering the application-
level communication protocol used for document updates and
modifying protocol messages to encrypt all user data. We im-
plemented a proof-of-concept Firefox browser extension tool that
demonstrates our idea for Google Documents, Mozilla Bespin,
and Adobe Buzzword, and developed an incremental encryption
scheme to support incremental updates in Google Documents.
The experiments show the user experience degradation incurred
by the extension is minimal, and the delay in response time is
reasonably low.

Although much work has been done on heavyweight ap-
proaches to support computation on encrypted data, our work
shows that lightweight techniques may be sufficient for many
interesting applications where most of the data-dependent com-
putation can be done by the client. Such techniques cannot
provide the highest level of privacy, especially against a malicious
adversary with control over the client application, but provide
a useful point in the design space for enhancing privacy with
minimal cost or disruption to functionality.

Acknowledgments

This work was partly supported by grants from the National
Science Foundation and a MURI award from the Air Force
Office of Scientific Research. The authors thank Emily Stark,
Mike Hamburg, and Dan Boneh for making their JavaScript fast
encryption library available, as well as Einar Lielmanis et al.
for creating the jsbeautifier tool and their timely responses
to our bug reports. We also thank the anonymous reviewers for
their thorough and helpful reviews, and abhi shelat for insightful
comments on this work.

9

References

[1] A. Barkah. Security Issues with Google Docs.
http://peekay.org/2009/03/26/security-issues-with-google-docs/.

[2] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental
Cryptography: The Case of Hashing and Signing. In
CRYPTO, 1994.

[3] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental
Cryptography and Application to Virus Protection. In
Symposium on Theory of Computing, 1995.

[4] M. Bellare and D. Micciancio. A New Paradigm for
Collision-Free Hashing: Incrementality at Reduced Cost.
In EUROCRYPT, 1997.

[5] M. Blaze. A Cryptographic File System for UNIX. In
ACM Conference on Computer and Communications
Security, 1993.

[6] E. Buonanno, J. Katz, and M. Yung. Incremental
Unforgeable Encryption. In International Workshop on
Fast Software Encryption, 2002.

[7] J. Caballero, P. Poosankam, C. Kreibich, and D. Song.
Dispatcher: Enabling Active Botnet Infiltration Using
Automatic Protocol Reverse-engineering. In ACM
Conference on Computer and Communications Security,
2009.

[8] S. Chong, K. Vikram, and A. C. Myers. SIF: Enforcing
Confidentiality and Integrity in Web Applications. In
USENIX Security Symposium, 2007.

[9] M. Christodorescu. Private Use of Untrusted Web Servers
via Opportunistic Encryption. In Web 2.0 Security and
Privacy, 2008.

[10] W. Cui, J. Kannan, and H. J. Wang. Discoverer: Automatic
Protocol Reverse Engineering from Network Traces. In
USENIX Security Symposium, 2007.

[11] M. Cuony. FireGPG Home Page. http://getfiregpg.org/.
[12] G. D’Angelo, F. Vitali, and S. Zacchiroli. Content

Cloaking: Preserving Privacy with Google Docs and Other
Web Applications. In ACM Symposium on Applied
Computing, 2010.

[13] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia.
Dynamic Provable Data Possession. In ACM Conference
on Computer and Communications Security, 2009.

[14] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W.
Felten. SPORC: Group Collaboration Using Untrusted
Cloud Resources. In USENIX Symposium on Operating
Systems Design and Implementation, 2010.

[15] M. Fischlin. Incremental Cryptography and Memory
Checkers. In EUROCRYPT, 1997.

[16] Google Inc. Google Docs. http://docs.google.com/ (launched
in 2006).

[17] F. Hsu and H. Chen. Secure File System Services for Web
2.0 Applications. In ACM Workshop on Cloud Computing
Security, 2009.

[18] R. C. Jammalamadaka, R. Gamboni, S. Mehrotra, K. E.
Seamons, and N. Venkatasubramanian. iDataGuard:
Middleware Providing a Secure Network Drive Interface to
Untrusted Internet Data Storage. In International

Conference on Extending Database Technology, 2008.
[19] J. Katz and Y. Lindell. Introduction to Modern

Cryptography. Chapman & Hall/CRC, 2007.
[20] J. Kincaid. Google Privacy Blunder Shares Your Docs

Without Permission. TechCrunch, March 2009.
[21] A. Lieuallen. Greasemonkey API Usage.

http://www.greasespot.net/.
[22] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic

Protocol Format Reverse Engineering Through
Context-Aware Monitored Execution. In Network and
Distributed System Security Symposium, 2008.

[23] D. Mazières, M. Kaminsky, M. F. Kaashoek, and
E. Witchel. Separating Key Management from File System
Security. SIGOPS Operating Systems Review, pages
124–139, 1999.

[24] Microsoft Corporation. Microsoft Office Live.
http://www.officelive.com/ (launched in 2008).

[25] Microsoft Corporation. Encrypting File System for
Windows 2000, 1999.

[26] E. Miller, D. Long, W. Freeman, and B. Reed. Strong
Security for Distributed File Systems. In IEEE
International Performance, Computing, and
Communications Conference, 2002.

[27] Mozilla Labs. Bespin — Code in the Cloud.
https://bespin.mozilla.com/ (launched in 2009).

[28] Mozilla Labs. Bespin/ServerAPI.
https://wiki.mozilla.org/Labs/Bespin/ServerAPI (launched in
2009).

[29] Opera Software. Take Control with User JavaScript.
http://www.opera.com/browser/tutorials/userjs/.

[30] W. Pugh. Skip Lists: A Probabilistic Alternative to
Balanced Trees. Communications of the ACM,
33(6):668–676, 1990.

[31] Selenium Contributors. Selenium Web Application Testing
System. http://seleniumhq.org/ (launched in 2008).

[32] Squid Project. Squid: Optimising Web Delivery.
http://www.squid-cache.org/.

[33] E. Stark, M. Hamburg, and D. Boneh. Symmetric
Cryptography in Javascript. In Annual Computer Security
Applications Conference, 2009.

[34] C. Wang, Q. Wang, K. Ren, and W. Lou.
Privacy-Preserving Public Auditing for Data Storage
Security in Cloud Computing. In INFOCOM, 2010.

[35] C. C. Wang, M.-C. Kao, and Y.-S. Yeh. Forgery Attack on
the RPC Incremental Unforgeable Encryption Scheme. In
ACM Symposium on Information, Computer and
Communications Security, 2006.

[36] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou. Enabling
Public Verifiability and Data Dynamics for Storage
Security in Cloud Computing. In European Symposium on
Research in Computer Security, 2009.

[37] W. Xu, R. Sekar, I. V. Ramakrishnan, and V. N.
Venkatakrishnan. An Approach for Realizing
Privacy-preserving Web-based Services. In International
Conference on World Wide Web, 2005.

10

