

Secure Aggregation for Wireless Networks

Lingxuan Hu David Evans
Department of Computer Science

University of Virginia
Charlottesville, VA

[lingxuan, evans]@cs.virginia.edu

Abstract

An emerging class of important applications uses ad
hoc wireless networks of low-power sensor devices to
monitor and send information about a possibly hostile
environment to a powerful base station connected to a
wired network. To conserve power, intermediate network
nodes should aggregate results from individual sensors.
However, this opens the risk that a single compromised
sensor device can render the network useless, or worse,
mislead the operator into trusting a false reading. We
present a protocol that provides a secure aggregation
mechanism for wireless networks that is resilient to both
intruder devices and single device key compromises. Our
protocol is designed to work within the computation,
memory and power consumption limits of inexpensive
sensor devices, but takes advantage of the properties of
wireless networking, as well as the power asymmetry
between the devices and the base station.

1. Introduction

Wireless sensor networks are emerging technologies
that have a wide range of potential applications such as
battlefield surveillance and emergency response [5, 13].
Research on sensor networks generally assumes a trusted
environment, but in many likely sensor network
applications, the network will be deployed in situations
where an adversary may be motivated to disrupt the
function of the network. An adversary may be able to
position several intruder nodes within the network and use
them to transmit false messages. Further, an adversary
may compromise a node in the network and gain access to
its key material. In this paper, we focus on an adversary
who wants to corrupt the information being produced by
the sensor network. We regard confidentiality of the
messages themselves to be unnecessary and focus only on
the integrity of the results transmitted to the base station.
Although we acknowledge that wireless networks are

vulnerable to a wide array of denial of service attacks, we
consider the most serious threat to be an adversary who
can compromise the network to provide false readings
without detection by the operator. Such an adversary
could make a network designed to monitor an area for
physical intrusions fail to report an intrusion without the
operator realizing anything is wrong.

The primary security challenges for wireless sensor
networks lie in addressing the conflict between limited
resources (energy, computational overhead, memory, etc.)
and security requirements. Traditional security
techniques, such as public-key cryptography, require
expensive computations and long messages that would
quickly deplete the battery of typical sensor devices. We
focus on lightweight security mechanisms, and design our
protocols to offload as much of the processing as possible
to the base station.

In the next section we provide background on related
work. In Section 3, we describe our assumptions and
cryptographic primitives and an overview of our protocol
for secure aggregation. The details of protocol are
discussed in Section 4. Section 5 analyzes possible attacks.
Section 6 evaluates the costs of our protocol. We propose
a more scalable variation on our protocol in Section 7.

2. Background

Several researchers have dealt with various security
issues in low-energy ad hoc wireless networks. Buttyán
and Hubaux provide a summary report on recent work [3].
Wireless networks pose interesting key management
challenges because of the lack of a fixed infrastructure for
supporting a traditional certificate authority. Zhou and
Haas [24] propose using threshold cryptography to allow a
group of ad hoc devices to manage keys. Kong et al. [12]
propose asymmetric mechanisms using localized threshold
signatures for certificates. In our work, we assume a fixed
base station that can establish secrets with the ad hoc
wireless nodes before deployment, so we do not address
these issues further.

Asymmetric algorithms are likely to require more
computation and power then is feasible for many sensor
network applications. Basagni et al. [2] argue that clusters
of nodes would share a symmetric key, but this design is
exposed to single-node-compromise attack. Balfanz et al.
[1] present a solution to complete an authenticated key
exchange protocol over the wireless link without a public
key infrastructure, but it requires a privileged side channel
for pre-authentication.

Many routing protocols have been proposed for ad-hoc
networks [6] including DSR [11] and AODV [18]. Secure
routing in the wireless networks has received increased
attention recently. Marti et al. [15] complement DSR with
a watchdog for detection of denied packet forwarding and
a pathrater for routing policy rating, which enable nodes
to avoid malicious nodes in their routes but require
extensive listening. Papadimitratos and Haas [17] showed
how impersonation and replay attacks can be prevented for
on-demand routing by disabling route caching and
providing end to end authentication using an HMAC
primitive [16]. Dahill et al. [4] focus on providing hop-by-
hop authentication for the route discovery stage of AODV
and DSR relying on digital signatures. Hu et al. [8] absorb
the idea of SPINS to produce a hardened version of DSR
suitable for sensor networks.

SPINS [19] is a suite of security protocols optimized for
resource constrained environments, and it achieves
asymmetry from clock synchronization and delayed key
disclosure. Our work is most directly inspired by this
SPINS work, and we use their µTESLA protocol
(described in the next section). Yuval [23] presents an
algorithm for authenticating messages with short MACs.
Symmetric encryption algorithms designed for low-power
environment have also been proposed, including TEA [21]
and RC5 [20]. Our protocol requires efficient and secure
MAC algorithms, but we are not dependant on any
particular encryption algorithm.

To reduce the power consumed forwarding messages,
researchers have identified the importance of data
aggregation [5, 10]. Aggregation collects results from
several sensors and calculates a smaller message that
summarizes the important information from a group of
sensors. For example, suppose the operator is interested in
the average sensor reading for some value in the network.
An inefficient way to find this would be for every sensor
node to send its reading to the base station (possibly over
multiple forwarding hops), and for the base station to
calculate the average of all readings received. A more
efficient way to collect the same information would be for
intermediate nodes to forward the calculated average value
of the readings they receive along with a count of the
number of readings it incorporates. Each node then
calculates the average for all of its descendents and only
need send that value and the number of descendants to its

parent. Several recent research efforts have explored diff-
erent aggregation protocols for sensor networks assuming
a trusted environment including directed diffusion [9],
LEACH [7], greedy aggregation [10], and Cougar [22].
TAG is an in-network aggregation service for TinyOS
motes that supports a SQL-like language for expressing
aggregation queries over streaming sensor data [14]. For
our work, we assume a simple hierarchical tree
aggregation, but our protocol could readily be adapted to
any hierarchical aggregation protocol.

3. Secure Aggregation

Message aggregation can reduce communication
overhead significantly, but message aggregation makes
security more difficult. Each intermediate node can
modify, forge or discard messages, or simply transmit false
aggregation values, so one compromised node is able to
significantly alter the final aggregation value. Further,
aggregation interferes with message encryption. We
cannot encrypt messages using a unique key shared
between each device and the base station since each
intermediate node needs to understand the received
messages to perform aggregation. We cannot risk storing
the same key on every device to enable encryption or
authentication, since an adversary who recovers the key
from a single device would then be able to control the
entire network.

Our design is aiming at providing lightweight security
mechanisms to effectively detect node misbehavior
(dropping, modifying or forging messages, transmitting
false aggregate value). We enable a base station to trust
results from a sensor network, even if an adversary may be
able to deploy intruder nodes inside the network and
recover the key material from a single node. Our design
exploits two main ideas: delayed aggregation and delayed
authentication. Instead of aggregating messages at the
immediate next hop, messages are forwarded unchanged
over the first hop and then aggregated at the second hop.
This increases the transmission costs, but will enable
integrity guarantees for networks where two consecutive
nodes are not compromised. Instead of attempting to
authenticate messages right away, we save resources by
authenticating messages after a time delay. This enables
authentication keys to be symmetric keys, revealed to the
authenticator after the time delay has expired. We design
our protocol around these assumptions:
1. The base station is powerful and can broadcast

messages to all nodes directly. Sensor devices are low
power and can only communicate with nearby nodes.

2. There are low-level network mechanisms in place to
provide reliable message delivery.

3. The network is spread out enough so there are likely
to be many hops between a typical node and the base

station. The network is dense enough so that there are
usually several nodes within one-hop distance of any
particular node.

4. Before deployment, each node can establish shared
secrets with the base station.

3.1 Encryption Primitives

Our protocol will depend on the base station
broadcasting a series of authenticated messages to the
sensor nodes. Due to the limited power and memory of
sensor node, it is impractical to use an asymmetric
algorithm for message authentication. We adopt the
µTESLA protocol for authentication of messages
transmitted by the base station [19]. µTESLA is a protocol
that provides authenticated broadcast for resource-
constrained environments, it achieves asymmetry from
clock synchronization and delayed key disclosure.

The base station generates a one-way key chain using a
public one-way function F where Ki = F (Ki+1). Each
device stores K0 before deployment where K0 = Fn (K) (that
is, n applications of F to a secret K). We can imagine
doing this using a location limited channel where the keys
are established in a secure environment near the base
station before they are deployed [1].

The first base station transmissions will be encrypted
using key K1 = Fn-1(K). After all messages transmitted
using K1 have been received, the base station reveals key
K1. Sensor nodes can compute F(K1) = F(Fn-1(K)) and
verify that it matches K0 = Fn(K). After this, the sensor
nodes can decrypt the messages previously transmitted
encrypted with K0. Successive keys can be revealed in a
similar manner, until Kn = K is reached. If necessary, a
new hash sequence could be started before this point by
having the base station send a new K’0 = Fn (K’) using Kn
from the original hash chain.

Our protocol will depend on sensor nodes being able to
produce messages that can be authenticated by the base
station (we are not concerned with confidentiality of these
messages). For this, we assume each node is initialized
before deployment with a symmetric secret key, KAS,
shared with the base station. A temporary encryption key
will be computed by encrypting a counter value using this
key. For example, KA0 = E(KAS, 0). The base station
knows KAS and can synchronize counter values with the
sensor devices. After each stage, the temporary encryption
key will be revealed to enable other sensor devices to
authenticate messages transmitted by nearby sensors.

3.2 Protocol Overview

Figure 1 depicts part of an example sensor network
comprising eight power limited sensor nodes (A–H) and a
powerful base station. The base station collects informa-
tion from all sensor nodes and transmits it to the operator

over a wired network. The sensor nodes are all identical,
but four are acting as leaves (A–D), and the remaining
nodes are acting as intermediate nodes. A typical network
would have hundreds or thousands of nodes and a branch-
ing factor greater than two.

We assume a secure self-organizing protocol is used to
form a routing hierarchy where each node has an immedi-
ate parent. Each leaf node transmits its reading to its
parent. The raw messages include the node data reading
and a node id that uniquely identifies the node. A message
authentication code, MAC (KAi, RA), is included with the
message. It uses a key that is known to the node and base
station, but not yet known to the other sensor nodes. The
parent node will store the message and its MAC until the
key KAi is revealed by the base station. Then, it will verify
the MAC and raise an alarm if it does not match.

Message aggregation is performed in each intermediate
step. Nodes wait for a specified time to receive messages
from their children, and then retransmit the messages and
MACs they receive directly from immediate children.
Each child can contribute at most one reading in each time
step. Nodes aggregate the data they receive from their
grandchildren (via their children) and transmit the MAC
of the aggregation value. Delayed aggregation ensures
that an adversary who obtains key material from a com-
promised node cannot tamper with many sensor readings.

After a stage of messages arrives at the base station, the
base station reveals the temporary node keys along with a
MAC generated using base station’s current µTESLA key.
Once the key is revealed, nodes advance to the next
temporary node key. After this, the µTESLA key is reveal-
ed to enable authentication, and the base station advances
to the next key in the chain.

4. Protocol Details

Our protocol involves separate stages for sending data
towards the base station and authenticating that
information retroactively. We describe the protocol using
the small sample network in Figure 1. Keep in mind,
though, that the benefits of our protocol come when there
are a large number of nodes arranged in a deep tree, so
that many readings can be aggregated in a single message.
For simplicity in this presentation, we assume only leaf
nodes are collecting sensor readings, and intermediate
nodes are just aggregating and forwarding data.
Extending our protocol to support sensor readings at
intermediate nodes is straightforward. We will use the
following notation to describe our protocol:

A, B, C, … Sensor nodes
S Base station
A → B Node A sends a message to B. Since

messages are wireless, this is a local

broadcast and nearby nodes will also hear
the message.

IDA Unique ID of node A.
M1 | M2 Concatenation of messages M1 and M2.
E (K, M) Encryption of M using key K.

 MAC (K, M) Authentication code of M using key K.
Aggr (x, y) Result of the aggregation function on x and

y. The aggregation function must be
deterministic, distributive and not depend
on the order readings are incorporated.

KAS Unique key shared between node A and
base station S.

RA Data reading value of node A.
KAi The ith key for node A = E (KAS, i)
Ki The ith key in the base station µTESLA

hash chain = Fn-i (K).

Data Transmission. Assume nodes A, B, C and D are
sending messages to base station through the tree shown in
Figure 1.

1. Leaf nodes send messages to their parent. These

messages include MACs calculated using their
respective temporary node keys. For example:

A → E RA | IDA | MAC (KAi, RA)

The message does not need to include a nonce to
prevent replay attacks since each temporary MAC key
is used only once.

2. Intermediate nodes receive messages from their
children. The parent node cannot yet verify the MAC

since it uses the child’s temporary key, which will be
revealed to the parent later in the verification phase.
For now, the parent just stores the message and MAC.
The intermediate node waits until a time has elapsed,
and then sends a message to its parent that retransmits
the sensor readings and MACs, as well as the
computed MAC of the calculated aggregate value:

E → G RA | IDA | MAC (KAi, RA)
| RB | IDB | MAC (KBi, RB)

 | MAC (KEi, Aggr (RA,, RB))

There is no need to transmit the computed aggregate
value, since both RA and RB are transmitted to G, who
independently computes Aggr (RA, RB). It is also not
necessary to transmit the IDE to G since G knows
enough about the network topology to determine the
sending node from the grandchild IDs.

3. Node G receives messages from E and F. It calculates
the aggregate values of its grandchildren’s readings
through each child. That is, the aggregate value of
RA, RB from E and aggregate value of RC, RD from F.
It then transmits the aggregate values of its grand-
children and its children’s ID and MAC values. It
also computes and transmits the MAC of the next
aggregate value, Aggr(RA, RB, RC, RD) = Aggr(Aggr
(RA,, RB), Aggr(RC, RD)). Since the aggregation
function is deterministic and known to all nodes, the
MAC calculated by E will authenticate the value
computed by G. The sensor readings and MAC values
received from E and F are stored for later

Figure 1. Example Sensor Network.

Base Station S

G

E F

A B C D

. . .
(similar tree on
right side not
shown)

IDA | RA | MAC (KAi, RA)
| IDB | RB | MAC (KBi, RB)

| MAC (KEi, Aggr (RA, RB))

IDG | Aggr (RA, RB, RC, RD) | MAC (KGi, Aggr (RA, RB, RC, RD)
| … (same from right side)

| MAC (KHi, Aggr (RA, RB, RC, RD, . . . readings from right side))

IDE | Aggr (RA, RB) | MAC (KEi, Aggr (RA, RB)
| IDF | Aggr (RC, RD) | MAC (KFi, Aggr (RC, RD)

| MAC (KGi, Aggr (RA, RB, RC, RD))

IDB | RB | MAC (KBi, RB)

IDC | RC | MAC (KCi, RC)
 | IDD | RD | MAC (KDi, RD)
 | MAC (KFi, Aggr (RC, RD))

IDA | RA | MAC (KAi, RA)

authentication.

G → H
 IDE | Aggr (RA, RB) | MAC(KEi, Aggr (RA, RB))
 | IDF | Aggr (RC, RD) | MAC(KFi, Aggr (RC, RD))

 | MAC(KGi, Aggr (RA,, RB, RC, RD))

4. Similarly, node H receives messages from G and
another branch, and transmits the aggregate message
to base station. Note that the message length would
not increase if the network was deeper.

5. The base station receives the message from H. It can
calculate the final aggregate value, Aggr (RA, RB, RC,
RD, …) from Aggr (RA, RB, RC, RD) and the aggregate
values reported by its other children.

Data Validation. Our protocol is designed to ensure that
a single compromised node can only mislead the network
about its own reading. It should not be able to make false
claims about other node’s readings, or produce aggregate
values that improperly represent the state of the network.

 Since the base station has a shared temporary key with
each sensor node, it can verify that the message it receives
in the final step was transmitted by H by calculating the
MAC of the aggregation it calculated using KHi and
comparing it to the MAC transmitted in the message. This
validates that H sent the final message, but does not
validate that it correctly reflected reading from the other
sensor nodes. The base station also receives the MACs
and readings of its grandchildren, and can authenticate
those values. Our goal, though, is to authenticate all the
readings that contributed to the aggregation value, without
requiring every reading to be sent to the base station.

To validate data, the base station reveals temporary
node keys to the network. Using wide-area broadcast, the
base station sends out each temporary node key along with
a MAC using its current µTESLA key, Ki. Nodes will
advance to the next temporary node key for succeeding
messages. Requiring that the base station reveal every
node key for every aggregate reading it receives does not
scale to large sensor networks or work well in situations
where frequent readings are desired. In Section 7, we
consider a protocol variation that addresses this issue.

Note that although all the node keys are sent out by the
base station, each sensor node only needs a few of them.
For example, node E needs KAi to verify MAC (KAi, RA). If
the key broadcasts are synchronized, it will not be
necessary to listen to all the key broadcasts to find the
relevant ones.

After sending out all the node keys, the base station
sends out its current µTESLA key, Ki, to enable nodes to
check transmitted MAC values, and advances to the next
key in the chain for future messages. After receiving Ki,

nodes verify the MAC for the node keys. Nodes verify Ki
is legitimate by calculating F (Ki) and comparing it to Ki-1.

If a node detects a forged message in the data validation
stage, it sends out an alarm message. Alarms are raised by
a parent when it detects an inconsistent MAC from a child
or grandchild, and sent to the base station along with a
MAC computed using the node’s temporary key.

5. Attack Analysis

Our protocol defends against attacks involving many
intruder nodes that do not obtain any key material, and
limits the effectiveness of attacks in which all the key
material stored on a particular node is compromised.

Intruder Node Attacks. Preventing intruder nodes with
no access to keys from injecting bogus data into the
aggregation is straightforward. Delayed aggregation is not
necessary to accomplish this, it is sufficient to require all
transmitted data to include a MAC generated with a key
that will be revealed later. An intruder node may attempt
to transmit readings with an ID of a legitimate child node
(which the intruder can easily obtain since it is transmitted
unencrypted) but will be unable to compute a valid MAC
for the bogus data. Both the parent node that receives and
forwards this reading and the grandparent node that
receives and computes an aggregate using this reading will
detect the bogus transmission when the temporary sensor
node keys are revealed. These nodes will generate alarm
messages that are received by the base station. Note that
replay attacks are ineffective since the sensor node keys
change with every reading. A replayed message will
appear to have an invalid MAC, since the previous MAC
was calculated using a different key.

The intruder node will succeed in preventing the base
station from acquiring correct readings during that time
stage. In many applications, alerting the base station to
the presence of an intruder is sufficient – if the goal of the
sensor network is to detect the presence of intruders it has
done its job. In other applications, the network must
continue to provide valid readings. The simplest solution
would be for the parent that detected the intruder node to
recognize that an intruder node is within transmission
distance, and stop forwarding any messages it receives.
The application would continue to function, just without
incorporating any readings from the vulnerable area.

Compromised Node Attacks. An adversary who obtains
key material from a node is more dangerous. Since the
sensor node devices are inexpensive, it is likely that a
competent adversary with physical access to a device
would be able to obtain the key material stored on the
device. Since the µTESLA protocol means no secure
information about the base station keys need be stored on

the sensor devices, an adversary who obtains key material
from a node does not have the ability to forge base station
messages. The adversary does, however, have the ability
to forge node messages.

If the compromised node is a leaf node, the adversary
can transmit false readings without detection. There is no
cryptographic way to prevent this, since we are assuming
the adversary has obtained all key material on the
compromised node. There are, however, ways to limit the
effectiveness of this attack. For some aggregation
functions (for example, calculating an average temperature
reading over thousands of nodes where all readings are
checked to be within a reasonable range) a single bogus
value may not significantly perturb the final result. In
other cases, parent nodes receiving values from several
sensor nodes may ignore a single outlying value. Even in
cases where there is no compromised node, it is likely that
some sensors will fail and produce bogus values so it is
important that applications handle this case.

A more serious concern is the case where a node higher
up the routing tree is compromised. For a straightforward
protocol with child→parent message authentication but
without delayed aggregation, a node can generate a bogus
message that represents readings for many nodes.
Assuming the base station can determine the network
topology, the compromised node effectively can
misrepresent all of its descendant’s readings. An adver-
sary who compromises a node near the top of the routing
hierarchy could effectively misrepresent the readings of a
large portion of the sensor network.

Delayed aggregation limits the damage an adversary
who compromises a single node can do. The immediate
parent of that node expects to receive the MACs of the
retransmitted messages from all the compromised node’s
children, and will raise an alarm if the transmitted
aggregation values are inconsistent with those MACs. In
this case, it is unclear to the parent node detecting the
attack whether it is the child or the grandchild that has
been compromised. If our goal is only to detect the
intrusion this is sufficient. At worst, two nodes with need
to be excluded from the sensor network.

Another attack strategy would be to selectively drop
readings to prevent readings that reveal the intrusion from
reaching the base station. A compromised node near the
base station could drop aggregation results from selected
children. If the node is within two hops of the base
station, it would be apparent to the base station that no
readings were being received from that child. This would
raise some concern, although it is indistinguishable from
normal node failure (except in that case, the routing tree
would eventually reorganize to use a different node). If the
node is further away from the base station, but still deep
enough that selective dropping can accomplish the

attacker’s goals, it would not be apparent to the base
station that readings are missing. A possible defense in-
volves nodes snooping on their parents. If a child node
transmits a message to a parent, but its readings are not
included in the parent’s transmission, the child node can
raise an alarm. Since its parent is the compromised node,
this alarm must be routed through the network in a way
that does not depend on the parent forwarding it.

Our protocol does not thwart an attacker who simultan-
eously compromises a parent and child node. For example,
an attacker who compromised both nodes E and G in our
sample network would be able to transmit a bogus
aggregation value for RA and RB, along with the legitimate
reading for F’s subtree. In general, an attacker who
simultaneously compromises a child and parent can
misrepresent the readings for every node in the child’s
subtree. We view success of such an attack as unlikely,
since the attacker would need to compromise the parent
node’s key material before the routing hierarchy reformed.
If the parent is disabled for too long, its children will
reorganize to avoid the disabled node. In situations where
this attack is a serious concern, it could be thwarted by
adding another delay stage to the aggregation. That is,
instead of retransmitting values and MACs from your
children and aggregating values from your grandchildren,
nodes would retransmit values and MACs from their
children and grandchildren, and only aggregate values
from their great-grandchildren. This would, however, sub-
stantially increase the communication costs required.
Perhaps a more realistic defense would depend on nodes
snooping on transmissions from other nearby nodes.

6. Cost Analysis

We analyze the costs of our protocol. We focus on the
communication costs as the energy required to transmit
and listen for messages tends to overwhelm the
computational and memory requirements. Our protocol is
designed to provide a balance between security and
communication costs. We provide more security than is
possible with full in-network aggregation, but require
substantially less communication than is necessary for
networks with no aggregation.

Consider an ideal routing tree where the leaves are d
hops away from the base station and each node has b
children. For the first step each of bd leaf nodes sends it
reading to its parent. We use m to represent the length of
the data reading and c for the length of the node ID and
MAC. In the next step, each parent retransmits the
readings and MAC values, as well as the MAC of the
aggregate value. The aggregation function output is the
same length as the original sensor reading. For some
aggregation functions, such as the average example, it may
be a constant factor longer, but for aggregation to be useful,

it should not scale with the number of readings. So, a
parent with b children will need to transmit b(m+c) + c
bits. There are bd-1 second level nodes, so the total number
of bits transmitted in the second step is bd(m+c) + bd-1c.
At the next level, and every successive level, each node
transmits the MAC values from each child and the new
aggregate value and MAC: b(m+c)+c bits. The
transmission size does not increase at successive levels in
the tree because we assume the aggregation function is
always the same length as the original sensor reading.
Hence, the total number of bits communicated using our
protocol is m(2bd+1–b2–b)/(b–1) + c(2bd+1+bd–b2–2b)/(b–1).

For comparison, without aggregation each node
transmits messages from all its descendants. This requires
transmission of (m+c)dbd total bits. With insecure
aggregation method, b messages are aggregated into 1
message at each intermediate node, so each node need only
transmit m bits for m(bd+1–b)/(b–1) total bits transmitted.

To give a sense of what these numbers mean for typical
applications, we select m = 22 bytes and c = 8 bytes based
on the assumptions in [19] (for messages where no MAC
is included, 2 bytes are required for a message integrity
CRC). Given a network with b = 4 and d = 5, there are a
1024 leaf nodes. The total communication in a time
segment where each leaf node transmits a reading is
150KB with no aggregation, 82.5KB with our protocol (a
45% reduction), and 32KB with full insecure aggregation.
As the depth of the tree increases, the relative advantages
of our protocol over no aggregation increase. With d = 8,
our protocol requires 2.75 times the amount of
communication of the insecure aggregation protocol, but
only 34% as much communication as is necessary without
aggregation. The total communication of our secure
aggregation protocol is significantly less than non-
aggregation method, and is roughly a little more than two
times of communication that required for insecure
aggregation.

The base station also needs periodically broadcast the
temporary keys of all sensor nodes. This requires
substantial communication, but since the base station is
connected to the power grid it does not pose a serious
problem. The time sensor nodes must spend listening is a
more serious concern. By using synchronized communica-
tion time windows, these costs can be made acceptable.

The computational and memory costs are likely to be
insignificant compared to communication. Each interme-
diate node needs to compute aggregate values for its
grandchildren’s readings, requiring b aggregation function
applications. Each intermediate node also needs to
authenticate both children and grandchildren nodes after
keys are disclosed by base station, so b2+b MAC
computations are needed. The memory requirements are
unlikely to be an important constraint. All nodes need to
store messages received from their children until keys are

disclosed by base station. These are data values and
associated MAC values from its grandchildren and
children. For the ideal routing tree, the leaf node does not
need to store anything, each first level node needs to store
(m+c)b bits, and every higher level intermediate node
needs to store (m + c)b2+cb bits. Using the values of m =
30 bytes, c = 8 bytes, b = 4, a first level node needs to store
152 bytes and higher level nodes store 640 bytes.

7. Scalable Variation

Our original protocol requires the base station to
transmit all the temporary sensor node keys after each
stage. This is reasonable for small sensor networks, but
not for sensor networks with thousands of nodes. Further,
data received by the base station is not validated until after
the sensor node keys have been transmitted and the base
stations has waited long enough for nodes to verify the
MACs and transmit alarm messages to the base station. In
this section, we describe a variant on our protocol that
addresses both of these issues, but increases the amount of
communication required by sensor nodes.

Instead of relying on the base station to broadcast
temporary node keys, we can use µTESLA key chains to
reveal and authenticate keys locally. Before deployment,
each node will establish a shared secret key with the base
station KAS as in the original protocol. In this case,
though, we will determine successive temporary node keys
by calculating KAi = Fn-i(KAS).

After deployment, each node needs to establish the
µTESLA key chain with its parent by securely revealing
KA0. Since we do not know where the nodes will be loca-
ted before deployment (which, for example, may involve
dropping the nodes from an airplane) and we cannot store
all the keys in the sensor nodes, this requires a
transmission for the base station authenticated using its
µTESLA key.

Once the key chains have been established, we can
transmit messages using the µTESLA keys. Node A sends
a message to its parent node E containing its reading and
revealing a µTESLA key:

 A → E IDA | RA | KA1 | MAC (KA2, RA)

Node E can authenticate KA1 immediately by checking
F(KA1) matches KA0. The next message will reveal KA2,
which E can use to validate the MAC.

If an intruder node attempts to forge a message from A,
it will be detected immediately the intruder does not know
KA1, and the transmitted value will fail the F(KA1) = KA0
check. A more sophisticated intruder node may attempt to
transmit a message using the overheard KA1 value, but with
a different RA value. Without knowing KA2 however, the
adversary will be unable to produce a correct MAC value
and the forged message will be detected in the next stage.

This depends on synchronization between the nodes to
know when the µTESLA keys are revealed. Since the base
station can broadcast stage update messages, however, this
is feasible.

8. Conclusion

Heretofore, designers of sensor network applications
have been faced with a choice between either authentica-
ting sensor messages or aggregating readings in the net-
work to save power. Our protocol offers a new tradeoff –
resistance to single node compromises with in-network
data aggregation. Since many sensor network applications
will operate in hostile environments, providing a way to
increase confidence in the integrity in the sensor readings
without giving up the opportunity to aggregate inter-
mediate results in the network is a valuable design option.

Acknowledgements

This work was funded in part by grants from the National
Science Foundation (CCR-0092945 and EIA-0205327)
and NASA Langley Research Center.

References

[1] Dirk Balfanz, D. K. Smetters, Paul Stewart and H. Chi
Wong. Talking To Strangers: Authentication in Ad-Hoc
Wireless Networks. In Proceedings of the ISOC 2002
Network and Distributed Systems Security Symposium,
February, 2002.

[2] S. Basagni, K. Herrin, D. Bruschi, and E. Rosti. Secure
pebblenets. In Proceedings of the 2001 ACM International
Symposium on Mobile Ad Hoc Networking and Computing,
2001.

[3] Levente Buttyán and Jean-Pierre Hubaux. Report on a
Working Session on Security in Wireless Ad Hoc Networks.
Mobile Computing and Communications Review, Volume
6, Number 4. November 2002.

[4] B. Dahill, B. Levine, C. Shields, and E. Royer. A secure
routing protocol for ad hoc networks. Technical Report,
Department of Computer Science, University of
Massachusetts, August 2001.

[5] Deborah Estrin and Ramesh Govindan and John S.
Heidemann and Satish Kumar. Next Century Challenges:
Scalable Coordination in Sensor Networks. Mobile
Computing and Networking. 1999.

[6] L. Feeney. A taxonomy for routing protocols in mobile ad
hoc networks. Technical Report T99/07, Swedish Institute
of Computer Science, October 1999.

[7] Wendi Rabiner Heinzelman, Anantha Chandrakasan, Hari
Balakrishnan. Energy-efficient communication protocol for
wireless microsensor networks. In Proceedings of the
Hawaii International Conference on System Sciences, Maui,
Hawaii, January 2000.

[8] Yih-Chun Hu, Adrian Perrig and David B. Johnson.
Ariadne: A Secure On-Demand Routing Protocol for Ad
Hoc Networks. Mobicom 2002.

[9] Chalermek Intanagonwiwat, Ramesh Govindan and Deborah
Estrin. Directed diffusion: A scalable and robust
communication paradigm for sensor networks. Mobile
Computing and Networking, August 2000.

[10] C. Intanagonwiwat, D. Estrin, R. Govindan, and J.
Heidemann. Impact of network density on data aggregation
in wireless sensor networks. In Proceedings of International
Conference on Distributed Computing Systems, November
2001.

[11] D. Johnson and D. A. Maltz. Dynamic source routing in ad
hoc wireless networks. Mobile Computing, 1994.

[12] Jiejun Kong, Petros Zerfos, Haiyun Luo, Songwu Lu, Lixia
Zhang. Providing Robust and Ubiquitous Security Support
for Mobile Ad-hoc Networks. IEEE 9th International
Conference on Network Protocols, 2001.

[13] Large Scale Networking Coordinating Group of the
Interagency Working Group for Information Technology
Research and Development, Report from the Workshop on
New Visions for Large-Scale Networks: Research and
Applications. March 2001.
http://www.itrd.gov/iwg/pca/lsn/lsn-workshop-12mar01/

[14] Samuel R. Madden, Michael J. Franklin, Joseph M.
Hellerstein, and Wei Hong. TAG: a Tiny AGgregation
Service for Ad-Hoc Sensor Networks. OSDI, December
2002.

[15] S. Marti, T. Giuli, K. Lai, and M. Baker. Mitigating routing
misbehavior in mobile ad hoc networks. Proceedings of the
Sixth annual ACM/IEEE International Conference on
Mobile Computing and Networking, August 2000.

[16] National Institute for Standards and Technology (NIST).
The Keyed-Hash Message Authentication Code (HMAC). No.
FIPS 198, 2001.

[17] Panagiotis Papadimitratos and Zygmunt J. Haas. Secure
Routing for Mobile Ad Hoc Networks. In SCS
Communication Networks and Distributed Systems
Modeling and Simulation Conference (CNDS 2002),
January 2002.

[18] Charles Perkins and Elizabeth Royer. Ad hoc On-Demand
Distance Vector Routing. MILCOM ’97, November 1997.

[19] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler,
and Doug Tygar. SPINS: Security Protocols for Sensor
Networks. Wireless Networks Journal (WINE), September
2002.

[20] R. L. Rivest. The RC5 Encryption Algorithm. In
Proceedings of the 1994 Leuven Workshop on Fast Software
Encryption, Springer-Verlag, 1995.

[21] D. J. Wheeler and R. M. Needham. TEA, a tiny encryption
algorithm. Lecture Notes in Computer Science, 1008:363-
366, 1995.

[22] Yong Yao and J. E. Gehrke. The Cougar Approach to In-
Network Query Processing in Sensor Networks. Sigmod
Record, Volume 31, Number 3, September 2002.

[23] G. Yuval. Reinventing the travois: Encryption/MAC in 30
ROM bytes. Fast Software Encryption Workshop, Springer-
Verlag, 1997.

[24] Lidong Zhou and Zygmunt J. Hass. Securing ad hoc
networks. IEEEE Network Magazine, 1999.

