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Abstract 

 

An emerging class of important applications uses ad 
hoc wireless networks of low-power sensor devices to 
monitor and send information about a possibly hostile 
environment to a powerful base station connected to a 
wired network.  To conserve power, intermediate network 
nodes should aggregate results from individual sensors.  
However, this opens the risk that a single compromised 
sensor device can render the network useless, or worse, 
mislead the operator into trusting a false reading.  We 
present a protocol that provides a secure aggregation 
mechanism for wireless networks that is resilient to both 
intruder devices and single device key compromises.  Our 
protocol is designed to work within the computation, 
memory and power consumption limits of inexpensive 
sensor devices, but takes advantage of the properties of 
wireless networking, as well as the power asymmetry 
between the devices and the base station.   

 

1. Introduction 

Wireless sensor networks are emerging technologies 
that have a wide range of potential applications such as 
battlefield surveillance and emergency response [5, 13].  
Research on sensor networks generally assumes a trusted 
environment, but in many likely sensor network 
applications, the network will be deployed in situations 
where an adversary may be motivated to disrupt the 
function of the network.  An adversary may be able to 
position several intruder nodes within the network and use 
them to transmit false messages.  Further, an adversary 
may compromise a node in the network and gain access to 
its key material.  In this paper, we focus on an adversary 
who wants to corrupt the information being produced by 
the sensor network.  We regard confidentiality of the 
messages themselves to be unnecessary and focus only on 
the integrity of the results transmitted to the base station.  
Although we acknowledge that wireless networks are 

vulnerable to a wide array of denial of service attacks, we 
consider the most serious threat to be an adversary who 
can compromise the network to provide false readings 
without detection by the operator.  Such an adversary 
could make a network designed to monitor an area for 
physical intrusions fail to report an intrusion without the 
operator realizing anything is wrong.  

The primary security challenges for wireless sensor 
networks lie in addressing the conflict between limited 
resources (energy, computational overhead, memory, etc.) 
and security requirements.  Traditional security 
techniques, such as public-key cryptography, require 
expensive computations and long messages that would 
quickly deplete the battery of typical sensor devices.  We 
focus on lightweight security mechanisms, and design our 
protocols to offload as much of the processing as possible 
to the base station. 

In the next section we provide background on related 
work.  In Section 3, we describe our assumptions and 
cryptographic primitives and an overview of our protocol 
for secure aggregation.  The details of protocol are 
discussed in Section 4. Section 5 analyzes possible attacks. 
Section 6 evaluates the costs of our protocol.  We propose 
a more scalable variation on our protocol in Section 7.   

2. Background 

Several researchers have dealt with various security 
issues in low-energy ad hoc wireless networks.  Buttyán 
and Hubaux provide a summary report on recent work [3].  
Wireless networks pose interesting key management 
challenges because of the lack of a fixed infrastructure for 
supporting a traditional certificate authority.  Zhou and 
Haas [24] propose using threshold cryptography to allow a 
group of ad hoc devices to manage keys. Kong et al. [12] 
propose asymmetric mechanisms using localized threshold 
signatures for certificates.  In our work, we assume a fixed 
base station that can establish secrets with the ad hoc 
wireless nodes before deployment, so we do not address 
these issues further. 



                          

Asymmetric algorithms are likely to require more 
computation and power then is feasible for many sensor 
network applications.  Basagni et al. [2] argue that clusters 
of nodes would share a symmetric key, but this design is 
exposed to single-node-compromise attack. Balfanz et al. 
[1] present a solution to complete an authenticated key 
exchange protocol over the wireless link without a public 
key infrastructure, but it requires a privileged side channel 
for pre-authentication.  

Many routing protocols have been proposed for ad-hoc 
networks [6] including DSR [11] and AODV [18]. Secure 
routing in the wireless networks has received increased 
attention recently. Marti et al. [15] complement DSR with 
a watchdog for detection of denied packet forwarding and 
a pathrater for routing policy rating, which enable nodes 
to avoid malicious nodes in their routes but require 
extensive listening. Papadimitratos and Haas [17] showed 
how impersonation and replay attacks can be prevented for 
on-demand routing by disabling route caching and 
providing end to end authentication using an HMAC 
primitive [16]. Dahill et al. [4] focus on providing hop-by-
hop authentication for the route discovery stage of AODV 
and DSR relying on digital signatures.  Hu et al. [8] absorb 
the idea of SPINS to produce a hardened version of DSR 
suitable for sensor networks.  

SPINS [19] is a suite of security protocols optimized for 
resource constrained environments, and it achieves 
asymmetry from clock synchronization and delayed key 
disclosure. Our work is most directly inspired by this 
SPINS work, and we use their µTESLA protocol 
(described in the next section).  Yuval [23] presents an 
algorithm for authenticating messages with short MACs. 
Symmetric encryption algorithms designed for low-power 
environment have also been proposed, including TEA [21] 
and RC5 [20].  Our protocol requires efficient and secure 
MAC algorithms, but we are not dependant on any 
particular encryption algorithm. 

To reduce the power consumed forwarding messages, 
researchers have identified the importance of data 
aggregation [5, 10].  Aggregation collects results from 
several sensors and calculates a smaller message that 
summarizes the important information from a group of 
sensors.  For example, suppose the operator is interested in 
the average sensor reading for some value in the network.  
An inefficient way to find this would be for every sensor 
node to send its reading to the base station (possibly over 
multiple forwarding hops), and for the base station to 
calculate the average of all readings received.  A more 
efficient way to collect the same information would be for 
intermediate nodes to forward the calculated average value 
of the readings they receive along with a count of the 
number of readings it incorporates.  Each node then 
calculates the average for all of its descendents and only 
need send that value and the number of descendants to its 

parent.  Several recent research efforts have explored diff-
erent aggregation protocols for sensor networks assuming 
a trusted environment including directed diffusion [9], 
LEACH [7], greedy aggregation [10], and Cougar [22].  
TAG is an in-network aggregation service for TinyOS 
motes that supports a SQL-like language for expressing 
aggregation queries over streaming sensor data [14].  For 
our work, we assume a simple hierarchical tree 
aggregation, but our protocol could readily be adapted to 
any hierarchical aggregation protocol. 

3. Secure Aggregation 

Message aggregation can reduce communication 
overhead significantly, but message aggregation makes 
security more difficult.  Each intermediate node can 
modify, forge or discard messages, or simply transmit false 
aggregation values, so one compromised node is able to 
significantly alter the final aggregation value. Further, 
aggregation interferes with message encryption.  We 
cannot encrypt messages using a unique key shared 
between each device and the base station since each 
intermediate node needs to understand the received 
messages to perform aggregation.  We cannot risk storing 
the same key on every device to enable encryption or 
authentication, since an adversary who recovers the key 
from a single device would then be able to control the 
entire network.  

Our design is aiming at providing lightweight security 
mechanisms to effectively detect node misbehavior 
(dropping, modifying or forging messages, transmitting 
false aggregate value).  We enable a base station to trust 
results from a sensor network, even if an adversary may be 
able to deploy intruder nodes inside the network and 
recover the key material from a single node.  Our design 
exploits two main ideas: delayed aggregation and delayed 
authentication. Instead of aggregating messages at the 
immediate next hop, messages are forwarded unchanged 
over the first hop and then aggregated at the second hop.  
This increases the transmission costs, but will enable 
integrity guarantees for networks where two consecutive 
nodes are not compromised.  Instead of attempting to 
authenticate messages right away, we save resources by 
authenticating messages after a time delay.  This enables 
authentication keys to be symmetric keys, revealed to the 
authenticator after the time delay has expired.  We design 
our protocol around these assumptions: 
1. The base station is powerful and can broadcast 

messages to all nodes directly.  Sensor devices are low 
power and can only communicate with nearby nodes. 

2. There are low-level network mechanisms in place to 
provide reliable message delivery. 

3. The network is spread out enough so there are likely 
to be many hops between a typical node and the base 



                          

station. The network is dense enough so that there are 
usually several nodes within one-hop distance of any 
particular node.   

4. Before deployment, each node can establish shared 
secrets with the base station. 

3.1 Encryption Primitives 

Our protocol will depend on the base station 
broadcasting a series of authenticated messages to the 
sensor nodes.  Due to the limited power and memory of 
sensor node, it is impractical to use an asymmetric 
algorithm for message authentication. We adopt the 
µTESLA protocol for authentication of messages 
transmitted by the base station [19].  µTESLA is a protocol 
that provides authenticated broadcast for resource-
constrained environments, it achieves asymmetry from 
clock synchronization and delayed key disclosure.  

The base station generates a one-way key chain using a 
public one-way function F where Ki = F (Ki+1).  Each 
device stores K0 before deployment where K0 = Fn (K) (that 
is, n applications of F to a secret K).  We can imagine 
doing this using a location limited channel where the keys 
are established in a secure environment near the base 
station before they are deployed [1]. 

The first base station transmissions will be encrypted 
using key K1 = Fn-1(K).  After all messages transmitted 
using K1 have been received, the base station reveals key 
K1.  Sensor nodes can compute F(K1) = F(Fn-1(K)) and 
verify that it matches K0 = Fn(K).  After this, the sensor 
nodes can decrypt the messages previously transmitted 
encrypted with K0.  Successive keys can be revealed in a 
similar manner, until Kn  = K is reached.  If necessary, a 
new hash sequence could be started before this point by 
having the base station send a new K’0 = Fn (K’) using Kn 
from the original hash chain. 

Our protocol will depend on sensor nodes being able to 
produce messages that can be authenticated by the base 
station (we are not concerned with confidentiality of these 
messages).  For this, we assume each node is initialized 
before deployment with a symmetric secret key, KAS, 
shared with the base station.  A temporary encryption key 
will be computed by encrypting a counter value using this 
key.  For example, KA0 = E(KAS, 0).  The base station 
knows KAS and can synchronize counter values with the 
sensor devices.  After each stage, the temporary encryption 
key will be revealed to enable other sensor devices to 
authenticate messages transmitted by nearby sensors.   

 
3.2 Protocol Overview 

Figure 1 depicts part of an example sensor network 
comprising eight power limited sensor nodes (A–H) and a 
powerful base station.  The base station collects informa-
tion from all sensor nodes and transmits it to the operator 

over a wired network.  The sensor nodes are all identical, 
but four are acting as leaves (A–D), and the remaining 
nodes are acting as intermediate nodes.  A typical network 
would have hundreds or thousands of nodes and a branch-
ing factor greater than two.   

We assume a secure self-organizing protocol is used to 
form a routing hierarchy where each node has an immedi-
ate parent.  Each leaf node transmits its reading to its 
parent.  The raw messages include the node data reading 
and a node id that uniquely identifies the node.  A message 
authentication code, MAC (KAi, RA), is included with the 
message.  It uses a key that is known to the node and base 
station, but not yet known to the other sensor nodes.  The 
parent node will store the message and its MAC until the 
key KAi is revealed by the base station.  Then, it will verify 
the MAC and raise an alarm if it does not match. 

Message aggregation is performed in each intermediate 
step.  Nodes wait for a specified time to receive messages 
from their children, and then retransmit the messages and 
MACs they receive directly from immediate children.  
Each child can contribute at most one reading in each time 
step.  Nodes aggregate the data they receive from their 
grandchildren (via their children) and transmit the MAC 
of the aggregation value.  Delayed aggregation ensures 
that an adversary who obtains key material from a com-
promised node cannot tamper with many sensor readings. 

After a stage of messages arrives at the base station, the 
base station reveals the temporary node keys along with a 
MAC generated using base station’s current µTESLA key.  
Once the key is revealed, nodes advance to the next 
temporary node key.  After this, the µTESLA key is reveal-
ed to enable authentication, and the base station advances 
to the next key in the chain.  

4. Protocol Details 

Our protocol involves separate stages for sending data 
towards the base station and authenticating that 
information retroactively.  We describe the protocol using 
the small sample network in Figure 1.  Keep in mind, 
though, that the benefits of our protocol come when there 
are a large number of nodes arranged in a deep tree, so 
that many readings can be aggregated in a single message.  
For simplicity in this presentation, we assume only leaf 
nodes are collecting sensor readings, and intermediate 
nodes are just aggregating and forwarding data.  
Extending our protocol to support sensor readings at 
intermediate nodes is straightforward.  We will use the 
following notation to describe our protocol: 

A, B, C, …  Sensor nodes 
S Base station 
A → B  Node A sends a message to B.  Since 

messages are wireless, this is a local 



                          

broadcast and nearby nodes will also hear 
the message.   

IDA Unique ID of node A. 
M1 | M2 Concatenation of messages M1 and M2. 
E (K, M) Encryption of M using key K. 

    MAC (K, M) Authentication code of M using key K. 
Aggr (x, y)  Result of the aggregation function on x and 

y.  The aggregation function must be 
deterministic, distributive and not depend 
on the order readings are incorporated. 

KAS Unique key shared between node A and 
base station S. 

RA Data reading value of node A. 
KAi The ith key for node A = E (KAS, i) 
Ki The ith key in the base station µTESLA 

hash chain = Fn-i (K). 

Data Transmission.  Assume nodes A, B, C and D are 
sending messages to base station through the tree shown in 
Figure 1. 

 
1. Leaf nodes send messages to their parent.  These 

messages include MACs calculated using their 
respective temporary node keys.  For example:  

A → E  RA  | IDA | MAC (KAi, RA) 

The message does not need to include a nonce to 
prevent replay attacks since each temporary MAC key 
is used only once.   

2. Intermediate nodes receive messages from their 
children.   The parent node cannot yet verify the MAC 

since it uses the child’s temporary key, which will be 
revealed to the parent later in the verification phase.  
For now, the parent just stores the message and MAC.  
The intermediate node waits until a time has elapsed, 
and then sends a message to its parent that retransmits 
the sensor readings and MACs, as well as the 
computed MAC of the calculated aggregate value: 

E → G       RA | IDA | MAC (KAi, RA)  
| RB | IDB | MAC (KBi, RB)  

                       | MAC (KEi, Aggr (RA,, RB))  

There is no need to transmit the computed aggregate 
value, since both RA and RB are transmitted to G, who 
independently computes Aggr (RA, RB).  It is also not 
necessary to transmit the IDE to G since G knows 
enough about the network topology to determine the 
sending node from the grandchild IDs. 

3. Node G receives messages from E and F. It calculates 
the aggregate values of its grandchildren’s readings 
through each child.  That is, the aggregate value of 
RA, RB from E and aggregate value of RC, RD from F.  
It then transmits the aggregate values of its grand-
children and its children’s ID and MAC values.  It 
also computes and transmits the MAC of the next 
aggregate value, Aggr(RA, RB, RC, RD) = Aggr(Aggr 
(RA,, RB), Aggr(RC, RD)).  Since the aggregation 
function is deterministic and known to all nodes, the 
MAC calculated by E will authenticate the value 
computed by G.  The sensor readings and MAC values 
received from E and F are stored for later 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Example Sensor Network. 

Base Station S 

G 

E F 

A B C D 

. . . 
(similar tree on 
right side not 
shown) 

IDA | RA | MAC (KAi, RA)  
| IDB | RB | MAC (KBi, RB)  

| MAC (KEi, Aggr (RA, RB)) 

IDG | Aggr (RA, RB, RC, RD) | MAC (KGi, Aggr (RA, RB, RC, RD)  
| … (same from right side) 

| MAC (KHi, Aggr (RA, RB, RC, RD, . . . readings from right side)) 

IDE | Aggr (RA, RB) | MAC (KEi, Aggr (RA, RB)  
| IDF | Aggr (RC, RD) | MAC (KFi, Aggr (RC, RD) 

| MAC (KGi, Aggr (RA, RB, RC, RD)) 

IDB | RB | MAC (KBi, RB) 

IDC | RC | MAC (KCi, RC)    
     | IDD | RD | MAC (KDi, RD)   
        | MAC (KFi, Aggr (RC, RD)) 

IDA | RA | MAC (KAi, RA)  



                          

authentication. 

G → H  
      IDE | Aggr (RA, RB) | MAC(KEi, Aggr (RA, RB))  
    | IDF  | Aggr (RC, RD) | MAC(KFi, Aggr (RC, RD)) 

      | MAC(KGi, Aggr (RA,, RB, RC, RD))     

4. Similarly, node H receives messages from G and 
another branch, and transmits the aggregate message 
to base station.  Note that the message length would 
not increase if the network was deeper. 

5. The base station receives the message from H. It can 
calculate the final aggregate value, Aggr (RA, RB, RC, 
RD,  …) from Aggr (RA, RB, RC, RD) and the aggregate 
values reported by its other children. 

 
Data Validation.  Our protocol is designed to ensure that 
a single compromised node can only mislead the network 
about its own reading.  It should not be able to make false 
claims about other node’s readings, or produce aggregate 
values that improperly represent the state of the network.  

 Since the base station has a shared temporary key with 
each sensor node, it can verify that the message it receives 
in the final step was transmitted by H by calculating the 
MAC of the aggregation it calculated using KHi and 
comparing it to the MAC transmitted in the message.  This 
validates that H sent the final message, but does not 
validate that it correctly reflected reading from the other 
sensor nodes.  The base station also receives the MACs 
and readings of its grandchildren, and can authenticate 
those values.  Our goal, though, is to authenticate all the 
readings that contributed to the aggregation value, without 
requiring every reading to be sent to the base station. 

To validate data, the base station reveals temporary 
node keys to the network.  Using wide-area broadcast, the 
base station sends out each temporary node key along with 
a MAC using its current µTESLA key, Ki.  Nodes will 
advance to the next temporary node key for succeeding 
messages.  Requiring that the base station reveal every 
node key for every aggregate reading it receives does not 
scale to large sensor networks or work well in situations 
where frequent readings are desired.  In Section 7, we 
consider a protocol variation that addresses this issue. 

Note that although all the node keys are sent out by the 
base station, each sensor node only needs a few of them.  
For example, node E needs KAi to verify MAC (KAi, RA).  If 
the key broadcasts are synchronized, it will not be 
necessary to listen to all the key broadcasts to find the 
relevant ones. 

After sending out all the node keys, the base station 
sends out its current µTESLA key, Ki, to enable nodes to 
check transmitted MAC values, and advances to the next 
key in the chain for future messages.  After receiving Ki, 

nodes verify the MAC for the node keys.  Nodes verify Ki 
is legitimate by calculating F (Ki) and comparing it to Ki-1.  

If a node detects a forged message in the data validation 
stage, it sends out an alarm message.  Alarms are raised by 
a parent when it detects an inconsistent MAC from a child 
or grandchild, and sent to the base station along with a 
MAC computed using the node’s temporary key. 

5. Attack Analysis 

Our protocol defends against attacks involving many 
intruder nodes that do not obtain any key material, and 
limits the effectiveness of attacks in which all the key 
material stored on a particular node is compromised.   

 
Intruder Node Attacks.  Preventing intruder nodes with 
no access to keys from injecting bogus data into the 
aggregation is straightforward.  Delayed aggregation is not 
necessary to accomplish this, it is sufficient to require all 
transmitted data to include a MAC generated with a key 
that will be revealed later.  An intruder node may attempt 
to transmit readings with an ID of a legitimate child node 
(which the intruder can easily obtain since it is transmitted 
unencrypted) but will be unable to compute a valid MAC 
for the bogus data.  Both the parent node that receives and 
forwards this reading and the grandparent node that 
receives and computes an aggregate using this reading will 
detect the bogus transmission when the temporary sensor 
node keys are revealed.  These nodes will generate alarm 
messages that are received by the base station.  Note that 
replay attacks are ineffective since the sensor node keys 
change with every reading.  A replayed message will 
appear to have an invalid MAC, since the previous MAC 
was calculated using a different key.   

The intruder node will succeed in preventing the base 
station from acquiring correct readings during that time 
stage.  In many applications, alerting the base station to 
the presence of an intruder is sufficient – if the goal of the 
sensor network is to detect the presence of intruders it has 
done its job.  In other applications, the network must 
continue to provide valid readings.  The simplest solution 
would be for the parent that detected the intruder node to 
recognize that an intruder node is within transmission 
distance, and stop forwarding any messages it receives.  
The application would continue to function, just without 
incorporating any readings from the vulnerable area. 

 
Compromised Node Attacks.  An adversary who obtains 
key material from a node is more dangerous.  Since the 
sensor node devices are inexpensive, it is likely that a 
competent adversary with physical access to a device 
would be able to obtain the key material stored on the 
device.  Since the µTESLA protocol means no secure 
information about the base station keys need be stored on 



                          

the sensor devices, an adversary who obtains key material 
from a node does not have the ability to forge base station 
messages.  The adversary does, however, have the ability 
to forge node messages. 

If the compromised node is a leaf node, the adversary 
can transmit false readings without detection.  There is no 
cryptographic way to prevent this, since we are assuming 
the adversary has obtained all key material on the 
compromised node.  There are, however, ways to limit the 
effectiveness of this attack.  For some aggregation 
functions (for example, calculating an average temperature 
reading over thousands of nodes where all readings are 
checked to be within a reasonable range) a single bogus 
value may not significantly perturb the final result.  In 
other cases, parent nodes receiving values from several 
sensor nodes may ignore a single outlying value.  Even in 
cases where there is no compromised node, it is likely that 
some sensors will fail and produce bogus values so it is 
important that applications handle this case. 

A more serious concern is the case where a node higher 
up the routing tree is compromised.  For a straightforward 
protocol with child→parent message authentication but 
without delayed aggregation, a node can generate a bogus 
message that represents readings for many nodes.  
Assuming the base station can determine the network 
topology, the compromised node effectively can 
misrepresent all of its descendant’s readings.  An adver-
sary who compromises a node near the top of the routing 
hierarchy could effectively misrepresent the readings of a 
large portion of the sensor network.   

Delayed aggregation limits the damage an adversary 
who compromises a single node can do.  The immediate 
parent of that node expects to receive the MACs of the 
retransmitted messages from all the compromised node’s 
children, and will raise an alarm if the transmitted 
aggregation values are inconsistent with those MACs.  In 
this case, it is unclear to the parent node detecting the 
attack whether it is the child or the grandchild that has 
been compromised.  If our goal is only to detect the 
intrusion this is sufficient.   At worst, two nodes with need 
to be excluded from the sensor network. 

Another attack strategy would be to selectively drop 
readings to prevent readings that reveal the intrusion from 
reaching the base station.  A compromised node near the 
base station could drop aggregation results from selected 
children.   If the node is within two hops of the base 
station, it would be apparent to the base station that no 
readings were being received from that child.  This would 
raise some concern, although it is indistinguishable from 
normal node failure (except in that case, the routing tree 
would eventually reorganize to use a different node).  If the 
node is further away from the base station, but still deep 
enough that selective dropping can accomplish the 

attacker’s goals, it would not be apparent to the base 
station that readings are missing.  A possible defense in-
volves nodes snooping on their parents.  If a child node 
transmits a message to a parent, but its readings are not 
included in the parent’s transmission, the child node can 
raise an alarm.  Since its parent is the compromised node, 
this alarm must be routed through the network in a way 
that does not depend on the parent forwarding it. 

Our protocol does not thwart an attacker who simultan-
eously compromises a parent and child node.  For example, 
an attacker who compromised both nodes E and G in our 
sample network would be able to transmit a bogus 
aggregation value for RA and RB, along with the legitimate 
reading for F’s subtree.  In general, an attacker who 
simultaneously compromises a child and parent can 
misrepresent the readings for every node in the child’s 
subtree.   We view success of such an attack as unlikely, 
since the attacker would need to compromise the parent 
node’s key material before the routing hierarchy reformed.  
If the parent is disabled for too long, its children will 
reorganize to avoid the disabled node.  In situations where 
this attack is a serious concern, it could be thwarted by 
adding another delay stage to the aggregation.  That is, 
instead of retransmitting values and MACs from your 
children and aggregating values from your grandchildren, 
nodes would retransmit values and MACs from their 
children and grandchildren, and only aggregate values 
from their great-grandchildren.  This would, however, sub-
stantially increase the communication costs required.  
Perhaps a more realistic defense would depend on nodes 
snooping on transmissions from other nearby nodes.   

6. Cost Analysis 

We analyze the costs of our protocol.  We focus on the 
communication costs as the energy required to transmit 
and listen for messages tends to overwhelm the 
computational and memory requirements.  Our protocol is 
designed to provide a balance between security and 
communication costs.  We provide more security than is 
possible with full in-network aggregation, but require 
substantially less communication than is necessary for 
networks with no aggregation.   

Consider an ideal routing tree where the leaves are d 
hops away from the base station and each node has b 
children.  For the first step each of bd leaf nodes sends it 
reading to its parent.  We use m to represent the length of 
the data reading and c for the length of the node ID and 
MAC.  In the next step, each parent retransmits the 
readings and MAC values, as well as the MAC of the 
aggregate value.  The aggregation function output is the 
same length as the original sensor reading.  For some 
aggregation functions, such as the average example, it may 
be a constant factor longer, but for aggregation to be useful, 



                          

it should not scale with the number of readings.  So, a 
parent with b children will need to transmit b(m+c) + c 
bits.  There are bd-1 second level nodes, so the total number 
of bits transmitted in the second step is bd(m+c) + bd-1c.  
At the next level, and every successive level, each node 
transmits the MAC values from each child and the new 
aggregate value and MAC: b(m+c)+c bits.  The 
transmission size does not increase at successive levels in 
the tree because we assume the aggregation function is 
always the same length as the original sensor reading.  
Hence, the total number of bits communicated using our 
protocol is m(2bd+1–b2–b)/(b–1) + c(2bd+1+bd–b2–2b)/(b–1).   

For comparison, without aggregation each node 
transmits messages from all its descendants.  This requires 
transmission of (m+c)dbd total bits.  With insecure 
aggregation method, b messages are aggregated into 1 
message at each intermediate node, so each node need only 
transmit m bits for m(bd+1–b)/(b–1) total bits transmitted.  

To give a sense of what these numbers mean for typical 
applications, we select m = 22 bytes and c = 8 bytes based 
on the assumptions in [19] (for messages where no MAC 
is included, 2 bytes are required for a message integrity 
CRC).  Given a network with b = 4 and d = 5, there are a 
1024 leaf nodes.  The total communication in a time 
segment where each leaf node transmits a reading is 
150KB with no aggregation, 82.5KB with our protocol (a 
45% reduction), and 32KB with full insecure aggregation.  
As the depth of the tree increases, the relative advantages 
of our protocol over no aggregation increase.  With d = 8, 
our protocol requires 2.75 times the amount of 
communication of the insecure aggregation protocol, but 
only 34% as much communication as is necessary without 
aggregation.  The total communication of our secure 
aggregation protocol is significantly less than non-
aggregation method, and is roughly a little more than two 
times of communication that required for insecure 
aggregation.   

The base station also needs periodically broadcast the 
temporary keys of all sensor nodes. This requires 
substantial communication, but since the base station is 
connected to the power grid it does not pose a serious 
problem.  The time sensor nodes must spend listening is a 
more serious concern.  By using synchronized communica-
tion time windows, these costs can be made acceptable. 

The computational and memory costs are likely to be 
insignificant compared to communication.  Each interme-
diate node needs to compute aggregate values for its 
grandchildren’s readings, requiring b aggregation function 
applications. Each intermediate node also needs to 
authenticate both children and grandchildren nodes after 
keys are disclosed by base station, so b2+b MAC 
computations are needed.  The memory requirements are 
unlikely to be an important constraint.  All nodes need to 
store messages received from their children until keys are 

disclosed by base station. These are data values and 
associated MAC values from its grandchildren and 
children. For the ideal routing tree, the leaf node does not 
need to store anything, each first level node needs to store 
(m+c)b bits, and every higher level intermediate node 
needs to store (m + c)b2+cb bits.  Using the values of m = 
30 bytes, c = 8 bytes, b = 4, a first level node needs to store 
152 bytes and higher level nodes store 640 bytes. 

7. Scalable Variation 

Our original protocol requires the base station to 
transmit all the temporary sensor node keys after each 
stage.  This is reasonable for small sensor networks, but 
not for sensor networks with thousands of nodes.  Further, 
data received by the base station is not validated until after 
the sensor node keys have been transmitted and the base 
stations has waited long enough for nodes to verify the 
MACs and transmit alarm messages to the base station.  In 
this section, we describe a variant on our protocol that 
addresses both of these issues, but increases the amount of 
communication required by sensor nodes.   

Instead of relying on the base station to broadcast 
temporary node keys, we can use µTESLA key chains to 
reveal and authenticate keys locally.  Before deployment, 
each node will establish a shared secret key with the base 
station KAS as in the original protocol.  In this case, 
though, we will determine successive temporary node keys 
by calculating KAi = Fn-i(KAS).   

After deployment, each node needs to establish the 
µTESLA key chain with its parent by securely revealing 
KA0.   Since we do not know where the nodes will be loca-
ted before deployment (which, for example, may involve 
dropping the nodes from an airplane) and we cannot store 
all the keys in the sensor nodes, this requires a 
transmission for the base station authenticated using its 
µTESLA key. 

Once the key chains have been established, we can 
transmit messages using the µTESLA keys.  Node A sends 
a message to its parent node E containing its reading and 
revealing a µTESLA key: 

   A → E  IDA | RA | KA1 | MAC (KA2, RA) 

Node E can authenticate KA1 immediately by checking 
F(KA1) matches KA0.  The next message will reveal KA2, 
which E can use to validate the MAC.   

If an intruder node attempts to forge a message from A, 
it will be detected immediately the intruder does not know 
KA1, and the transmitted value will fail the F(KA1) = KA0 
check.  A more sophisticated intruder node may attempt to 
transmit a message using the overheard KA1 value, but with 
a different RA value.  Without knowing KA2 however, the 
adversary will be unable to produce a correct MAC value 
and the forged message will be detected in the next stage.  



                          

This depends on synchronization between the nodes to 
know when the µTESLA keys are revealed.  Since the base 
station can broadcast stage update messages, however, this 
is feasible. 

8. Conclusion 

Heretofore, designers of sensor network applications 
have been faced with a choice between either authentica-
ting sensor messages or aggregating readings in the net-
work to save power.  Our protocol offers a new tradeoff – 
resistance to single node compromises with in-network 
data aggregation.  Since many sensor network applications 
will operate in hostile environments, providing a way to 
increase confidence in the integrity in the sensor readings 
without giving up the opportunity to aggregate inter-
mediate results in the network is a valuable design option.  
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