
EVALUATING THE VIABILITY OF INTRUSION

DETECTION SYSTEM BENCHMARKING

A Thesis in TCC 402

Presented to:

The Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the Requirements for the Degree

Bachelor of Science in Computer Engineering

By

Kenneth J. Pickering

Computer Engineering

On my honor as a University student, on this assignment I have neither given nor
received unauthorized aid as defined by the Honor Guidelines for Papers in TCC Courses

__

APPROVED: Dr. Patricia Click, TCC Advisor__________________________________

APPROVED: Dr. David Evans, Tech Advisor___________________________________

ii

PREFACE

I would like to thank Dr. David Evans, my Technical Advisor, for his

support and advisory work during the course of this project, and Dr. Patricia Click

for helping me keep this task managed properly, as well as the aid she provided as

my TCC advisor with editing. I would also like to thank MIT’s Lincoln Labs for

providing the data sets and documentation necessary to produce this project. The

CS Systems Department provided me with resources and lab space, for which I

am very grateful. Lastly, I would like to thank the Snort development staff for

producing a great, free product and the users on the mailing list for providing help

when it was needed.

The main reason I undertook this endeavor was to improve the quality of

intrusion detection systems, which can be a valuable tool in detecting malicious

attacks that strike corporate networks. If one of these systems is utilized, it is

imperative to maintain it and make sure it is able to detect the newest forms of

exploits, as well as the older methods of attack. An efficient way to do this would

be to devise an evaluation of intrusion detection systems, which is something that

Lincoln Labs attempted to do. I believe this test and the methodology behind it

are not up to the task, and it should not be as frequently used as it is. It was the

goal of this project to invalidate the Lincoln Labs test and point out the flaws. In

the conclusion, I put forth ideas that could be used to develop a better and more

rigorous intrusion detection evaluation.

iii

TABLE OF CONTENTS

PREFACE... ii

TABLE OF FIGURES ..vi

ABSTRACT.. vii

INTRODUCTION .. 1

Scope and Method... 1

Overview... 3

INTRUSION DETECTION.. 5

Snort.. 5

Improving Current Systems .. 6

Making IDS More Intelligent .. 7

EVALUATING IDS ... 9

1998 Evaluation: Background Information .. 9

Problems With 1998 Evaluation... 10

1999 Evaluation: General Information and Problems 12

General Problems with DARPA-LL... 13

EXPERIMENTATION SET-UP .. 15

Initial Set-Up... 15

Resulting Decisions .. 16

Secondary Set-Up ... 16

Configuring Snort ... 17

EXPERIMENTATION AND CREATION OF RULE SETS 21

Snort Configuration .. 21

iv

Snort Configuration Methodology.. 24

IDS PERFORMANCE.. 26

Snort 1.7 Custom .. 26

Snort 1.7 Full .. 27

Snort 1.8.3 Full ... 28

Snort 1.8.3 Custom ... 28

Results ... 29

CHAPTER 7: CONCLUSION ... 30

Summary... 30

Interpretation... 30

Recommendations for Further Research... 32

APPENDIX A: WORKS CITED.. 34

APPENDIX B: BIBLIOGRAPHY ... 36

APPENDIX C: SNORT CONFIGURATION FILES .. 39

Snort 1.7 Full Configuration... 39

Snort 1.7 Custom .. 40

Snort 1.8.3 Full Rule Set ... 41

Snort 1.8.3 Custom Rules: .. 42

APPENDIX D: ATTACK DESCRIPTIONS ... 43

1998 Attack Listings ... 43

1999 Learning Data Exploits: Week 2 .. 45

Attack Descriptions - 1999 ... 47

APPENDIX E: IDS EVALUATION RESULTS ... 49

v

1998 Learning Data Week 6 ... 49

1998 Learning Data Week 7 ... 52

1999 Test Data Week 1 ... 53

1999 Test Data Week 2 ... 57

APPENDIX F: NUMBER OF ALERTS .. 62

APPENDIX G: FULL ATTACK DATABASE ... 65

Denial of Service Attacks ... 65

User to Root Attacks... 67

Remote to Local.. 68

Probes.. 71

Data ... 72

vi

TABLE OF FIGURES

Figure 1 – Initial Set-Up ... 15

Figure 2 – Snort Pre-Run Screen .. 22

Figure 3 – Snort Post-Run Screen... 23

Figure 4 – SnortSnarf Output.. 24

vii

 ABSTRACT

 This report evaluates the DARPA-LL intrusion detection system

evaluation. Intrusion detection systems are not easily constructed or maintained

due to the almost daily evolution of network traffic and known exploits. The most

popular and rigorous system devised to date is the DARPA-LL 1998 and 1999

Intrusion Detection System Evaluation. I will evaluate it through analysis of the

documentation published for the lab as well as experimentation using different

rule customizations.

 Snort was selected because of its price and easy customization. Through

manipulation of its rules files, it was to be customized to perform better in certain

situations using the DARPA-LL evaluation criteria. This shows that this

benchmarking system can be easily manipulated. Developers looking to enhance

performance can alter their rules files to better detect attacks. This system could

be manipulated to produce better results, and thus becomes less a test of

developers testing their true systems and more a test of how well developers can

interpret the testing data.

 This project shows that benchmarking intrusion detections systems cannot

be done effectively at this time. Until we develop more advanced artificial

intelligence and datamining techniques, it will be very hard to evaluated intrusion

detection systems. The amount of customization that goes into effectively using

one, as well as the ever-changing number of viable network exploits makes it

impossible at this time.

1

INTRODUCTION

 For my undergraduate thesis, I evaluated the Lincoln Labs’ (LL) DARPA

(Defense Advanced Research Projects Agency) intrusion detection system

benchmarking data set and evaluation. This project found discrepancies by

analyzing the data set between different years the evaluation was performed.

Running the data through an intrusion detection system with a variety of

configuration settings discovered these inconsistencies. The thesis also analyzes

the actual way in which the test was taken and evaluated originally. This research

will try to prove that the DARPA evaluation is not an acceptable way to measure

the performance of an intrusion detection system, and may actually impede

development of better systems due to evaluation based on a bad standard.

Scope and Method

 Network security is a thriving industry in this country as more and more of

the corporate workspace is converted to digital media. Because companies and

home users keep sensitive information on their computers, there is a great need to

protect that information from those who would exploit it. One way to help keep

attackers at bay is by using an intrusion detection system (IDS), which are

designed to locate and notify systems administrators to the presence of malicious

traffic. The current systems are not effective right now because detecting

intrusions and other forms of malicious traffic in a large, modern corporate

network is difficult. Something must be done in order to improve performance

and make these systems ready for reliable operation in a dynamic environment.

2

 We can classify IDS’s as host-based and network-based. Host-based

intrusion detection systems monitor the computer the software is running on and

often integrates closely with the operating system (Durst et al., 54). Network IDS

“monitor network traffic between hosts. Unlike host-based systems, which detect

malicious behavior outright, these systems deduce behavior based on the content

and format of data packets on the network” (Durst et al., 55). This project looked

exclusively at network-based intrusion detection systems, as opposed to host-

based intrusion detection. My thesis used MIT’s Lincoln Labs data (also known

as DARPA-LL data), available at http://www.ll.mit.edu/. This data consists of two

weeks of traffic captured using tcpdump, a well-known open-source packetsniffer,

which can be replayed in a network environment. The documentation and

procedures produced by Lincoln Labs are analyzed in Chapter 3.

Snort, the IDS that this project utilizes, can take tcpdump files as an input

and scan the traffic for abnormalities. All of the malicious traffic introduced into

the DARPA-LL test data set is known, so administrators know how well their

system picks up the given exploits and also know when false positives are

generated. Most of the academic IDS’s researched, as well as a lot of commercial

systems, use the DARPA data as a common benchmark. Two different years of

the provided tcpdump traffic were used to determine whe ther Lincoln Labs’

information and procedures can be used as a viable benchmark for something as

complex as an intrusion detection system that is thrown into a much larger and

more dynamic environment.

3

 My main purpose for undertaking this study was to improve the overall

quality intrusion detection system benchmarking through analyzing the current

ways to test these systems. Based on my previous experience as a network

systems administrator, I can attest to the shortcomings of the current commercial

and open-source solutions. They generate many “false positives,” which is

standard traffic being diagnosed as malicious data, and sometimes a few “false

negatives,” which are attacks gone unnoticed by the IDS. Both of these lead to a

viable system’s resources being wasted. The amount of false positives clogs up

log files with erroneous reports, thus masking a legitimate attack in a sea of false

alarms. Most systems administrators will ignore the IDS’s data due to this fact.

The other problem stems from attacks appearing to be friendly, normal traffic,

which is even more alarming, since an attacker would be able to creep into the

network without an alert from the IDS.

 By evaluating the current academic standard in benchmarking using Snort,

it can be determined whether the benchmark is, in fact, a valid test to run. A

positive performance on these tests can give IDS programmers a false sense of

security, which could lead to a degeneration of future development. If the data

MIT provides is not up to par, perhaps a newer, more rigorous form of testing can

be used.

Overview

This report will consist of a few major sections. Chapter 2 reviews

literature relevant to my project. This section delves into previous work in

4

intrusion detection systems and suggestions made to improve the current systems.

Past IDS evaluations and the problems found within DARPA-LL after analysis of

their documentation will be discussed in Chapter 3. The set up of my project and

decisions made to change my initial proposal is discussed in Chapter 4.

The next chapters delve into the actual experimentation of my project and

the four runs of the DARPA-LL evaluation using the Snort IDS. Chapter 5 gives

examples of output of Snort and SnortSnarf and discusses how the rules sets were

developed. Chapter 6 discusses my analysis of the project, where I delve into the

information collected and try to determine the validity of DARPA-LL’s

benchmark. Chapter 7 gives the results of the paper and presents a conclusion.

5

INTRUSION DETECTION

 A reliable and efficient intrusion detection system (IDS) is a necessary

component in any network. It can alert administrators of possible attackers and

give a good view of the network’s status. This section of the proposal looks at

current systems, proposals for new types of IDSs, and higher level ideas that

could be carried over into IDS development. Many of the academic and

commercial systems available were tested using the DARPA-LL IDS test, so all

of the systems presented could benefit from a viable benchmark. It is the main

goal of this project to look at how the DARPA-LL tested systems perform in a

real-world environment and, if the Lincoln Labs’ test is determined to be a bad

benchmark, propose new ways to test all forms of IDS.

Snort

 The IDS looked at most closely in this project, Snort, is a rules-based

network intrusion detection system (NIDS). Martin Roesch, in his paper entitled

“Snort – Lightweight Intrusion Detection for Networks,” says “Snort fills an

important ‘ecological niche’ in the realm of network security: a cross-platform,

lightweight network intrusion detection tool that can be deployed to monitor small

TCP/IP networks and detect a wide variety of suspicious network traffic as well

as outright attacks” (1). The SANS Institute also reported Snort as becoming the

standard among intrusion detection experts due to the fact that it is open-source,

frequently updated, and free of charge (2). Snort generates a number of false

positives, which can number in the thousands per day on a network attached to the

6

Internet running a default installation of Snort (Hoagland, 376). Thankfully, many

programs, like SnortSnarf, are available to help parse through large amounts of

false alerts to access relevant data.

Improving Current Systems

 Many IDS experts have proposed different ideas for improving the current

systems in use. Sekar et al. propose that a new universal intrusion detection rules

language be developed to make creating rules for different IDSs easier in their

paper “A High-Performance Network Intrusion Detection System” (8). Also, Lee

and Stolfo point out that building an IDS is a huge engineering task and imply

that, in order to make production of rules easier, a debugger for rules languages

should be developed to reduce the amount of effort involved in implementation

(228-9). Barruffi, Milano, and Montanari think that automated responses should

be added into current IDSs to block attacks without relying on the administrator

and allow the system to manage intrusion recovery (74). Another possible

improvement would be making systems fault-tolerant, so that a hacker cannot

subvert the IDS itself. Shen et al. proposed “a hybrid of distributed, redundant,

and cross-corroborating techniques” (425).

Others believe that a new system of communication protocols or a

redesign of routing protocols should be developed to help combat many problems

stemming from an inability to effectively trace attackers. Schnackenberg et al.

proposed a new Cooperative Intrusion Traceback and Response Architecture

(CITRA) across IDSs, routers, firewalls, and other network appliances that would

7

“(1) trace intrusions across network boundaries, (2) prevent or mitigate

subsequent damage from intrusions, (3) consolidate and report intrusion activities

and (4) coordinate responses on a system-wide basis” (56). A denial of service

attack could be performed on routers, either by a malformed router or malicious

attacker. Cheung and Levitt say smarter routers must be developed to detect and

ignore bad or compromised routers (94).

Making IDS More Intelligent

 Many academic programmers are using new techniques to make IDSs

more intelligent. Fawcett and Provost at Bell Atlantic Science and Technology

theorized a high- level approach to intrusion detection in their article about activity

monitoring. They believe that the same theories used in detecting cellular

telephone fraud, which rely on user profiling, can be used in a computer network

environment (59-60). Statistical Process Control, developed by Arizona State

University and used in their system ISA-IDS, uses Chi-square techniques to detect

anomalies in a network environment as well as a rules-based system, which they

call “Clustering” (Ye, Emran, Li, and Chen , 3, 10). In another paper by Ye and a

different group of professors entitled “Probabilistic Techniques for Intrusion

Detection Based on Computer Audit Data,” Ye et al. propose other probabilistic

techniques “including Hotelling’s T2 Test, chi-square multivariate test, and

Markov chain,” and use these methods with the same data set to gauge efficiency

(Ye, Li, Emran, and Xu 266). Johns Hopkins University attempted to set up an

IDS composed of Neural Networks that can function as an anomaly detector (Lee

8

and Heinbuch, 1171). The system they proposed was host-based, protecting a

network server.

 Many experts in the network security and intrusion detection field have

proposed viable solutions to the problems with network security. All of the above

solutions, especially the ones that used the DARPA-LL IDS test data, could

benefit from a better testing schema for use in their development cycle.

9

EVALUATING IDS

 Lincoln Labs’ intrusion detection evaluation was not the first effort at

testing IDS systems, but was the first attempt at an all-conclusive test of whole

categories of standard network exploits and other forms of malicious traffic. In

Lippmann et al.’s paper on the 1999 DARPA evaluation, they discuss the

previous endeavors. Before the DARPA-LL test, the most advanced

benchmarking system previously tried involved simple telnet and FTP traffic with

automated attacks (Lippmann et al, 2000, 2). Along the same lines, there was also

a product comparison of 10 commercial IDS products in 1999 done by G. Shipley

(Lippmann et al, 2000, 2).

1998 Evaluation: Background Information

 The 1998 evaluation consisted of seven weeks of test learning data. The

purpose behind producing this was to give IDS evaluators a chance to tweak their

rules based and anomaly detection systems by familiarizing them with the typical

traffic running through the network. There were also attacks thrown into each of

the learning data files, to show typical attacks. It gave the systems using

datamining and learning algorithms a chance to have sample data, which helped

them “learn” how the network operated (Lippmann et al, 1999, 2).

 The MIT lab used a test bed to generate all its background data for the

1998 evaluation. Since it was difficult to take Air Force network data and manage

to remove sensitive information from it for evaluation purposes, the lab used

custom software to generate traffic. It allowed Lincoln Labs to simulate the

10

activities of hundreds of programmers, managers and secretaries, as well as make

a few hosts appear to be thousands of terminals. A packetsniffer was located on

the internal network to capture the generated traffic. All simulated attacks were

launched from “outside” the base, so a traffic sniffer located at the gateway would

be able to catch it all (Lippmann et al, 1999, page 3).

 Intrusion detection systems were supposed to detect the following

categories: denial of service (DoS), port scanning and probes, user to root attacks

(U2R), and remote to local (R2L). In the DoS categories, which should be fairly

easy to detect, the best system could only pick up 65% of attacks. The probes

category had two of the systems detecting 90% of probing activities. In the U2R

category, the best systems could only find 60% to 70% of attacks. In what is

probably the most serious of attacks, the R2L, which allows remote users to gain

local access (in some cases root access), the best system could only find 35% of

attacks. The systems that could interpret BSM audit data on Sun workstations

could improve performance slightly (Lippmann et al, 1999, 9-12).

Problems With 1998 Evaluation

 There were several problems with the 1998 evaluation, some of which

Lincoln Labs’ acknowledged in its write-up of the 1999 evaluation. Lincoln Labs

cited that the 1998 evaluation was only to provide exploits against UNIX hosts

and was only supposed to initially be used for IDS that had been developed using

DARPA grants (Lippmann et al, 2000, 4). The oversight of Windows NTwhen it

was arguably the most popular business operating system at the time of the

11

evaluation, was probably used by government and military personal as well.

Leaving this particular operating system out really harms the 1998 evaluation’s

credibility.

 One of the major drawbacks in running the evaluation is that a listing of

attacks in the actual test data is not available. I instead had to use two of the

normal “learning data” weeks. In week 6 of the testing data, a bad router added

too many ICMP packets into the data set, as computers constantly “pinged” each

other. This generated massive log files and a major slowdown in Snort

performance, as it logged over 1.5 million alerts upon completion, in some

instances.

The two biggest problems, though, were the methodology used to come up

with the exploits, and the way they were executed. There were 38 different kinds

of malicious traffic used, but they were executed in no real logical order. Some

sort of attacker intelligence should have been placed into the attack routines, even

in the preliminary data. Merely adding malicious traffic is not sufficient. Attacks

and exploits are sent for a purpose and usually come in a set order. Similar to real-

life crime, there is always some amount of reconnaissance before an attack takes

place. Even relatively unsophisticated attacks like DoS are usually performed for

a purpose and are probably somewhat calculated.

Lincoln Lab used a scoring method that weighed amount of attacks

detected versus the amount of false positives found, using receiver operating

characteristic (ROC), a technique originally used in signal detection (Lippmann et

12

al, 1999, 2). It should also have taken the amount of resources used by the system,

ease-of-use, and what type of system it is.

System resources and ease-of-use are huge factors in using any sort of

system. Snort, for instance, can run on a variety of computers, depending on the

amount of traffic it has to handle. For home and small networks, it is possible to

get away using a low-grade Intel Pentium or even Intel i486 processor. If a system

can only run on a super-computer cluster, it will severely affect how feasible the

system is. Also, if a system is extremely complex or not well documented, it

could affect how easily users can manipulate it.

1999 Evaluation: General Information and Problems

 The 1999 evaluation set out to improve upon the evaluation performed a

year earlier, with extensions added on and more attack types. This included the

addition of Windows NT exploits. The test bed to generate this particular data was

similar to the 1998 tool, but also included updated statistics and the addition of

Windows NT hosts. Also, the same attack sub-categories were used and are listed

above (Lippmann et al, 2000, 7-10).

 The full results of this evaluation can be seen in the summary of the results

that Lincoln Labs published on pages 14 - 18 of its summary. The scoring method

Lincoln Labs showed in their charts was the percentage of attacks found with

below 10 false alarms of that attack instance per day, and also had a detection rate

above 40%.

13

This evaluation had many improvements over its predecessor, although it

was still far from perfect. The scoring mechanism is similar to the one used in the

1998 evaluation and is, once again, a problem. I found the listings of the

individual IDS performance to be confusing and the evaluation still did not use

the criteria discussed in the section on the 1998 evaluation. A less confusing and

more honest representation of the data would be to just list the amount of attacks

found versus the amount of false positives. Capping it at a certain number and

detection percentage leaves out the systems that did not “make the grade.” The

full listing is easier to represent and makes more sense (Lippmann et al, 2000, 14-

18).

General Problems with DARPA-LL

 DARPA meets its goal of being the most advanced IDS benchmarking

system to date, but is still lacking in some areas. The major flaws in the system

itself deal with the test bed, and how the researchers decided to evaluate the

systems.

 The test bed generates a series of generic packets based on statistical

properties and uses a minimum of hosts. Even though the tool is not publicly

available and the statistical properties used to develop it are unknown, it can not

be as accurate as capturing real-time traffic in a corporate or government network.

This helps avoid security implications of publicizing government network traffic,

but comes with an inherent cost. It is extremely difficult to replicate people’s

actions within a computer program, although from analyzing the alerts, MIT did a

14

reasonably good job. From an accuracy point of view, it would have been much

better to use real traffic.

System type factors heavily into how well certain attacks are detected. For

instance, local-only attacks, where a user abuses software on his own computer,

could not be detected by a network-based IDS, unless it somehow uses an

Ethernet adapter (like a “land” attack, which the user issues packets to himself).

On the other hand, host-based systems will miss attacks against routers and other

computers in most cases. Since the two systems vary heavily in operation and

purpose, it would make sense to evaluate them separately.

Although this evaluation was quite advanced, it could have been more

inclusive, or at least more open in its methods, after the evaluation was complete.

Not knowing how all of the background traffic was generated is a serious

drawback to the system. Also, the scoring methodology and separate evaluations

for the different types of IDSs could also have helped to evaluate systems after the

data was collected.

15

EXPERIMENTATION SET-UP

Initial Set-Up

The initial set-up was, with three computers connected with a hub (Figure

1). This process was as not easy as anticipated. The main problems that occurred

stemmed from lack of time and resources. In order to do what was originally

specified, I would have had to edit NetPoke so that I could funnel all the data to

one host-based system, unlike the original Lincoln Labs closed configuration,

which consisted of several interconnected computers. Also, a separated routing

infrastructure would have to be set up in order to get the Linux and Windows

computers to be able to recognize each other. This was too much to ask of the CS

Systems staff, who were kind enough to provide me with a lab space, computers,

and assistance.

Figure 1 – Initial Set-Up

16

Resulting Decisions

The host-based system was dropped and Snort was exclusively used, with

two different versions of this IDS ran against the data set. Snort 1.7, which was

released over a year ago, is timed much closer to the actual date the data was

captured, since the evaluations were created in 1998 and 1999. Snort 1.8.3 is also

used, as it was the most recent stable release of the software package at the time

this thesis was performed. Different rules sets are to be plugged into each IDS,

giving each different functionality, even though they use similar engines.

Secondary Set-Up

One computer, with the DARPA data sets stored locally and Snort running

in a Red Hat Linux 7.1 environment, was used. Snort has the ability to parse the

tcpdump logs itself, so no outside utility (NetPoke) was utilized. This computer

needed a lot of disk space in order to adequately hold the results of several data

sets. I ran both of the applications twice: once with full settings, where any sort of

abnormality is noticed, and once with a lightweight, customized rules set that only

looks for the specific attacks that I want Snort to recognize.

The sole computer used in my experiment had a reasonably fast AMD

Athalon processor (1.2 GHz) and 768 MB of RAM. An additional 70 GB hard

disk was added to the machine to hold the massive alert files Snort was

generating, and the data parsed with SnortSnarf. At one point, the video card in

this computer ceased to function, causing a delay of about 3 days while the

computer was fixed.

17

Initially, the CS systems staff installed the 70 GB disk formatted in

FAT32 format. This caused errors with Snort 1.8.3 (but not Snort 1.7), as some of

the automatic filenames it generates are Linux Ext2 specific. Because of the

massive amount of data already run through using Snort 1.7, it was impossible to

salvage it before formatting the disk, resulting in a time loss of about a week’s

worth of work.

Configuring Snort

 Snort is an open-source project started by Martin Roesch and is available

on a variety of platforms for download, including Windows, Linux, and Solaris. It

has been around for a few years and acquired a decent number of developers and

users. From personal use, it seems to be quite easy to customize and very flexible

in terms of possible uses.

 Snort has a main configuration file that allows you to add and remove pre-

processor requirements as well as the rules files included. This is where you

typically specify the limit of fragmentation you want to take notice of and if you

want the packets reconstructed or not. Below is a selection of the configuration

file that allows you to select how the tcp stream is reassembled. The comments in

the file are very descriptive (comments are preceded with the ‘#’ symbol) and

there are a number of options defined, such as what network ports to watch and

which side (client, server or both) of the connection.

tcp stream reassembly directive
no arguments loads the default configuration
Only reassemble the client,
Only reassemble the default list of ports (See below),

18

Give alerts for "bad" streams

Available options (comma delimited):
clientonly - reassemble traffic for the client side of a

connection only
serveronly - reassemble traffic for the server side of a

connection only
both - reassemble both sides of a session
noalerts - turn off alerts from the stream reassembly stage

of stream4
ports [list] - use the space separated list of ports in

[list], "all"
will turn on reassembly for all ports, "default" will turn
on reassembly for ports 21, 23, 25, 53, 80, 143, 110, 111
and 513

preprocessor stream4_reassemble

Another important selection of the configuration file is the rules specification,

where you can add and remove rules libraries, in a very similar fashion to a

typical programming language. The custom rules file includes I used for Snort

version 1.8.3 is seen here:

#===
Include all relevant rulesets here

shellcode, policy, info, backdoor, and virus rulesets are
disabled by default. These require tuning and maintance.
Please read the included specific file for more information.
#===

include bad-traffic.rules
include exploit.rules
include scan.rules
include finger.rules
include ftp.rules
include telnet.rules
include smtp.rules
include rpc.rules
include rservices.rules
include dos.rules
include ddos.rules
include dns.rules
include tftp.rules
include web-cgi.rules
include web-coldfusion.rules
include web-frontpage.rules
include web-iis.rules
include web-misc.rules

19

include web-attacks.rules
include sql.rules
include x11.rules
include icmp.rules
include netbios.rules
include misc.rules
include attack-responses.rules
include backdoor.rules
include shellcode.rules
include policy.rules
include porn.rules
include info.rules
include icmp-info.rules
include virus.rules
include experimental.rules
include local.rules

There is also a specific language to specify the rules themselves. This is

where Snort’s true flexibility lies. You can basically choose to filter any kind of

network traffic you want. Full documentation of rules specification language is

available in the Snort documentation (http://www.snort.org). A few things to

notice in a typical “rule” are the type of protocol, the destinations to be watched,

the sources to be watched, the label of the attack, the contents of the packet to be

searched for, and a reference describing the attack, if applicable. A small selection

of the “backdoor” rules file is shown below:

(C) Copyright 2001, Martin Roesch, Brian Caswell, et al. All
rights reserved.
$Id: backdoor.rules,v 1.16 2001/12/19 18:40:04 cazz Exp $
#---------------
BACKDOOR RULES
#---------------

alert tcp $EXTERNAL_NET 27374 -> $HOME_NET any (msg:"BACKDOOR

subseven 22"; flags: A+; content:
"|0d0a5b52504c5d3030320d0a|"; reference:arachnids,485;
sid:103; classtype:misc-activity; rev:3;)

alert tcp $EXTERNAL_NET 1024: -> $HOME_NET 2589 (msg:"BACKDOOR -
Dagger_1.4.0_client_connect"; flags: A+; content: "|0b 00
00 00 07 00 00 00|Connect"; depth: 16;
reference:arachnids,483; sid:104; classtype:misc-activity;
rev:3;)

20

alert tcp $HOME_NET 2589 -> $EXTERNAL_NET 1024: (msg:"BACKDOOR -
Dagger_1.4.0"; flags: A+; content:
"|3200000006000000|Drives|2400|"; depth: 16;
reference:arachnids,484; sid:105; classtype:misc-activity;
rev:3;)

alert tcp $EXTERNAL_NET 80 -> $HOME_NET 1054 (msg:"BACKDOOR
ACKcmdC trojan scan"; seq: 101058054; ack: 101058054;
flags: A;reference:arachnids,445; sid:106; classtype:misc-
activity; rev:3;)

alert tcp $EXTERNAL_NET 16959 -> $HOME_NET any (msg:"BACKDOOR
subseven DEFCON8 2.1 access"; content: "PWD";
content:"acidphreak"; nocase; flags: A+; sid:107;
classtype:misc-activity; rev:4;)

alert tcp $EXTERNAL_NET any -> $HOME_NET 7597 (msg:"BACKDOOR QAZ
Worm Client Login access"; flags: A+; content:"|71 61 7a 77
73 78 2e 68 73 71|"; reference:MCAFEE,98775; sid:108;
classtype:misc-activity; rev:3;)

alert tcp $HOME_NET 12345 -> $EXTERNAL_NET any (msg:"BACKDOOR
netbus active"; flags: A+; content: "NetBus";
reference:arachnids,401; sid:109; classtype:misc-activity;
rev:3;)

 The particular type of Snort installation used in this particular experiment

just places the alerts of positive attacks in an “alerts” text file. Other versions of

this IDS allow you to place the data in a MySQL or ACID data base, which were

not used in this project. There are several open-source solutions to parsing the

data from the text file into a useable output. SnortSnarf by James Hoagland is a

perl script that takes the text file and sorts it by alert type and IP address into a

slick HTML interface. Snort and SnortSnarf will be discussed in further detail in

the next chapter.

21

EXPERIMENTATION AND CREATION OF RULE SETS

 The data set used in this experiment was selected from the listings at

Lincoln Labs’ web site, and has just recently become publicly available (where

before, they were available only through correspondence with the lab). I chose to

use the Week 6 and Week 7 preliminary test data from 1998 and the actual two

weeks of evaluation data from 1999. The incident logs, which are listings of the

attacks and abnormalities, were not available for the actual 1998 test data.

 MIT provides an open-source tool, called NetPoke, that can replay

tcpdump files on a network at a user specified rate. I noticed that on a 10 Mbit

network, a large number of packets were being dropped by the traffic generation

machine, requiring me to run the logs in “real-time,” which would have taken me

approximately four months to complete the all the log files. Since I made the

changes listed in the previous chapter, it was much quicker and more efficient to

run the data through the Snort IDS, itself. Snort will not drop any packets and can

run most of the days in a couple hours.

Snort Configuration

 The preliminary configuration of Snort was reasonably straightforward,

although there were a few problems with the rpm packages, which are essentially

Red Hat’s solution to easy installation. It instead had to be compiled manually,

using the source code on the web site. A few additional libraries had to be

installed in order to get the IDS to function properly, as Snort requires packet

capture drivers to operate.

22

 After the installation, Snort was activated in real-time detection mode to

make sure it was configured properly. After a few minutes of intercepting live

traffic and examining the logs, it was then time to use offline DARPA-LL data. I

selected a few of the data files and proceeded to run them through Snort. The

typical output from the start-up of the IDS can be seen below (Fig 2).

Figure 2 – Snort Pre-Run Screen

I looked at the alerts that had been generated and noticed their large size.

Anywhere from zero to a million alerts had been generated, depending on the log

23

file inputted. The task of going through these text files manually was going to be

too time and labor intensive. Snort lists the number of packets scanned and alerts

found when it has completed running, as can be seen in Fig. 3. Thankfully,

SnortSnarf, can take these massive files and put them into a easy-to-read HTML

format.

Figure 3 – Snort Post-Run Screen

I took the practice data I had been working with, and parsed the resultant

text files into HTML using SnortSnarf. After some rudimentary configuration, the

data formed easy to read HTML. This was a much better method to view the data,

24

because it links all the data and sorts it by alert type and IP, plugging in fairly

seamlessly with Snort’s classifications and logging methodology. A screen shot of

the typical HTML output can be seen below, in Fig 4.

Figure 4 – SnortSnarf Output

Snort Configuration Methodology

 The configuration files for each particular run of the IDS were selected to

show the variance that rules manipulation can cause to the IDS system. Based on

listings of attacks in the 1998 test data and 1999 learning data, it was possible to

25

predict the exploits used in the actual offline test given in 1999. Each particular

run of the separate rules files is discussed in the next chapter, in my analysis

section.

 The exploits in 1998 Week 6 and Week 7 learning data, which the systems

were run against, as well at the listings of the 1999 Week 2 learning data (used for

reference) are listed in Appendix D. This data shows a very close correlation to

actual test data used in 1999, which can be seen in Appendix G. The Snort 1.8.3

engine was run with two different configurations, one with a complete set of rules

minus icmp-info rules. This particular rule set was left out because it generated

too many false positives in the Snort 1.7 run. The Snort 1.8.3 custom

configuration had a few rule sets removed, which, with the exception of a few

attacks that it missed, had far fewer false positives. This would give it a much

better performance rating on the Lincoln Labs’ test.

 The configuration files for each of the Snort builds are included in the

Appendix section of this paper. A full listings of the libraries used is available on

http://www.snort.org and are freely available fo r download.

26

IDS PERFORMANCE

 Four types of system configurations were used in this project. The first

IDS used was Snort 1.7 with the default rules set fully enabled. The second run

opted to ignore the ICMP informational rules, while including everything else.

The configuration files are included in the Appendix C. The second version I

utilized was the latest stable build of Snort, 1.8.3. I used the a full rules set for this

particular version as well as a customized version, created after viewing the 1998

and 1999 test data. The full rules set that Snort used listed all the rules except for

icmp-info, which generated too many false positives under Snort 1.7. The second

configuration file included rules that were purposely chosen to run better on the

evaluation data because they had a decrease in the amount of false positives over

the fuller rules set.

 All of the results for the four different runs of the evaluation are included

in Appendix E of this thesis paper, as well as the total number of alerts for each

instance, which are found in Appendix F. The glossary of the attack abbreviations

used for both of the evaluation years can be found in Appendix G.

Snort 1.7 Custom

 The rules used in this particular instance of the build were derived from

the rules bundle that came with this initially. The icmp-info rules file was left out,

but all the others were left in.

This particular build had almost no false positives, but also picked up a

minority of the attacks. Basically, the only malicious traffic this IDS picked up

27

was Denial of Service (DoS) attacks that were comprised of malformed packets in

some way, like the Ping of Death (PoD) or teardrop attacks. It did not detect

portscans or remote-to- local attacks, so performed abysmal in these particular

categories.

 However, the minumum of false positives on the DoS attacks it picked up

would give it a pretty favorable rating in that category.

Snort 1.7 Full

The rules file for this particular build was the full set of rules from the

Snort 1.7 bundle that was used. It logged a large portion of ICMP traffic as a

result.

This particular configuration was very good at detecting some Denial of

Service (DoS) attacks as well as scanning attempts (port and IP scans). It

performed much better than customized rules set (Snort 1.7 Custom, see above). It

generated an enormous amount of false positives, however, since it was tracking

ICMP traffic. In order to pick up portscans, ipsweeps, notice FTP probes, and

pick up vulnerability scanners, you need to capture some of this traffic.

This particular build did much worse at detecting Remote-to-Local attacks

than the later versions and rulesets.

28

Snort 1.8.3 Full

 The rules configuration for this particular run was the majority of rules

listed in the current CVS, except for rules which would generate a large number

of false positives, with little to no gain in performance.

This particular build performed the best, as far as strictly detecting attacks.

It performed admirably at noticing a variety of remote-to-local, DoS and

reconnaissance attacks, although had a reasonably high false positive rate (second

to the Snort 1.7 Full configuration). The improvement over the 1.7 runs is readily

visible.

Snort 1.8.3 Custom

 This build was the one designed to prove my thesis, as it was customized

to perform well on the benchmark. I added the rules sets that would notice the

most attacks with a minimum of false positives.

The performance of this system was the best, according to DARPA-LL

standards. It detected almost the same amount of attacks as the Snort 1.8.3 Full

configuration, with a reduction in false positive rates. It was possible, looking at

past traffic and types of attacks, to predict which rule sets would be the best at

performing on this particular benchmark.

29

Results

 The results of this particular section led to invalidating the DARPA-LL

benchmark. Since it was possible to use a variety of rules to attain a varying level

of performance, this particular test was easily manipulated. A true benchmark

should be resistant to manipulation in this fashion. Based on 1998 and 1999 test

data, a superior performing rules configuration of Snort was easily found. The

developers of the systems to be tested should not be given any inclination of the

vulnerabilities to be present or the exact weighting of the scores. A blind test is

really the only good option in testing these systems, otherwise you run the risk of

testing an organization’s ability at forecasting what the test will be, rather than

testing the system itself.

30

 CHAPTER 7: CONCLUSION

Summary

 Looking at the documentation of the Lincoln Labs’ Intrusion Detection

System Evaluation, it was easy to find several flaws in its system. The major

problems that need to be addressed are the test bed software and the actual

evaluation criteria. Since the test bed traffic generation software is not publicly

available, it is not possible to determine how accurate the background traffic

inserted into the evaluation is. Also, the evaluation criteria does not account for

system resources used, ease of use, or even what type of system it is (Host,

Network, or a combination of the two).

 The experimentation of my project revealed how easy it was to edit

Snort’s rule sets based on attack listings in the 1998 evaluation and 1999 test data.

It was possible to drastically reduce the number of false positives in the 1999 test

data while still being able to detect most, if not all, attacks that the full rule set

could detect.

Interpretation

 This paper points out the flaws of the DARPA-LL Intrusion Detection

System Evaluation in order to be able to improve upon them and develop a better

method of testing, if, indeed, one could be found. It is my opinion, based on my

investigation of this benchmark, that it falls short of its intended goals, although it

is the best system devised to date. The improvements listed in the previous

31

chapters are things that can be taken into consideration when improving upon this

system, or building a new one.

 To build an all- inclusive intrusion detection benchmarking system would

be a monumental task, but not necessarily an unreasonable one. Several factors

would need to be considered in order to do this properly. The Bugtraq mailing list

(http://www.securityfocus.com), reports a number of new system vulnerabilities

every day. The system would have to evolve as network applications and systems

evolve. Also, since these systems are used to protect a variety of networks, all

with different needs and configurations, a system based on each ne tworks average

traffic should be used, with the attacks listings inserted.

 Basically, the “ideal” system, or even a really useful system, is a

somewhat unreasonable goal, until we get more advanced datamining and

artificial intelligence capabilities at our disposal. The system Lincoln Labs

designed was a passable, although somewhat easy to manipulate, evaluation when

it first came out. However, a large amount of users have downloaded the data

since then to evaluate their own systems, for whatever reason (Lippman et al,

2000, 6). This should be cautioned against for the reasons listed in this paper.

Evaluating your system with an invalid benchmark can be worse than not having

an evaluation at all, especially if it leads to placing a weak system on the market.

If evaluators are making corrections to their systems based on information found

in the preliminary data, as was very easy to do with Snort, then it can give them a

much better score on the test. This test can give the developers a false sense of

security, thinking a potentially invalid system is in proper working order. This is

32

not to suggest that testing pre- and post-production systems is useless during

development and verification, but that coming up with a common system of

evaluating different IDS serves no real use unless the “ideal” testing system is

created.

 There is adequate evidence presented in this paper to suggest that the

Lincoln Labs’ DARPA-funded evaluation is not up to speed. Unless certain

changes are made, benchmarking, testing and evaluating these extremely complex

systems is not useful unless serious breakthroughs in machine intelligence are

made.

Recommendations for Further Research

 Designing an easily updated, intelligent evaluation system for IDS would

be quite useful, but data sets would vary from company to company, as the usual

traffic of most corporate networks can vary greatly. Developing a test similar to

the Lincoln Labs evaluation would not be very useful. Further advances in

datamining and artificial intelligence could help devise better evaluations.

 Also, this paper does not mean to suggest that testing individual systems is

too complicated. Anyone who uses an intrusion detection system should

constantly test and configure it for the network they are trying to protect. Another

topic of further research would be to establish a set of guidelines that systems

administrators could use to devise their own tests. The main problem with

DARPA-LL is that it tries to make one concrete test for a variety of different

33

systems, and sys tems to be run on a variety of networks. This, as has been shown,

is not a very easy, or even really feasible, thing to do.

34

APPENDIX A: WORKS CITED

Barruffi, Rosy, Michela Milano, and Rebecca Montanari. “Planning for Security
Management”. IEEE Intelligent Systems & Their Applications. Los
Alamitos, CA: IEEE Computer Society, Publications Office.

Cheung, Steven and Karl Levitt. Protecting Routing Infrastructures from Denial
of Service Using Cooperative Intrusion Detection. 1997 New Security
Paradigms Workshop. Langdale, Cumbria, UK, 23-26 September 1997.
New York: ACM Press, 1999.

Durst, Robert et al. “Testing and Evaluating Computer Intrusion Detection
Systems”. Communications of the ACM Volume 42 Issue 7 (July 1999):
53-61

Hoagland, James A., and Stuart Staniford. Viewing IDS alerts: Lessons from
SnortSnarf. Proceedings of 2001 DARPA Information Survivability
Conference and Exposition (DISCEX 2001). Anaheim, CA, 12-14 June
2001. New York: Institute of Electrical and Electronics Engineers, 2001.

Fawcett, Tom and Foster Provost. Activity Monitoring: Noticing interesting
changes in behavior. Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD-99). San
Diego, CA, 1999. New York: ACM Press, 1999.

Lee, Susan C., and David V. Heinbuch. Building a True Anomaly Detector for
Intrusion Detection. Proceedings of MILCOM 2000, 21st Century Military
Communications Conference. Los Angeles, CA, 22-25 Oct. 2000. New
York: Institute of Electrical and Electronics Engineers, 2001.

Lee, Wenke and Salvatore J. Stolfo. “A Framework for Constructing Features and
Models for Intrusion Detection Systems”. ACM Transactions on
Information and System Security (TISSEC) Volume 3 Issue 4 (November
2000): 227-261.

Lippmann, Richard et al. Evaluating Intrusion Detection Systems: The 1998
DARPA Off- line Intrusion Detection Evaluation. Proceedings of DARPA
Information Survivability Conference & Exposition (DISCEX), Hilton
Head, South Carolina, 25-27 January 2000. Los Alamitos, CA: IEEE
Computer Society, 1999: Vol. 2, 12-26.

Lippmann, Richard et al. “The 1999 DARPA Off- line Intrusion Detection
Evaluation”. http://www.ll.mit.edu/IST/ideval/pubs/2000/1999Eva l-
ComputerNetworks2000.pdf, 2000.

35

Nash, David A., and Ragsdale, Daniel J. Simulation of self-similarity in network
utilization patterns as a precursor to automated testing of intrusion
detection systems. Proceedings of the 1st Annual IEEE Systems, Man, and
Cybernetics Information Assurance Workshop, West Point, NY, June 6-7,
2000, pp. 53-57

Roesch, Martin. “Snort – Lightweight Intrusion Detection for Networks”.
http://www.snort.org/docs/lisapaper.txt. 1999.

SANS Institute. “101 Security Solutions”.
http://www.101com.com/solutions/security/article.asp?articleid=569.
2001.

Schnakenberg, Dan et al. Cooperative Intrusion Traceback and Response
Architecture. Proceedings of 2001 DARPA Information Survivability
Conference and Exposition (DISCEX 2001). Anaheim, CA, 12-14 June
2001. New York: Institute of Electrical and Electronics Engineers, 2001.

Sekar, R. et al. A High-Performance Network Intrusion Detection System.
Proceedings of the 6th ACM conference on Computer and
Communications Security. Singapore, November 1999. New York: ACM
Press, 1999.

Shen, Y. Peggy et al. Attack Tolerant Enhancement of Intrusion Detection
Systems. Proceedings of MILCOM 2000, 21st Century Military
Communications Conference. Los Angeles, CA, 22-25 Oct. 2000. New
York: Institute of Electrical and Electronics Engineers, 2001.

Ye, Nong, Syed Masum Emran, Xiangyang Li, and Qiang Chen. Statistical
Control for Computer Intrusion Detection. Proceedings of 2001 DARPA
Information Survivability Conference and Exposition (DISCEX 2001).
Anaheim, CA, 12-14 June 2001. New York: Institute of Electrical and
Electronics Engineers, 2001.

Ye, Nong, Xiangyang Li, Syed Masum Emran, and Mingming Xu. “Probabilistic
Techniques for Intrusion Detection Based on Computer Audit Data”. IEEE
Transactions on Systems, Man, and Cybernetics, Part A: Systems and
Humans Volume 31 Issue 4 (July 2001): 266-274.

36

APPENDIX B: BIBLIOGRAPHY

Barruffi, Rosy, Michela Milano, and Rebecca Montanari. “Planning for Security
Management”. IEEE Intelligent Systems & Their Applications. Los
Alamitos, CA: IEEE Computer Society, Publications Office.

Cheung, Steven and Karl Levitt. Protecting Routing Infrastructures from Denial
of Service Using Cooperative Intrusion Detection. 1997 New Security
Paradigms Workshop. Langdale, Cumbria, UK, 23-26 September 1997.
New York: ACM Press, 1999.

Cole, Eric. Hackers Beware: Defend ing Your Network From the Wiley Hacker.
Indianapolis, Indiana: New Riders Publishing, 2002.

Durst, Robert et al. “Testing and Evaluating Computer Intrusion Detection
Systems”. Communications of the ACM Volume 42 Issue 7 (July 1999):
53-61

Hoagland, James A., and Stuart Staniford. Viewing IDS alerts: Lessons from
SnortSnarf. Proceedings of 2001 DARPA Information Survivability
Conference and Exposition (DISCEX 2001). Anaheim, CA, 12-14 June
2001. New York: Institute of Electrical and Electronics Engineers, 2001.

Fawcett, Tom and Foster Provost. Activity Monitoring: Noticing interesting
changes in behavior. Proceedings of the fifth ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD-99). San
Diego, CA, 1999. New York: ACM Press, 1999.

Lee, Susan C., and David V. Heinbuch. Building a True Anomaly Detector for
Intrusion Detection. Proceedings of MILCOM 2000, 21st Century Military
Communications Conference. Los Angeles, CA, 22-25 Oct. 2000. New
York: Institute of Electrical and Electronics Engineers, 2001.

Lee, Wenke and Salvatore J. Stolfo. “A Framework for Constructing Features and
Models for Intrusion Detection Systems”. ACM Transactions on
Information and System Security (TISSEC) Volume 3 Issue 4 (November
2000): 227-261.

Lippmann, Richard et al. Evaluating Intrusion Detection Systems: The 1998
DARPA Off- line Intrusion Detection Evaluation. Proceedings of DARPA
Information Survivability Conference & Exposition (DISCEX), Hilton
Head, South Carolina, 25-27 January 2000. Los Alamitos, CA: IEEE
Computer Society, 1999: Vol. 2, 12-26.

Lippmann, Richard et al. “The 1999 DARPA Off- line Intrusion Detection
Evaluation”. http://www.ll.mit.edu/IST/ideval/pubs/2000/1999Eval-
ComputerNetworks2000.pdf, 2000.

37

Nash, David A., and Ragsdale, Daniel J. Simulation of self-similarity in network
utilization patterns as a precursor to automated testing of intrusion
detection systems. Proceedings of the 1st Annual IEEE Systems, Man, and
Cybernetics Information Assurance Workshop, West Point, NY, June 6-7,
2000, pp. 53-57

Northcutt, Steven, and Judy Novak. Network Intrusion Detection: An Analysts
Handbook. Indianapolis, IN: New Riders Publishing, 2001.

Roesch, Martin. “Snort – Lightweight Intrusion Detection for Networks”.
http://www.snort.org/docs/lisapaper.txt. 1999.

SANS Institute. “101 Security Solutions”.
http://www.101com.com/solutions/security/article.asp?articleid=569.
2001.

Scambray, Joel, Stuart McClure, and George Kurtz. Hacking Exposed: Network
Security Secrets and Solutions Second Ed ition. Berkeley, CA:
Osborne/McGraw-Hill, U.S. National Security Agency. NSA Guide
Windows 2000 Security Recommendation Guide, 2001. Available at
http://nsa1.www.conxion.com/win2k/index.html 2001.

Schnakenberg, Dan et al. Cooperative Intrusion Traceback and Response
Architecture. Proceedings of 2001 DARPA Information Survivability
Conference and Exposition (DISCEX 2001). Anaheim, CA, 12-14 June
2001. New York: Institute of Electrical and Electronics Engineers, 2001.

Sekar, R. et al. A High-Performance Network Intrusion Detection System.
Proceedings of the 6th ACM conference on Computer and
Communications Security. Singapore, November 1999. New York: ACM
Press, 1999.

Shen, Y. Peggy et al. Attack Tolerant Enhancement of Intrusion Detection
Systems. Proceedings of MILCOM 2000, 21st Century Military
Communications Conference. Los Angeles, CA, 22-25 Oct. 2000. New
York: Institute of Electrical and Electronics Engineers, 2001.

Ye, Nong, Syed Masum Emran, Xiangyang Li, and Qiang Chen. Statistical
Control for Computer Intrusion Detection. Proceedings of 2001 DARPA
Information Survivability Conference and Exposition (DISCEX 2001).
Anaheim, CA, 12-14 June 2001. New York: Institute of Electrical and
Electronics Engineers, 2001.

38

Ye, Nong, Xiangyang Li, Syed Masum Emran, and Mingming Xu. “Probabilistic
Techniques for Intrusion Detection Based on Computer Audit Data”. IEEE
Transactions on Systems, Man, and Cybernetics, Part A: Systems and
Humans Volume 31 Issue 4 (July 2001): 266-274.

39

APPENDIX C: SNORT CONFIGURATION FILES

 This section contains the configuration files that were used for each build

of Snort that I used. To learn more about the role of configuration files, and the

rules that Snort uses, please visit http://www.snort.org.

Snort 1.7 Full Configuration

#--
http://www.snort.org Snort 1.7.0 Ruleset
Ruleset Release -- 05/21/2001
Contact: Jim Forster - jforster@rapidnet.com
#--
NOTE:This ruleset only works for 1.7.0 and later
#--
include local.rules
include exploit.rules
include scan.rules
include finger.rules
include ftp.rules
include telnet.rules
include smtp.rules
include rpc.rules
include rservices.rules
include backdoor.rules
include dos.rules
include ddos.rules
include dns.rules
include netbios.rules
include sql.rules
include web-cgi.rules
include web-coldfusion.rules
include web-frontpage.rules
include web-misc.rules
include web- iis.rules
include icmp.rules
include misc.rules
include policy.rules
include info.rules
include virus.rules

40

Snort 1.7 Custom

#--
http://www.snort.org Snort 1.7.0 Ruleset
Ruleset Release -- 05/21/2001
Contact: Jim Forster - jforster@rapidnet.com
#--
NOTE:This ruleset only works for 1.7.0 and later
#--
include local.rules
include exploit.rules
include scan.rules
include finger.rules
include ftp.rules
include telnet.rules
include smtp.rules
include rpc.rules
include rservices.rules
include backdoor.rules
include dos.rules
include ddos.rules
include dns.rules
include netbios.rules
include sql.rules
include web-cgi.rules
include web-coldfusion.rules
include web-frontpage.rules
include web-misc.rules
include web- iis.rules
include icmp.rules
include misc.rules
include policy.rules
include info.rules
include virus.rules

41

Snort 1.8.3 Full Rule Set

#--
http://www.snort.org Snort 1.8.1 Ruleset
Contact: snort-sigs@lists.sourceforge.net
#--
NOTE:This ruleset only works for 1.8.0 and later
#--
$Id: snort.conf,v 1.79 2002/01/02 16:12:54 cazz Exp $

include bad-traffic.rules
include exploit.rules
include scan.rules
include finger.rules
include ftp.rules
include telnet.rules
include smtp.rules
include rpc.rules
include rservices.rules
include dos.rules
include ddos.rules
include dns.rules
include tftp.rules
include web-cgi.rules
include web-coldfusion.rules
include web-frontpage.rules
include web- iis.rules
include web-misc.rules
include web-attacks.rules
include sql.rules
include x11.rules
include icmp.rules
include netbios.rules
include misc.rules
include attack-responses.rules
include backdoor.rules
include shellcode.rules
include policy.rules
include porn.rules
include info.rules
include icmp-info.rules
include virus.rules
include experimental.rules
include local.rules

42

Snort 1.8.3 Custom Rules:

#--
http://www.snort.org Snort 1.8.1 Ruleset
Contact: snort-sigs@lists.sourceforge.net
#--
NOTE:This ruleset only works for 1.8.0 and later
#--
$Id: snort.conf,v 1.79 2002/01/02 16:12:54 cazz Exp $

include bad-traffic.rules
include exploit.rules
include scan.rules
include finger.rules
include ftp.rules
include telnet.rules
include smtp.rules
include rpc.rules
include rservices.rules
include dos.rules
include ddos.rules
include dns.rules
include tftp.rules
include web-cgi.rules
include web-coldfusion.rules
include web-frontpage.rules
include web- iis.rules
include web-misc.rules
include web-attacks.rules
include sql.rules
include x11.rules
include icmp.rules
include netbios.rules
include misc.rules
include attack-responses.rules
include backdoor.rules
include shellcode.rules
include policy.rules
include porn.rules
include info.rules
include icmp-info.rules
include virus.rules
include experimental.rules
include local.rules

43

APPENDIX D: ATTACK DESCRIPTIONS

 This section contains explanations for all the different abbreviations and

definitions of the attacks used in the DARPA-LL trials, as well as the actual

results from my evaluation of the data sets.

1998 Attack Listings

Data from 1998 evaluation website at http://www.ll.mit.edu/IST/ideval/

back Denial of service attack against apache webserver where a client
requests a URL containing many backslashes.

dict Guess passwords for a valid user using simple variants of the
account name over a telnet connection.

eject Buffer overflow using eject program on Solaris. Leads to a user
to root transition if successful.

ffb Buffer overflow using the ffbconfig UNIX system command
leads to root shell

format Buffer overflow using the fdformat UNIX system command
leads to root shell

ftp-write Remote FTP user creates .rhost file in world writable
anonymous FTP directory and obtains local login.

guest Try to guess password via telnet for guest account.

imap Remote buffer overflow using imap port leads to root shell

ipsweep Surveillance sweep performing either a port sweep or ping on
multiple host addresses.

land Denial of service where a remote host is sent a UDP packet with
the same source and destination

loadmodule Non-stealthy loadmodule attack which resets IFS for a normal
user and creates a root shell

multihop Multi-day scenario in which a user first breaks into one machine

neptune Syn flood denial of service on one or more ports.

nmap Network mapping using the nmap tool. Mode of exploring
network will vary--options include SYN

44

perlmagic Perl attack which sets the user id to root in a perl script and
creates a root shell

phf Exploitable CGI script which allows a client to execute arbitrary
commands on a machine with a misconfigured web server.

pod Denial of service: ping of death

portsweep Surveillance sweep through many ports to determine which
services are supported on a single host.

rootkit Multi-day scenario where a user installs one or more
components of a rootkit

satan Network probing tool which looks for well-known weaknesses.
Operates at three different levels. Level 0 is light

smurf Denial of service icmp echo reply flood.

spy Multi-day scenario in which a user breaks into a machine with
the purpose of finding important information where the user
tries to avoid detection. Uses several different exploit methods
to gain access.

syslog Denial of service for the syslog service connects to port 514
with unresolvable source ip.

teardrop Denial of service where mis-fragmented UDP packets cause
some systems to reboot.

warez User logs into anonymous FTP site and creates a hidden
directory.

warezclient Users downloading illegal software which was previously
posted via anonymous FTP by the warezmaster.

warezmaster Anonymous FTP upload of Warez (usually illegal copies of
copyrighted software) onto FTP server.

45

1999 Learning Data Exploits: Week 2

ID Date Start_Time Score Name

1 03/08/1999 08:01:01 1 NTinfoscan

2 03/08/1999 08:50:15 1 pod

3 03/08/1999 09:39:16 1 back

4 03/08/1999 12:09:18 1 httptunnel

5 03/08/1999 15:57:15 1 land

6 03/08/1999 17:27:13 1 secret

7 03/08/1999 19:09:17 1 ps attack

8 03/09/1999 08:44:17 1 portsweep

9 03/09/1999 09:43:51 1 eject

10 03/09/1999 10:06:43 1 back

11 03/09/1999 10:54:19 1 loadmodule

12 03/09/1999 11:49:13 1 secret

13 03/09/1999 14:25:16 1 mailbomb

14 03/09/1999 13:05:10 1 ipsweep

15 03/09/1999 16:11:15 1 phf

16 03/09/1999 18:06:17 1 httptunnel

17 03/10/1999 12:02:13 1 satan

18 03/10/1999 13:44:18 1 mailbomb

19 03/10/1999 15:25:18 1 perl (Failed)

20 03/10/1999 20:17:10 1 ipsweep

46

21 03/10/1999 23:23:00 1 eject (console)

22 03/10/1999 23:56:14 1 crashiis

23 03/11/1999 08:04:17 1 crashiis

24 03/11/1999 09:33:17 1 satan

25 03/11/1999 10:50:11 1 portsweep

26 03/11/1999 11:04:16 1 neptune

27 03/11/1999 12:57:13 1 secret

28 03/11/1999 14:25:17 1 perl

29 03/11/1999 15:47:15 1 land

30 03/11/1999 16:36:10 1 ipsweep

31 03/11/1999 19:16:18 1 ftp-write

32 03/12/1999 08:07:17 1 phf

33 03/12/1999 08:10:40 1 perl (console)

34 03/12/1999 08:16:46 1 ps (console)

35 03/12/1999 09:18:15 1 pod

36 03/12/1999 11:20:15 1 neptune

37 03/12/1999 12:40:12 1 crashiis

38 03/12/1999 13:12:17 1 loadmodule

39 03/12/1999 14:06:17 1 perl (Failed)

40 03/12/1999 14:24:18 1 ps

41 03/12/1999 15:24:16 1 eject

42 03/12/1999 17:13:10 1 portsweep

47

43 03/12/1999 17:43:18 1 ftp-write

Attack Descriptions - 1999

back Denial of service attack against apache webserver where a client
requests a URL containing many backslashes.

crashiis A single, malformed http request causes the webserver to crash.
dict Guess passwords for a valid user using simple variants of the

account name over a telnet connection.
eject Buffer overflow using eject program on Solaris. Leads to a user-

>root transition if successful.

ffb Buffer overflow using the ffbconfig UNIX system command leads to
root shell

format Buffer overflow using the fdformat UNIX system command leads to
root shell

ftp-write Remote FTP user creates .rhost file in world writable anonymous
FTP directory and obtains local login.

guest Try to guess password via telnet for guest account.
httptunnel There are two phases to this attack:

Setup - a web "client" is setup on the machine being attacked, which
is configured, perhaps via crontab, to periodically make requests of a
"ser ver" running on a non-privilaeged port on the attacking machine.
Action - When the periodic requests are recieved, the server
encapsulates commands to be run by the "client" in a cookie.. things
like "cat /etc/passwd".. etc..

imap Remote buffer overflow using imap port leads to root shell
ipsweep Surveillance sweep performing either a port sweep or ping on

multiple host addresses.
land Denial of service where a remote host is sent a UDP packet with the

same source and destination

loadmodule Non-stealthy loadmodule attack which resets IFS for a normal user
and creates a root shell

mailbomb A Denial of Service attack where we send the mailserver many large
messages for delivery in order to slow it down, perhaps effectively
halting normal operation.

multihop Multi-day scenario in which a user first breaks into one machine

neptune Syn flood denial of service on one or more ports.
nmap Network mapping using the nmap tool. Mode of exploring network

will vary--options include SYN

ntinfoscan A process by which the attacker scans an NT machine for
information concerning its configuration, including ftp services, telnet
services, web services, system account information, file systems
and permissions.

perlmagic Perl attack which sets the user id to root in a perl script and creates
a root shell

48

phf Exploitable CGI script which allows a client to execute arbitrary
commands on a machine with a misconfigured web server.

pod Denial of service ping of death
portsweep Surveillance sweep through many ports to determine which services

are supported on a single host.

ps Ps takes advantage of a racecondition in the ps command in Sol.
2.5, allowing a user to gain root access.

rootkit Multi-day scenario where a user installs one or more components of
a rootkit

satan Network probing tool which looks for well-known weaknesses.
Operates at three different levels. Level 0 is light

smurf Denial of service icmp echo reply flood.
spy Multi-day scenario in which a user breaks into a machine with the

purpose of finding important information where the user tries to avoid
detection. Uses several different exploit methods to gain access.

syslog Denial of service for the syslog service connects to port 514 with
unresolvable source ip.

teardrop Denial of service where mis-fragmented UDP packets cause some
systems to reboot.

warez User logs into anonymous FTP site and creates a hidden directory.

warezclient Users downloading illegal software which was previously posted via
anonymous FTP by the warezmaster.

warezmaster Anonymous FTP upload of Warez (usually illegal copies of
copywrited software) onto FTP server.

49

APPENDIX E: IDS EVALUATION RESULTS

1998 Learning Data Week 6

Week Day Attack Name

Snort 1.7

Full

Snort 1.7

Custom

Snort 1.8

Full

Snort 1.8

Custom

6 Mon phf N N Y Y

6 Mon satan N N Y Y

6 Mon neptune N N N N

6 Tues portsweep N N N N

6 Tues pod M M Y Y

6 Tues land N N Y Y

6 Wed ipsweep Y N Y Y

6 Wed neptune N N N N

6 Wed back N N Y Y

6 Thurs ipsweep **Y/M** N NA* NA*

6 Thurs ipsweep **Y/M** N NA* NA*

6 Thurs eject N N NA* NA*

6 Thurs ffb N N NA* NA*

6 Thurs eject N N NA* NA*

6 Thurs eject N N NA* NA*

6 Thurs eject N N NA* NA*

6 Thurs pod Y Y NA* NA*

50

6 Thurs pod Y Y NA* NA*

6 Thurs pod Y Y NA* NA*

6 Thurs dict N N NA* NA*

6 Thurs ipsweep **Y/M** N NA* NA*

6 Thurs phf N N NA* NA*

6 Thurs neptune N N NA* NA*

6 Thurs portsweep **Y/M** N NA* NA*

6 Thurs eject N N NA* NA*

6 Thurs portsweep **Y/M** N NA* NA*

6 Thurs smurf Y N NA* NA*

6 Thurs land N N NA* NA*

6 Thurs neptune N N NA* NA*

6 Thurs teardrop Y Y NA* NA*

6 Thurs satan **Y/M** N NA* NA*

6 Thurs ipsweep **Y/M** N NA* NA*

6 Thurs eject N N NA* NA*

6 Thurs portsweep **Y/M** N NA* NA*

6 Thurs ffb N N NA* NA*

6 Thurs ipsweep **Y/M** N NA* NA*

6 Thurs land N N NA* NA*

6 Thurs teardrop Y Y NA* NA*

51

6 Thurs pod Y Y NA* NA*

6 Thurs pod Y Y NA* NA*

6 Thurs perlmagic N N NA* NA*

6 Thurs satan N N NA* NA*

6 Thurs perlmagic N N NA* NA*

6 Thurs eject N N NA* NA*

6 Thurs smurf Y Y NA* NA*

6 Thurs eject N N NA* NA*

6 Thurs ffb N N NA* NA*

6 Thurs eject N N NA* NA*

6 Thurs eject N N NA* NA*

6 Thurs eject N N NA* NA*

6 Fri teardrop N N NA* NA*

6 Fri neptune N N NA* NA*

6 Fri smurf Y Y NA* NA*

Y/M : Attack may have been noticed based on Snort output, but was not
intuitively obvious

NA* : There were too many alerts generated by Snort 1.8.3 for SnortSnarf to be

able to parse them with the computer I had on these two days

52

1998 Learning Data Week 7

Week Day

Attack

Name

Snort 1.7

Full

Snort 1.7

Custom

Snort 1.8

Full Snort 1.8 Custom

7 Mon satan Y/M N N N

7 Mon syslog N N N N

7 Mon phf N N Y Y

7 Mon land Partial N Y Y

7 Tues portsweep N N Y/M Y/M

7 Tues pod Y Y Y Y

7 Tues ffb N N N N

7 Tues eject N N N N

7 Wed phf N N Y Y

7 Wed loadmodule N N N N

7 Wed teardrop Y Y Y Y

7 Wed ipsweep Y N Y/M Y

7 Wed portsweep N N N N

7 Thurs smurf Y N Y Y

7 Thurs satan Y/M N Y Y

7 Thurs perlmagic N N N N

7 Thurs ipsweep Y N Y/M Y

7 Fri neptune N N Y/M Y/M

7 Fri smurf N N N N

7 Fri neptune N N Y/M Y/M

7 Fri back N N Y Y

53

1999 Test Data Week 1

Week Day Attack Name Snort 1.7 F Snot 1.7 C Snort 1.8 F Snort 1.8 C

1 Mon ps N N N N

1 Mon sendmail N N N N

1 Mon ntfsdos N N N N

1 Mon portsweep Y N Y Y

1 Mon sshtrojan N N N N

1 Mon portsweep Y N Y Y

1 Mon xsnoop N N N N

1 Mon snmpget N N N N

1 Mon guesstelnet N N N N

1 Mon portsweep Y N Y Y

1 Mon guessftp N N Y N

1 Mon ftpwrite N N Y Y

1 Mon yaga N N Y Y

1 Mon crashii N N N N

1 Mon portsweep Y N Y N

1 Mon secret N N N N

1 Mon smurf N N N N

1 Tues httptunnel N N N N

1 Tues phf N N Y Y

1 Tues loadmod N N N N

1 Tues ps N N N N

1 Tues ntfsdos N N N N

1 Tues secret N N N N

54

1 Tues sqlattack N N N N

1 Tues sechole N N N N

1 Tues land N N Y Y

1 Tues mailbomb N N N N

1 Tues processtable N N N N

1 Tues crashii N N Y Y

1 Weds satan Y/M N Y Y

1 Weds nc-setup N N Y Y

1 Weds imap N N Y Y

1 Weds ppmacro N N N N

1 Weds processtable N N N N

1 Weds fdformat N N N N

1 Weds nc-breakin N N Y Y

1 Weds warez N N N N

1 Weds arppoison N N N N

1 Weds ncftp N N Y Y

1 Weds secret N N N N

1 Weds named N N N N

1 Weds guessftp N N Y Y

1 Weds smurf N N N N

1 Weds guest N N N N

1 Weds portsweep Y N N N

1 Weds mailbomb Y N N N

1 Weds guesstelnet Y/M N Y Y

1 Weds snmpget N N N N

1 Thurs teardrop Y Y Y Y

55

1 Thurs netbus N N Y N

1 Thurs sshtrojan N N N N

1 Thurs dosnuke N N Y Y

1 Thurs ncftp N N N N

1 Thurs ppmarco N N N N

1 Thurs guest N N N N

1 Thurs xlock N N N N

1 Thurs guesspop N N N N

1 Thurs phf N N Y Y

1 Thurs processtable N N N N

1 Thurs mailbomb N N N N

1 Thurs sqlattack N N N N

1 Fri smurf N N N N

1 Fri arppoison N N N N

1 Fri sshtrojan N N N N

1 Fri ipsweep Y N Y/M Y/M

1 Fri xlock N N N N

1 Fri named N N N N

1 Fri portsweep Y N Y/M Y/M

1 Fri ncftp N N N N

1 Fri netbus N N Y N

1 Fri mailbomb N N N N

1 Fri ipsweep Y N Y/M Y/M

1 Fri loadmod N N N N

1 Fri sechole N N N N

1 Fri portsweep Y N Y/M Y/M

56

1 Fri ipsweep Y N Y/M Y/M

1 Fri secret N N N N

Y/M: Attack may have been noticed based on Snort output, but was not intuitively
obvious

57

1999 Test Data Week 2

Week Day Attack Name Snort 1.7 F Snot 1.7 C Snort 1.8 F Snort 1.8 C

2 Mon pod Y Y Y Y

2 Mon portsweep Y N Y Y

2 Mon pod Y N Y Y

2 Mon pod Y N Y Y

2 Mon warezclient N N N N

2 Mon smurf N N Y Y

2 Mon portsweep Y N Y Y

2 Mon apache2 N N N N

2 Mon guesstelnet N N N N

2 Mon dosnuke N N Y Y

2 Mon loadmodule N N N N

2 Mon ffbconfig N N N N

2 Mon smurf N N Y Y

2 Mon arppoison N N N N

2 Mon apache2 N N N N

2 Mon pod Y N Y Y

2 Mon imap N N Y Y

2 Mon ipsweep N N Y Y

2 Mon dict N N N N

2 Mon syslogd N N N N

2 Mon neptune N N Y Y

2 Mon crashiis N N Y Y

2 Mon ls_domain N N N N

58

2 Mon dosnuke N N Y Y

2 Mon udpstorm N N N N

2 Mon selfping N N Y Y

2 Mon ncftp N N Y Y

2 Tues tcpreset N N N N

2 Tues teardrop Y Y Y Y

2 Tues casesen N N N N

2 Tues xsnoop N N N N

2 Tues selfping N N N N

2 Tues xterm N N N N

2 Tues ftpwrite N N Y Y

2 Tues back N N Y Y

2 Tues ps N N N N

2 Tues neptune N N Y Y

2 Tues httptunnel N N N N

2 Tues eject N N N N

2 Tues pod Y Y Y Y

2 Tues yaga N N N N

2 Tues crashiis N N N N

2 Tues ppmacro N N N N

2 Tues syslog N N N N

2 Tues perl N N N N

2 Tues fdformat N N N N

2 Tues secret N N N N

2 Tues queso N N N N

2 Tues neptune N N Y Y

59

2 Tues dosnuke N N Y Y

2 Tues portsweep Y N Y Y

2 Tues ncftp N N N N

2 Weds udpstorm N N N N

2 Weds selfping N N N N

2 Weds xlock N N N N

2 Weds phf N N Y Y

2 Weds tcpreset N N N N

2 Weds netbus N N N N

2 Weds back N N N N

2 Weds netcat N N N N

2 Weds queso N N Y Y

2 Weds portsweep Y N Y Y

2 Weds perl N N N N

2 Weds queso N N N N

2 Weds snmpget N N N N

2 Weds processtable N N N N

2 Weds back N N N N

2 Weds ffbconfig N N N N

2 Weds apache2 N N N N

2 Weds portsweep Y N N N

2 Thurs ps N N N N

2 Thurs phf N N Y Y

2 Thurs casesen N N N N

2 Thurs ntfsdos N N N N

2 Thurs portsweep Y N Y Y

60

2 Thurs ntinfoscan N N N N

2 Thurs yaga N N N N

2 Thurs crashiis N N Y Y

2 Thurs httptunnel N N N N

2 Thurs fdformat N N N N

2 Thurs satan N N Y Y

2 Thurs teardrop Y Y Y Y

2 Thurs sechole N N N N

2 Thurs resetscan N N N N

2 Thurs ipsweep Y N Y Y

2 Thurs snmpget Y N N N

2 Thurs ntinfoscan N N N N

2 Thurs ls_domain N N N N

2 Thurs warez N N N N

2 Thurs mscan Y N Y Y

2 Thurs arppoison N N N N

2 Fri portsweep N N Y Y

2 Fri xsnoop N N N N

2 Fri crashiis N N Y Y

2 Fri insidesniffer N N Y Y

2 Fri back N N N N

2 Fri insidesniffer N N Y Y

2 Fri netcat N N Y Y

2 Fri xterm N N N N

2 Fri portsweep Y N N N

2 Fri anypw N N N N

61

2 Fri guest N N N N

2 Fri tcpreset N N N N

2 Fri perl N N N N

2 Fri framespoofer N N N N

2 Fri portsweep N N Y Y

2 Fri sqlattack N N N N

2 Fri yaga N N N N

2 Fri crashiis N N Y Y

2 Fri telnet N N N N

2 Fri crashiis N N Y Y

2 Fri syslogd N N N N

2 Fri eject N N N N

2 Fri land N N Y Y

2 Fri syslogd N N N N

2 Fri sendmail N N N N

2 Fri xterm N N N N

2 Fri neptune N N Y Y

2 Fri perl N N N N

2 Fri warez N N N N

2 Fri queso Y N N N

2 Fri cassen N N N N

2 Fri secret N N N N

62

APPENDIX F: NUMBER OF ALERTS

This appendix give the total amount of alerts generated each day by each

of the Snort rule sets.

Year Week Day Snort 1.7 F Snort 1.7 C Snort 1.8 F Snort 1.8 C

1998 6 Mon 6627 0 154 8

1998 6 Tue 5431 10 182 41

1998 6 Wed 6337 0 4560 4439

1998 6 Thu > 1 x 10^6 289 > 1 x10^6 > 1 x10^6

1998 6 Fri > 500000 100 > 500000 > 500000

1998 7 Mon 303 0 375 216

1998 7 Tue 307 10 474 302

1998 7 Wed 921 100 1051 897

1998 7 Thu 118191 0 115860 8756

1998 7 Fri 77237 0 80587 50734

1999 1

Mon

(inside) 55205 0 723 61

1999 1

Mon

(outside) 21656 0 504 45

1999 1

Tues

(inside) 0 0 0 0

1999 1

Tues

(outside) 850 0 831 145

1999 1

Weds

(inside) 6015 0 1503 202

1999 1 Weds 1516 0 1344 195

63

(outside)

1999 1

Thurs

(inside) 1335 13 1389 271

1999 1

Thurs

(outside) 1362 0 1218 248

1999 1 Fri (inside) 6512 0 592 139

1999 1

Fri

(outside) 2229 0 765 129

1999 2

Mon

(inside) 9833 1 1120 265

1999 2

Mon

(outside) 10691 1 1266 620

1999 2

Tues

(inside) 1284 55 8540 3834

1999 2

Tues

(outside) 1270 45 8306 4101

1999 2

Weds

(inside) 1119 0 392 358

1999 2

Weds

(outside) 1083 0 542 513

1999 2

Thurs

(inside) 3636 11 5340 5160

1999 2

Thurs

(outside) 3600 11 5598 5459

1999 2 Fri (inside) 1249 0 1976 1787

1999 2 Fri 1223 0 1916 1781

64

(outside)

65

APPENDIX G: FULL ATTACK DATABASE

The full listing of all the attacks used in the 1998 and 1999 evaluation is

available at http://www.ll.mit.edu/IST/ideval/docs/1999/attackDB.html. It was

included in this report to explain the abbreviations for attacks listed in the results

section. They are divided into five major sections, defined by attack type, which

are Denial of Service, User to Root, Remote to Local, Probes, and Data.

Denial of Service Attacks

Apache2 The Apache2 attack is a denial of service attack against an
apache web server where a client sends a request with many http
headers. If the server receives many of these requests it will slow
down, and may eventually crash.

arppoison ARP Poison is a Denial of Service attack that was developed
specifically for the 1999 MIT-LL Evaluation. In this attack the
goal is to trick hosts on the same ethernet into "learning" the
wrong "Mac" address for known IP addresses. The attacker must
have access to the Local Area Network.

Back In this denial of service attack against the Apache web server, an
attacker submits requests with URL's containing many
frontslashes. As the server tries to process these requests it will
slow down and becomes unable to process other requests.

Crashiis CrashIIS is a Denial of Service attack against the NT IIS
webserver. The attacker sends a malformed GET request via
telnet to port 80 on the NT victim. The command "GET ../.."
crashes the web server and sometimes crashes the ftp and gopher
daemons as well, because they are part of IIS.

dosnuke DoSNuke is a Denial of Service attack that sends Out Of Band
data (MSG_OOB) to port 139 (NetBIOS), crashing the NT
victim (bluescreens the machine.

Land The Land attack is a denial of service attack that is effective
against some older TCP/IP implementations. The only
vulnerable platform used in the 1998 DARPA evaluation was
SunOS 4.1. The Land attack occurs when an attacker sends a
spoofed SYN packet in which the source address is the same as
the destination address.

66

Mailbomb A Mailbomb is an attack in which the attacker sends many
messages to a server, overflowing that server's mail queue and
possible causing system failure.

SYN Flood

(Neptune)

A SYN Flood is a denial of service attack to which every TCP/IP
implementation is vulnerable (to some degree). Each half-open
TCP connection made to a machine causes the 'tcpd' server to
add a record to the data structure that stores information
describing all pending connections. This data structure is of
finite size, and it can be made to overflow by intentionally
creating too many partially-open connections.

Ping Of Death The Ping of Death is a denial of service attack that affects many
older operating systems. Although the adverse effects of a Ping
of Death could not be duplicated on any victim systems used in
the 1998 DARPA evaluation, it has been widely reported that
some systems will react in an unpredictable fashion when
receiving oversized IP packets. Possible reactions include
crashing, freezing, and rebooting.

Process Table The Process Table attack is a novel denial-of-service attack that
was specifically created for this evaluation. The Process Table
attack can be waged against numerous network services on a
variety of different UNIX systems. The attack is launched
against network services which fork() or otherwise allocate a
new process for each incoming TCP/IP connection.

selfping The selfping attack is a denial of service attack in which a
normal user can remotely reboot a machine with a single ping
command. This attack can be performed on Solaris 2.5 and 2.5.1.

Smurf In the "smurf" attack, attackers use ICMP echo request packets
directed to IP broadcast addresses from remote locations to
create a denial-of-service attack address of many subnets,
resulting in a large, continuous stream of 'ECHO' replies that
flood the victim.

sshprocesstable SSH Processtable is similar to the processtable attack in that the
goal of the attacker is to cause sshd daemon on the victim to fork
so many children that the victim can spawn no more processes.
This is due to a kernel limit on the number of processes that the
OS will allow.

Syslogd The Syslogd exploit is a denial of service attack that allows an
attacker to remotely kill the syslogd service on a Solaris server.
When Solaris syslogd receives an external message it attempts to
do a DNS lookup on the source IP address. If this IP address
doesn't match a valid DNS record, then syslogd will crash with a
Segmentation Fault.

67

tcpreset TCP Reset is a denial of service attack that disrupts TCP
connections made to the victim machine. That is, the attacker
listens (on a local or wide-area network) for tcp connections to
the victim, and sends a spoofed tcp RESET packet to the victim,
thus causing the victim to inadvertently terminate the TCP
connection.

Teardrop The teardrop exploit is a denial of service attack that exploits a
flaw in the implementation of older TCP/IP stacks. Some
implementations of the IP fragmentation re-assembly code on
these platforms does not properly handle overlapping IP
fragments.

Udpstorm A Udpstorm attack is a denial of service attack that causes
network congestion and slowdown. When a connection is
established between two UDP services, each of which produces
output, these two services can produce a very high number of
packets that can lead to a denial of service on the machine(s)
where the services are offered. Anyone with network
connectivity can launch an attack; no account access is needed.

User to Root Attacks

anypw NukePW is a Console User to Root attack that allows the attacker to
logon to the system without a password. A boot disk is used to modify
the NT authentication package so that a valid username can login with
any password string. Logins via telnet also work with any password.

casesen CaseSen is a User to Root attack that exploits the case sensitivity of
the NT object directory. The attacker ftps three attack files to the
victim: soundedt.exe, editwavs.exe, psxss.exe (the names of the files
were chosen to make the attack more stealthy). The attacker then
telnets to the victim and runs soundedt.exe. A new object is created in
the NT object directory called \??\c: which links to the directory
containing the attack files. A posix application is started activating the
trojan attack file, psxss.exe, which results in the logged in user being
added to the Administrators user group.

Eject The Eject attack exploits a buffer overflow is the 'eject' binary
distributed with Solaris 2.5.

Ffbconfig The Ffbconfig attack exploits a buffer overflow is the 'ffbconfig'
program distributed with Solaris 2.5.

68

Fdformat The Fdformat attack exploits a buffer overflow is the 'fdformat'
program distributed with Solaris 2.5. The fdformat program formats
diskettes and PCMCIA memory cards. The program also uses the
same volume management library, libvolmgt.so.1, and is exposed to
the same vulnerability as the eject program.

Loadmodule The Loadmodule attack is a User to Root attack against SunOS 4.1
systems that use the xnews window system. The loadmodule
program within SunOS 4.1.x is used by the xnews window system
server to load two dynamically loadable kernel drivers into the
currently running system and to create special devices in the /dev
directory to use those modules. Because of a bug in the way the
loadmodule program sanitizes its environment, unauthorized users
can gain root access on the local machine.

ntfsdos This console-based attack reboots the system from a floppy disk
containing NTFSDOS.EXE. This executable is used to mount the
hard drives, giving the attacker the ability to read and copy files that
would otherwise be protected by Windows NTFS security. The
attack may be consider a User to Root attack because the attacker
can access files that only the Administrator has permission to use.

Perl The Perl attack is a User to Root attack that exploits a bug in some
Perl implementations.

Ps The Ps attack takes advantage of a race condition in the version of
'ps' distributed with Solaris 2.5 and allows an attacker to execute
arbitrary code with root privilege.

sechole The attacker (a regular user) ftps to the victim and uploads test.exe
and testfile.dll (filenames were chosen to be stealthy). The attacker
then telnets to the victim and runs test.exe. The result is the attacker
is added to the Administrators group.

Xterm The Xterm attack exploits a buffer overflow in the Xaw library
distributed with Redhat Linux 5.0 (as well as other operating
systems not used in the simulation) and allows an attacker to
execute arbitrary instructions with root privilege.

yaga Yaga is a User-to-Root attack. It adds the attacker to the Domain
Admins group by hacking the registry. The attacker edits the
victim's registry so that the next time a system service crashes on
the victim, the attacker is added to the Domain Admins group.

Remote to Local

Dictionary The Dictionary attack is a Remote to Local User attack in which
an attacker tries to gain access to some machine by making

69

repeated guesses at possible usernames and passwords. Users
typically do not choose good passwords, so an attacker who
knows the username of a particular user (or the names of all users)
will attempt to gain access to this user's account by making
guesses at possible passwords.

FrameSpoofer This attacks tricks the victim into believing he is viewing a trusted
web site, but in actuality the page's main body is spoofed with a
frame created by the attacker.

Ftp-write The Ftp-write attack is a Remote to Local User attack that takes
advantage of a common anonymous ftp misconfiguration. The
anonymous ftp root directory and its subdirectories should not be
owned by the ftp account or be in the same group as the ftp
account. If any of these directories are owned by ftp or are in the
same group as the ftp account and are not write protected, an
intruder will be able to add files (such as an rhosts file) and
eventually gain local access to the system.

Guest The Guest attack is a variant of the Dictionary attack described in
Section 8.1. On badly configured systems, guest accounts are
often left with no password or with an easy to guess password.
Because most operating systems ship with the guest account
activated by default, this is one of the first and simplest
vulnerabilities an attacker will attempt to exploit.

HttpTunnel In an Http Tunnel attack, the attacker gains local access to the
machine to be attacked and then sets up and configures an http
client to periodically query a web server that the attacker has
setup at some remote host. When the client connects, the server is
able to send cookies that could request information be sent by the
client, such as the password file on the victim machine. In effect,
the attacker is able to "tunnel" requests for information through
the http protocol.

Imap The Imap attack exploits a buffer overflow in the Imap server of
Redhat Linux 4.2 that allows remote attackers to execute arbitrary
instructions with root privileges. The Imap server must be run
with root privileges so it can access mail folders and undertake
some file manipulation on behalf of the user logging in.

Named The Named attack exploits a buffer overflow in BIND version 4.9
releases prior to BIND 4.9.7 and BIND 8 releases prior to 8.1.2.
An improperly or maliciously formatted inverse query on a TCP
stream destined for the named service can crash the named server
or allow an attacker to gain root privileges.

ncftp Ncftp is an ascii UI ftp program for linux. This attack exploits one
of the popular features of the program: the ability to get

70

subdirectories recursively. New (sub)directories are created on the
local machine using the system() command (e.g. if any directories
on the remote host contain an expression in backticks, that
expression will be evalua ted on the local machine when the
directory is created.

netbus NetBus is a Remote to Local attack. The attacker uses a trojan
program to install and run the Netbus server on the victim
machine. Once Netbus is running, it acts as a backdoor. The
attacker can then remotely access the machine using the Netbus
client.

netcat NetCat is a Remote to Local attack. The attacker uses a trojan to
install and run the netcat program on the victim machine on a
specific port (53). Once netcat is running, it acts as a backdoor.
The attacker can remotely access the machine through the netcat
port without a username or password.

Phf The Phf attack abuses a badly written CGI script to execute
commands with the privilege level of the http server. Any CGI
program which relies on the CGI function escape_shell_cmd() to
prevent exploitation of shell-based library calls may be vulnerable
to attack. In particular, this vulnerability is manifested by the
"phf" program that is distributed with the example code for the
Apache web server.

ppmacro This Remote to Local attack uses a trojan PowerPoint macro to
read secret files. This attack is based on a particular scenario. The
victim user usually receives PowerPoint templates from an
outside source via email attachment. He runs a built- in macro
which inserts a graph displaying web statistics, saves the
presentation as a ppt file, and posts it on the web.

Sendmail The Sendmail attack exploits a buffer overflow in version 8.8.3 of
sendmail and allows a remote attacker to execute commands with
superuser privileges. By sending a carefully crafted email
message to a system running a vulnerable version of sendmail,
intruders can force sendmail to execute arbitrary commands with
root privilege.

sshtrojan In SSH Trojan attack, the attacker tricks the system administrator
into installing (as a "Y2K Upgrade") a trojan version of the SSH
program. This trojan version allows the attacker (or anyone!) to
login to the victim, via ssh, with the login "monkey" and no
password. Upon login, a root priviledge shell is spawned for the
attacker.

Xlock In the Xlock attack, a remote attacker gains local access by
fooling a legitimate user who has left their X console unprotected,

71

into revealing their password. An attacker can display a modified
version of the xlock program on the display of a user who has left
their X display open (as would happen after typing 'xhost +'),
hoping to convince the user sitting at that console to type in their
password.

Xsnoop In the Xsnoop attack, an attacker watches the keystrokes
processed by an unprotected X server to try to gain information
that can be used gain local access the victim system. An attacker
can monitor keystrokes on the X server of a user who has left their
X display open. A log of keystrokes is useful to an attacker
because it might contain confidential information, or information
that can be used to gain access to the system such as the username
and password of the user being monitored.

Probes

insidesniffer Here the attacker merely attaches a new machine to an inside
ethernet hub, configured with an ip, and begins sniffing traffic.

Ipsweep An Ipsweep attack is a surveillance sweep to determine which hosts
are listening on a network. This information is useful to an attacker
in staging attacks and searching for vulnerable machines.

ls_domain Here the attacker uses the "nslookup" command in interactive mode
to "list" all machines in a given DNS domain from a mis-configured
primary or secondary DNS server. Thus the attacker can learn what
machines (IP addresses) belong to (and perhaps exist in) the
domain.

Mscan Mscan is a probing tool that uses both DNS zone transfers and/or
brute force scanning of IP addresses to locate machines, and test
them for vulnerabilities.

Nmap Nmap is a general-purpose tool for performing network scans.
Nmap supports many different types of portscansùoptions include
SYN, FIN and ACK scanning with both TCP and UDP, as well as
ICMP (Ping) scanning [45]. The Nmap program also allows a user
to specify which ports to scan, how much time to wait between each
port, and whether the ports should be scanned sequentially or in a
random order.

NTinfoscan NTInfoScan is a NetBIOS based security scanner. It scans the NT
victim to obtain share information, the names of all the users,
services running, and other information. The results are saved in an
html file named .html where victim is the victim's hostname.

72

queso QueSO is a utility used to determine a what type of
machine/operating system exists at a certain IP adress. QueSO
sends a series of 7 tcp packets to any one port of a machine and uses
the return packets it receives to lookup the machine in a database of
responses.

resetscan ResetScan sends reset packets to a list of IP addresses in a subnet to
determine which machines are active. If there is no response to the
reset packet, the machine is alive. If a router or gateway responds
with "host unreachable," the machine does not exist.

Saint SAINT is the Security Administrator's Integrated Network Tool. In
its simplest mode, it gathers as much information about remote
hosts and networks as possible by examining such network services
as finger, NFS, NIS, ftp and tftp, rexd, statd, and other services.

Satan SATAN is an early predecessor of the SAINT scanning program
described in the last section. While SAINT and SATAN are quite
similar in purpose and design, the particular vulnerabilities that
each tools checks for are slightly different.

Data

Secret A "secret" attack is an attack where the attacker maliciously or
mistakenly transfers data which they have access to to a place where
it doesn't belong. For example, transferring data from a classified
computer/network to a non-classified computer/network would
constitute a "secret" attack.

