Using Reflection for Incorporating Fault-Tolerance Techagju
into Distributed Applications

Anh Nguyen-Tuong and Andrew S. Grimshaw

University of Virginia Department of Computer Science
{nguyen,grimshaw}@virginia.edu
http://legion.virginia.edu

Abstract

As part of the Legion metacomputing project, we haveldged a reflective
model, the Reflective Graph & Event (RGE) model, focomporating
functionality into applications. In this paper we apply R@E model to the
problem of making applications more robust to failure&ERencourages
system developers to express fault-tolerance algorithmsterms of
transformations on the data structures that representputations—
messages and methods—hence enabling the constructigenefic and
reusable fault-tolerance components. We illustrateettpressive power of
RGE by encapsulating the following fault-tolerance techriginéo RGE
components: two-phase commit distributed checkpointing, veassi
replication, pessimistic method logging, and forward recovery

1 Introduction

The advent of fast networks and the wide availabilitycomputing resources make possible the
realization of powerful virtual computers, or metasystethat harness resources on a national or global
scale. One of the technological challenges that musblbed before such virtual machines can be used in
production mode is the adoption of fault-tolerance techsigfee system-level services and user
applications. Unfortunately, fault-tolerance protocate widely regarded as complex. Implementing them
correctlyis likely to overwhelm all but the best programmers.

Our approach to remedying this problem is to view féaltrant applications as the sum of three parts:
the application, the fault-tolerance technique, andirtfrastructure required to enable their composition.
Application programmers should focus on writing applicagionhile fault-tolerance experts should
encapsulate algorithms inside components. Within the xbofethe Legion metacomputing project, we
have developed a reflective computational model, the Re#ediraph and Event (RGE) model, for
enabling the composition of fault-tolerance techniquék wuéer applications [11][13].

The basic design philosophy behind a reflective ardhitecis to expose—instead of hide—the
elements that make up the structure of the system tdopeve. A reflective system is introspective; the
system has a representation of itself that it can wvbseits self-representation. Often, the self-
representation of a reflective architecture is exprkegseerms of abstract entities that may be manipulated
to modify the behavior of the system. Thus, a reflecsystem promotes the writing of generic and
reusable components that manipulate the self-represent&tich components may be written by domain
experts and incorporated transparently into user applicatlemrsexample, Fabret al. use a reflective
programming language to incorporate fault-tolerance tegciesi into non-fault-tolerant applications [8],
thereby freeing application programmers from the compled error-prone task of implementing fault-
tolerance algorithms.

In this paper, we demonstrate the applicability of th&ER®del in encapsulating the following fault-
tolerance techniques: distributed checkpointing, passivica#pn, pessimistic method logging, and
forward recovery. The RGE model enables the manipulatiarser computations at an abstract level by
representing them as events, event handlers andapnographs [24]. These data structures are the self-
representation of our reflective architecture and manipgathem is the basis for expressing fault-

"This work is partially supported by DARPA (Navy) contrattN66001-96-C-8527, DOE grant DE-FD02-
96ER25290, DOE contract Sandia LD-9391, Northrup-Grumman (for te BPCMOD/PET program), DOE
D459000-16-3C and DARPA (GA) SC H607305A.

tolerance algorithms. The advantages of using an evend-bactitecture are well-known: components are
decoupled from one another spatially and temporally, &aeg tmay be added/removed dynamically.
Developers may extend object functionality by registering leamdvith the appropriate events and by
defining new events. A novel feature of the RGE ewaathanism is that handlers may be executable
program graphs that specify method invocations on renotjects. Graphs may be bound to their
associated events at run-time, enabling the dynamipasition of functionality to objects.

The paper is organized as follows. We present related imo8ection 2 and introduce the Legion
system model in Section 3. We provide an overview efRIGE model in Section 4 and apply the model to
encapsulate fault-tolerance techniques in Section cavelude in Section 6.

2 Related Work

The RGE model provides a blueprint for structuring dsted applications based on reflective
principles. The concept of reflection is not novesd; use has been advocated in several contexts, including
programming languages [19][22], soft real-time systems [&3];time global databases [27], agent-based
systems [6], and in general, to incorporate non-funetioequirements into user applications [28].

Reflection has also been used to incorporate faultaioter techniques into applications. Lee extends
the Common List Object System [19] to support persistamgirg reflection in [20]. Fabre exploits
reflective features of the language open-C++ to incamgoreplication techniques into applications
transparently [8]. MAUD is a meta-level architectdioe building adaptively dependable systems that has
been implemented on an actor-based system [1]. To ourlédgey RGE is the only reflective model that
uses graphs and events as data structures for refingsepmputations.

The event paradigm is well established and manyesystuse it as the basis for extensibility, e.g.,
Coyote [5], the Java Bean Component Model [29], SPIN [@6§f Ensemble [15]. We use the event
abstraction within the RGE model to capture and refleet‘internals” of objects to programmers. Events
allow programmers to intercept and reroute both messagésmethod invocations. More importantly,
associating events with the acts of receiving/sendiagsages/methods allows protocol writers to express
many algorithms in a natural way by treating messagedstsact entities. Furthermore, RGE events may
be associated with graph handlers dynamically—enablingutiréime binding of functionality to objects.
Graphs used in RGE are the embodiment of the Macro-Elat® model [14]. Other data-flow systems
include Paralex [2], CDF [3], HeNCE [4], Mentat [12][23] andd€trope [7]. Of these, Paralex and
Mentat support replication. Unlike most graph systems, R@phs are exposed to system developers;
they can be assembled dynamically and executed rem@edphs are reflective: graphs are the self-
representation of a computation and transforming thena larect impact on the future of a computation.

Globus is another metasystem project [9]. The printhfference between Globus and Legion is a
philosophical one: Globus employs a “sum-of-service” apgrofor supporting users and specifies
standard interfaces for such functions as security eswburce management. Legion employs an
“architecture” approach—system developers target a dnifi@del that enables component reuse and
interoperability. To our knowledge Globus does not providegrated support for incorporating fault-
tolerance techniques into user applications. Instead,cagiph writers may use a hearbeat monitoring
service as a base for implementing fault-toleranchrtigues. Note that the two approaches are not
mutually exclusive—RGE fault-tolerance components can make ofisan external failure detecting
service.

3 System Model

Legion is based on an object model of computing. Legioectbjencapsulate both hardware and
software resources. Objects are logically independenéatimhs of data and associated methods with
disjoint address spaces. Objects can contain one @ aszociated threads of control, and communicate
via asynchronous method invocations. Objects are nanttles identified by a location-independent
Legion Object IDentifer (LOID) and are mapped to Legi@bject Addresses (LOA) for actual
communication. The LOA of an object includes the neagssformation to communicate with it for
remote method invocation, e.g., the IP address anchporber.

Objects are persistent and can be in one of two st@at&se or inert. Active objects contain one or
more threads of control and are ready to service methlisl tnert objects exist on persistent storage as
passive object state representations (OPR) organizea directory structure. Legion moves objects

between active and inert states to use resourcegepffic to support object mobility, and to enable falur
resilience.

Every Legion object is defined and managed byciss object Class objects in Legion are
themselves active objects, and are given system-lespbnsibility. They create new instances; schedule,
activate, and deactivate their instances; and adigist objects in locating instances of the class.

For a detailed description of the Legion object modekge see Grimshaw [13].

4 Reflective Graph and Event Model

As the name indicates, RGE uses graphs and evespetify and represent user computations. We
provide an overview of graphs in Section 4.1, events ini®ect.2, followed by a discussion of
exoevents-events whose handlers are graphs—in Section 4.3. fRor@ detailed presentation of the RGE
model, please see Nguyen-Tua@ial. [24].

4.1 Graphs

Our use of graphs originated in the Mentat project, a-pagformance object-oriented parallel
processing system [12]. Graphs are the embodiment dfldoeo-Data Flow model, an extension of pure
data flow designed for coarse-grained parallel procgs§ior more details on Macro-Data Flow and how it
is used to exploit opportunities for parallelism pleaseGé#mshawet al. [14].

Graphs specify method invocations and data dependendigselpeobjects. Graph nodes are called
actors and represent method invocation on objects, deoste data-dependencies between actors, and
tokens flowing across arcs represent data or contfotration. When an actor has a token on each of its
input arcs, it may execute its corresponding method, and ilep@sult token on each output arc. Figure 1
illustrates a fragment of code and the corresponding graplesentation.

(1) main() {

(2) int a=10, b =15 x, y, z:
(3) Mject A B

(4 x = Aopl(a);

(5 y = B.opl(b);

(6) z = Aop2(x,Y);

(7) printf("z=0@\n", z);

(8) }

Figure 1. Sample code fragment and corresponding RGE program graph

Unlike a traditional client/server model, the resultanfrthe method invocations on lines 4 and 5 do
not return to thévai n object’ Instead they are forwarded directlyAoop2. WhenA. op1 andB. opl
execute, they each receive a logical copy of the drdfite graph specifies where they should send their
return values, namelA. op2. Thus, graphs are reflective data structures that septehe future flow of
the current computation. Graphs are first-class entities may be assembled at run-time, transformed,
passed as arguments to other objects, and executed ren@r@bhs enable system developers to build
objects that adapt to their environment by assembliegptioper method invocations dynamically and
modifying the future flow of the computation.

Graphs may be annotated with <name, type, value> triptesname field is simply a generic string,
the type field indicates the type, and the value fieldsiste of arbitrary data. The name and type fields
dictate the interpretation of the value field. Anniatas are properties tied to individual arcs and nodes,

L A client/server call is a special case of a 2-no@plyrone for the server and the other for the return value.
2 |In practice, we only send the subset of the graph reqgfgrddture computations, i.e., the transitive set of
reachable graph nodes.

e.g., “Architecture=C90", “Memory Usage=20MB", “Semarficoperty=Stateless”, and denote meta-level
information. Annotations may propagate through the objexthod invocation chain, in which case we call
themimplicit parametersIf object A annotates its graph with an implicitgaeter, invokes a method on
object B, and B invokes a method on object C, A’s inifptiarameter propagates to C. Implicit parameters
provide a mechanism for adding meta-level informatiamgitively and are similar to CORBA’s contexts
[25]. The primary difference with CORBA'’s contexts isathmplicit parameters propagate automatically
through the method invocation call chain.

4.2 Events

The event paradigm provides a well-understood
mechanism for adding new functionality to objects.
The versatility of the event paradigm resides in its
ability to decouple communication between various
components of a system both temporally and
spatially—essential features of a component-baseq T |
systems. Events provide a uniform infrastructure to MemodRepete E}me\thwsfnd Event
bind components together. When component X
wishes to announce to the system that something g
interest has happened, it announces an event H.
Components that have registered their event
handlers with the event manager previously are
notified of the event E. The handlers are then called
immediately upon the announcement of E
(synchronous), or alternatively, the execution of the
handlers may be deferred (asynchronous). In
addition, events may carry arbitrary data.

One of the primary applications of the RGE
model is to implement a configurable protocol stack
for Legion objects [30]. A striking feature of the
protocol stack is that only a few events are
employed. These events may be classified into three bedadaries: message-related, method-related and
object management-related events. These categoriest fibfiefact that Legion is an object-based system
implemented at the low level over message passing.eTabtlescribes several event kinds used in
configuring the protocol stack.

Protocol Stack of Object using Components N

i v

Graph
Component

Method
Invocation
Component

Method
Assembly
Component

Message
Layer

Events

=

Component

" \
MessageReceive Event MessageSend Event

_

Network
Component

Network
Component

=

Figure 2. Sample protocol stack.

Network:

Table 1.Events used to configure the protocol stack of Legiopatbj

Category Event Data | Event Kind Description
Message-related Message and MessageReceive | Object has received a message
events message MessageSend Object is sending a message
headers MessageComplete Message has been successfully sent
MessageError Error in sending message
Method-related | Method MethodReceive | Object has received a complete method
events signature, invocation; all parameters have been received
arguments, | MethodReady A method has passed the security method
annotations access control check and is ready to be serviced
MethodSend Object is invoking a method on a remote object
MethodDone Object is done servicing a method
Object- LOID of the | ObjectCreated An object has been created
management- | object ObjectDeleted An object has been deleted
related events | State of the SaveState Saves the state of the object in its OPR
object. OPR (persistent storage)
organized in| RestoreState Restores the state of the object from its QPR
directory This event is raised upon object startup.
structure

Figure 2 illustrates the major components of the Legiariocol stack. When an object receives a message
from the network, it announcesviessageReceivavent. Thévet hodAssenbl yConponent determines
whether the received message is sufficient to forromaptete method invocation (recall that in data flow
multiple tokens/messages may be required to trigger a chetkecution). If the message results only in a
partial method invocation, the object stores the ngessa an internal database. When the required
messages arrive to complete the method invocatidvethodReceivevent is raised. At this point, the
Met hodl nvocat i onConponent , stores the complete method in a database of readyodsetThen, a
server loop may extract ready methods from the datadadeexecute them. Once the method finishes
executing, aethodDonesvent is raised.

On the sending side, th& aphConponent announces ðodSendcevent for each node in the
graph that has the sender as a source of an input taketurn, theMessagelayer Conponent
transforms each parameter into messages and announcéfessageSendevent. Finally, the
Net wor kConponent sends messages over the network.

4.3 Exoevent Notification Model

The RGE model provides several ways of associatiagphgr and events. One way is for protocol
writers to inspect and transform program graphs, oaterend execute new graphs, within an event
handler. Another more flexible approach is to assocjgég@hs and events dynamically and execute a
program graph when an event is raised, thereby enablmgutitime composition of functionality to
objects. We call events associated with graptaeventso highlight the fact that raising such events may
result in a set of remote method invocations. Thefiigioe object designers is that they need not anticipate
all possible policies when building their objects.

Before showing an application of the exoevent notificaimodel, we define the following terms:
exoevent, exoevent interest, and exoevent interest <&} (El

- Exoevent. An exoevent is a set of 3-tuple items <item-nata®-type, data-value>. The
item-name field is a string to identify an item; the dgfse specifies how to interpret the
data-value field of an item. Items may be added or remfread an exoevent. Users may
search for a specific item by using the name field asya Bg convention, all exoevents
contain an item with item-name="ExoEventType”. The dgpeeffield is a string describing
the type of exoevents. By convention, we classify egoetypes within broad categories
and further divide them using a “:” to delineate subcaitegpe.g., “Exception”, “Warning”,
“Exception:Security”, “Exception:Security:Access Control”.

- Exoevent Interest. An exoevent interest is a 2-tuple <exd@ype, notificationGraph> that
associates an exoevent type with a computation graphexidevent type specifies the kind
of exoevent of interest. The notificationGraph is atfolass program graph and specifies a
computation to be executed if a match is made betweerx@wvent and an exoevent
interest.

- Exoevent Interest Set (EIS). An exoevent interest setsist of exoevent interests. The EIS
propagates to remote objects using implicit parameters.

Consider a serve® used by multiple clients (Figure 3). By inserting thepar exoevent interest in its
exoevent interest set, each client may specify its owevexd propagation policy. Clie; specifies that
exceptions propagate back to itself wher€aspecifies that warnings propagate to a third-party monitor
object.

5 Incorporating Fault-tolerance Techniques into Applications using RGE

We present designs for encapsulating several well-knawtt-folerance techniques using the RGE
model: two-phase commit distributed checkpointing, pestsomnisethod logging, passive replication and
forward recovery. To encapsulate fault-tolerance techsidgugide components, developers express their
algorithms using graphs and events. Typically, thislvas inserting handlers with the appropriate events
or associating graphs with events.

Note that for these examples, we make the following assomspt

» Objects are fail-stop, i.e., objects fail by haltingl ather objects may detect the failure.

» Objects are deterministic. Given a given sequence of imgtihods, objects will make the same
state transitions.

» Objects always have access to stable storage viaQIR&R (Object Persistence Representation).
Note that the OPR does not include the program countsiack of the object as this information
is not portable across heterogeneous architecturds. aBsumption can be relaxed using tools
such as April that allow heterogeneous checkpoints [10].

Furthermore, we present only salient features of ezadimique due to space restrictions.

Exoeventinterest =
<exoeventType = "Exception”,

C,.notifyException

notificationGraph

>
S.service)—»((:.return)

Exoeventinterest =
<exoeventType = "Warning",

Monitor.notifyWarning

notificationGraph

Figure 3. ClientsC, andC, specify two different exoevent propagation policiés.specifies that
exceptions propagate back to it via tiet | f yExcept i on() methodC, specifies that warnings
propagate to a third-party monitor object via treg i f yWar ni ng() method.

5.1 Two-Phase Commit Distributed Checkpointing (2PCDC)

A common method for ensuring the progress of long-runajpglication is to checkpoint its state
periodically on stable storage. Checkpoints may be vieagetihsurance policies” against failures—in the
event of a failure, the application can be rolled backt esstarted from its last checkpoint—thereby
bounding the amount of lost work that must be recomputed. i&s all insurance policies, there are
choices and costs involved. Users may select fromiatyaf checkpointing algorithms, each providing a
specified level of service for a given cost. Costsudelthe cost of the algorithm itsel—memory, CPU,
stable storage requirements, and run-time overhead-elhasvthe cost of implementing a given algorithm
correctly. The RGE model directly addresses the latbst: domain experts encapsulate fault-tolerance
technigues into components that may be composed with useraippls.

The basic idea behind a two-phase commit distributedkplogtting protocol is to ensure that either
all objects in an application checkpoint or none do [21]. Séteof local checkpoints taken must form a
consistent global state—all methods received by ancoljeist be recorded as having been sent. Two
problems must be addressed to ensure a consistent ghassdpointilost methods andrphan methods.
Lost methods are methods that are marked as sent butagived, while orphan methods are methods
marked as received but not sent (Figure 4). The algorittesepted here only seeks to prevent orphan
methods; lost methods are assumed to be handled by thé/ingdeommunication channels.

Figure 4. Two objects, @ and Q, with local checkpoints (black boxes). Orphan
methods result when a method is marked as received ircloeekpoint (@) but not
marked as sent in any other. Lost methods result wimeetlaod is marked as sent in one
checkpoint (@) but not marked as received in any other.

The algorithm consists of two phases. In phase |, a cwatadirequests participants to take a tentative
checkpoint. If a participant rejects the request for r@agons, it replielo. Otherwise, the participant takes
a tentative checkpoint, replie¥es, suspends communication with other objects, and awtié
coordinator’s decision. If all participants reples, the coordinator's decision is to commit the
checkpoints, otherwise its decision is to abort théogea. The coordinator’'s authoritative decision marks
the end of the first phase. In phase Il, the coordirsgnds its decision to all participants. If the decigson
Yes, participants commit the tentative checkpoint taken infitlse phase to stable storage. Otherwise,
participants may discard the tentative checkpoint previdakisn.

Coordinator Participants
Phase | Phase |
requests participants to take tentativiéaccept request
checkpoints take a tentative checkpoint
await all replies reply Yes
if all replies = “Yes” suspend communication
decide Yes else
else reply No
decide No
Phase I Phase Il
inform participants of decision if decision = “Yes”
commit tentative checkpoint
else
discard tentative checkpoint
resume communication

Table 1.Overview of the Two-Phase Commit Distributed Checkpoinfigorithm

This basic algorithm may be extended in several ways.cbbedinator can bound the amount of time
that it waits for participants to reply. To handle ardawator crash, the coordinator can save its decision
onto stable storage at the end of phase I. The nuohlparticipants may be reduced by exploiting semantic
information [21]. For the sake of brevity, we do notluge these extensions in our mapping of the
algorithm onto the RGE model, nor do we discuss the mssdaecovery algorithrh.

Mapping onto the RGE model

The algorithm is encapsulated usingRCDC component2PCDC adds the following methods to the
participant’s public interfaceyoi d TakeTent at i veCheckpoi nt () andvoi d Deci sion() so
that the coordinator may invoke these methods.

In phase |, thPCDC component takes a tentative checkpoint by raisir@peeStateevent. The
default handlers for the event write the state of thgead into the object's OPR. To suspend
communication at the end of phase | and prevent orplethaus, we ensure that the next method serviced
after TakeTent at i veCheckpoi nt () is Deci si on(). 2PCDC adds a handlerAwaitDecision to
the MethodReceiveevent. AwaitDecisionintercepts all methods until the receipt Réci si on(), at
which point AwaitDecisionannounces BlethodReadgvent.

® Similarly to the checkpointing algorithm, the recovenyosilym uses a two phase-commit protocol

To commit the checkpoint in phase2PCDC creates a new directory in the OPR, “/2PC-Commit”, in
which it writes the state of the object.

We ensure that there are no lost methods by prevelt#tignessages (recall that multiple messages
may be needed to form a method invocation). Upon recefpa message, an object raises a
MessageReceivexoevent. The sender of the message registers its interlglessageReceivasing the
Exoevent Notification Model (Section 4.3). If the invokernot notified ofMessageReceivia a timely
manner, it retransmits the message. To handle duplivassages, the invoking object appends a message
identification number. The invoked object may then discardichtpk based on this number.

5.2 Pessimistic Method Logging (PML)

The two-phase commit distributed checkpointing algorithquires objects to coordinate their local
checkpoints to establish a consistent application gkiage. Further, during recovery, even objects that did
not fail are potentially required to rollback their statVe now describe an adaptation of pessimistic
message logging [31] for an object-based environment—pesgsimisthod logging (PML)—in which
objects establish checkpoints and recover independently inenarother.

In PML, objects checkpoint their state periodically angl leceived methods onto stable storage upon
receipt before delivering the methods to the applicatigerldn the event of a failure, objects restartrfro
their saved checkpoint and replay their log. Since obg@geterministic, replaying methods in the same
order will produce the same execution (Figure 5).

PML is attractive due to its simple recovery charastie—objects restart independently without the
need for a costly coordination protocol. The disadvantdd®ML is the high cost of saving methods onto
stable storage. We do not discuss here techniques to ribxduaeerhead of pessimistic logging [17][18].

%
L @ — (b) (c) —
o, X X e =
M. (m,,m.,) 3\

& 1\ ? sv

O, [1

L 1

M, (m,)

Figure 5. Multiple messages (lowercase m) may be needed todommethod invocation (uppercase M).
Object Q crashes at (a), (b) or (c). If;@rashes at (a), deplays messages;rand m from the log. If Q
crashes at (b), (eplays the method Mrom the log. During recovery, messagg igretransmitted by £

If O, crashes at (c), Qeplays method Mand message sifrom the log.

Mapping onto the RGE model

The algorithm is encapsulated usin§L componentPML creates the following directories in the
OPR of the object, “/MessagelLog/” and “/MethodLog/PML inserts aLogMessagehandler with the
MessageReceivevent as well as AogMethodhandler with theMethodReadyevent. When an object
receives a messagkpgMessagenrites it into the “/MessagelLog/” directory. If theceived message
results in a full method invocation (recall that in ourd®ip multiple messages may be needed to form a
method), aMethodReadvent is generatetlogMethodcatches the event and writes the method into the
“/MethodLog/” directory. To reclaim storage spategMethodalso deletes the messages associated with
the received method from “/MessageLod?ML also inserts &estarthandler with theRestoreStatevent
to ensure thaPML is notified when an object restarts.

When communication is attempted on a crashed objeciags will restart it on an available host and
restore its saved state. In the procesReatoreStatevent is raised and caught by tRestarthandler.
Restartfirst replays the partial methods, i.e., messagegatwd in “/Messagelog/”. Then, it replays the
methods contained in “/MethodLog/” before allowing nornmaibcessing to resume for the object.
Replaying the method log may result in duplicate methodcetians on remote objects. To prevent
methods from executing multiple times, objects appenddio eessage a unique message identifier so that
receiving objects may discard duplicate entries.

To prevent lost methods and messagellL uses theMessageReceivexoevent as described
previously in Section 5.1. There are no orphan messages alhreceived messages are stored in the
“/MessagelLog/” directory in the OPR of objects.

5.3 Passive Replication

In passive replication, a primary object services nebihgocations. When the primary object finishes
servicing a state-updating method it sends its newe $tat backup object before replying to the caller.
Upon failure of the primary, the backup takes over sergices subsequent method invocations (Figure 6).

W int write(int,int) | | int write(int,in)
[T’] read-only int add(int,int) [4] read-only int add(int,inf)
Client K
Primary(0) gl ReceiveState(State)
[‘5] ReceiveReply(Reply)
BecomePrimary(LOID Backup)
Backup(O) Y,

Figure 6. To communicate with O, a client first obtains a bindirapT Class O [1][2]. The client
invokes a state-updating method,i t e(), on Primary(O) [3]. Before the result of i t e() is
returned to the client [5], Primary(O) first forwarits state to the Backup [4[f. the primary fails,

Cl ass OinvokesBecorePri mary() on the backup. Subsequent binding requests from clients
will result in a binding to the new primary. Note thdtetmethodsRecei veState(),
Recei veRepl y() andBeconePri mary(), are added transparently to the user code.

Mapping onto the RGE model

The passive replication algorithm is encapsulated indidePassiveReplication component. Inside
the primary,PassiveReplication inserts aSendStateToBackumndler with theMethodDoneevent. If
PassiveReplication is contained within the backup, it adds and exports the metho
BeconePri mary(LO D NewBackup) , Recei vePrimaryState(State S), and
Recei veRepl y(Reply R).

At the primary, if the method serviced is state-updptifendStateToBackugxtracts the state of the
object from its OPR and forwards it by invoking the Inoet SendStateToBackupn the backup.
SendStateToBackugetermines whether a method is state-updating by ingpebte function signature. If
the signature is not of the form “read-only return-typec(args...)”, then the method is state-updating. If
the method is non-state-updating, the primary sends th@dyreply value to the backup by invoking
Recei veRepl y().

At the backupPassiveReplication waits for the invocation of either tigeconePri mary() or
Recei vePri marySt at e() methods. IBeconePri mar y() is invoked, the backup becomes primary
and forwards its state to the new backup. Since thertthpy can crash before sending the return value to
the client, the new primary resends the last retulneval'hus, clients may receive duplicate return values.
We assume that clients can handle duplicate values.

When a binding request is issued for a crashed objectdfault behavior is for the class of the object
to restart the object on an available host, andtmehe new binding. Instead, the class now selertpleca
as the new primary and invokes tBeconmePr i mar y() method on the new primary, before returning the
binding of the new primary. Passive replication resaltfaster recovery of crashed objects than the default
algorithm as the backups are already active and reag@yvizces methods.

5.4 Forward recovery

In forward recovery, applications do not rollback to evmusly consistent state. Instead, they attempt
to repair themselves so as to continue processingdroomsistent state. By its nature, forward recovery i
application-dependent and not as general as the backwantkrganethods discussed in the previous
sections.

Our approach for supporting forward recovery is to use ¥oevent notification model described in
Section 4.3 in which the concepts mfising and propagating exceptions are decoupled. Thus, object
writers need not specify exception propagation policiekesign time.

Mapping onto the RGE model

If an object wishes to be notified of an exoeventagily objects in its future call chain, it inserts an
exoevent interest in its exoevent interest set. Considemote method invocation in which a clight
invokes a methoder vi ce on an object. To be notified of all exceptions raibgds. service(), C
annotates its program graph with the exoevent intsresiin in Figure 7. Since the exoeventType field is
set to ‘Except i on”, all exceptions propagate back via that i f yExcepti on method orC.

C
{S.service}—{c.return)

Graph

Exoeventinterest =
<exoeventType = "Exception”,

C.notifyException

notificationGraph

Figure 7. Client C specifies interest in exceptions raisedly

6 Conclusion

To achieve our goal of alleviating the difficulty of wnigj robustmetacomputing applications, we have
presented a reflective model of computation, the Refle@raph and Event model, for expressing fault-
tolerance techniques inside reusable components andren#tidé composition of such components with
user applications. We have presented designs for mappiaabevell-known fault-tolerance techniques to
the RGE model: two-phase commit distributed checkpoinpagsive replication, pessimistic logging, and
forward recovery.

The RGE model is implemented and deployed within the Legietacomputing system. The forward
recovery example has also been implemented and is in usee Fudtk consists of implementing and
deploying the other examples described in this paper, as svalapping other fault-tolerance techniques
onto the RGE model.

7 References

[1] G. Agha and D. C. Sturman, “A Methodology for Adapting &at of Faults”,Foundations of Dependable
Computing: Models and Frameworks for Dependable Systéhawer Academic Publishers, Vol. 1, pp. 23-60,
1994.

[2] O. Babaogluet al, "Paralex: An Environment for Parallel Programming intilhsited Systems"Technical
Report UBLCS-92-4Laboratory for Computer Science, University of Bolognet. ©992.

[3] R. F. Babb, “Parallel Processing with Large-Grain Drtav Techniques”|EEE Computerpp. 55-61, July 1984.

[4] A. Beguelin et al, “HeNCE: Graphical Development Tools for Network-Basedn&lirrent Computing”,
Proceedings SHPCC-9pp. 129-36, Williamsburg, VA, May 1992.

[5] N. T. Bhatti, et al, “Coyote: A System for Constructing Fine-Grain Configuealommunication Services”,
Department of Computer Science Technical Report TR 9@iiersity of Arizona, July 1997.

[6] P. Charlton, “Self-Configurable Software Agent#&dvances in Object-Oriented Metalevel Architectures and
Reflection CRC Press, pp. 103-127, 1996.

[7] J. C. Browne, T. Lee and J. Werth, “Experimental Evalnatiba Reusability-Oriented Parallel Programming
Environment”,|EEE Transactions on Software Engineeripg. 111-120, February 1990.

[8] J. C. Fabreet al, “Implementing Fault Tolerant Applications using ReflectiWbject-Oriented Programming”,
The Twenty-fifth Symposium on Fault-Tolerant Computing (FTCS@5489-498, 1995.

[9] I. Foster and C. Kesselman, “Globus: A metacomputing strfrature toolkit”, International Journal of
Supercomputing Application$997.

10

[10] A. Ferrari, “Process Introspection: A Checkpoint MechanismHigh Performance Heterogeneous Distributed
Systems”Department of Computer Science Technical Report CS-96+i%ersity of Virginia, October 1996.

[11] A. S. Grimshaw, “The Legion vision of a worldwide virtl@mputer”, Communications of the ACMO:1, pp.
39-45, January 1997

[12] A. S. Grimshaw, A. Ferrari and E. West, “MentaParallel Programming Using C++ The MIT Press,
Cambridge, Massachusetts, pp. 383-427, 1996.

[13] A. S. Grimshawet al, “Architectural Support for Extensibility and Autonomy in &éiArea Distributed Object
Systems “Department of Compter Science Technical Report CS-98+ifersity of Virginia, June 1998.

[14] A. S. Grimshaw, J. B. Weissman and T. Strayer, “Paté&un-Time Support for Dynamic Object-Oriented
Parallel ProcessingACM Transactions on Computer Systei@. 14, Num. 2, 1996.

[15] M. Hayden, “The Ensemble Systen@ornell University Technical RepoifR98-1662, January 1998.

[16] Y. Honda and M. Tokoro, “Soft Real-Time Programming tigto Reflection”,Proceedings of the International
Workshop on New Models for Software Architecture: Reflectiometalevel Architecturgpp. 12-23, 1992.

[17] P. Jalote, “Fault Tolerance in Distributed Systems&netice Hall, 1994.

[18] D. B. Johnson and W. Zwaenepoel, “Sender-Based Messagenfbgbine Seventeenth Symposium on Fault-
Tolerant Computing (FTCS-1®p. 14-19, 1987.

[19] G. Kiczales, J. D. Rivieres and D. G. Bobrow, “The éfrthe Metaobject Protocol”, MIT Press, 1991.

[20] A. H. Lee and J. L. Zachary, “Reflections on metapnugning’, IEEE Transactions on Software Engineering
vol. 21, pp. 883-892, November 1995.

[21] R. Koo and S. Toueg, “Checkpointing and Rollback-Recovarpfstributed Systems’|EEE Transactions on
Software Engineeringpp. 23-31, January 1987.

[22] P. Maes, “Concepts and Experiments in Computational ReftéctProceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages and Applicatio®3SIOX) pp. 147-55, October 1987.

[23] A. Nguyen-Tuonget al, “Exploiting Data-Flow for Fault-Tolerance in a Widee& Parallel System”,
Proceedings of the 15th International Symposium on Reliable atibDisd Systems (SRDS-1pp. 2-11, 1996.

[24] A. Nguyen-Tuonget al, “Using Reflection for Flexibility and Extensibilityn a Metacomputing Environment”,
Technical Report CS-98-3Bepartment of Computer Science, University of Virgjrii998.

[25] OMG, “The Common Object Request Broker: Architecture aretiipation”, OMG, 1995.

[26] P. Pardyak and B. Bershad, “Dynamic Binding for an ExpémsSystem”,Proceedings of the Second USENIX
Symposium on Operating Systems Design and Implementation (S8&it)e, WA, pp. 201-212, October 1996.

[27] J. A. Stankovic, S. H. Son and J. Liebeherr, “BeeHivab@ll Multimedia Database Support for Dependable,
Real-Time Applications”Technical Report CS-97-0®epartment of Computer Science, University of Virginia,
1997.

[28] R. J. Stroud and Z. Wu, “Using Metaobject ProtocolsSaisfy Non-Functional Requirementsfidvances in
Object-Oriented Metalevel Architectures and Refle¢t@mapter 3, CRC Press, pp. 31-52, 1996.

[29] Sun Microsystems, “JavaBeans™ttp://www.javasoft.com/bean8eptember 1998.

[30] C. L. Vileset al, “Enabling Flexibility in the Legion Run-Time Libraryfnternational Conference on
Parallel and Distributed Processing Techniques (PDPTA B&} Vegas, NV, 1997.

[31] Y. Huang and C. Kintala, “A software fault tolerancéatform”, Practical Reusable SoftwareEd. B.
Krishnamurthy, John Wiley & Sons, pp. 223-245, 1995.

11

