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Abstract
The Legion project at the University of Virginia is an attempt to provide system services
that provide the illusion of a single virtual machine to users, a virtual machine that provides
both improved response time via parallel execution and greater throughput. Legion is
targeted towards both workstation clusters and towards larger, wide-area, assemblies of
workstations, supercomputers, and parallel supercomputers. Rather than construct Legion
from scratch we are extending an existing object-oriented parallel processing system by
aggressively incorporating lessons learned over twenty years by the heterogeneous
distributed systems community. The campus-wide virtual computer is an early Legion
prototype. In this paper we present challenges that had to be overcome to realize a working
CWVC, as well as performance on a production biochemistry application.

1. Intr oduction

Providing resources to computationally demanding applications at the lowest cost is a

challenge facing many organizations. The traditional solution to providing the necessary cycles has

been to use a supercomputer. An alternative, less costly, solution that has emerged recently is to

use networks of existing high-performance workstations instead, managing the collection of

resources as a single entity. These systems are called variously “workstation farms” or

“workstation clusters”. The advantage of the cluster approach is that the resources are often already

in place, and under-utilized. A second advantage is that the cost per MIP/FLOP is much less. A key

problem that must be addressed in cluster computing is management. The collection of

workstations is just that, a collection. Without system software to tie the machines together it is not

easy for a user to exploit cycles on many different workstations.

There are two broad categories of solutions to the problem of managing the workstation

resources, throughput oriented systems, and response-time oriented systems. Throughput oriented

systems are interested in exploiting available resources in order to service the largest number of

jobs, where a job is a single program that does not communicate with other jobs. There are several

1.This work is partially funded by NSF grants ASC-9201822 and CDA-8922545-01,National Laboratory of
Medicine grant (LM04969), NRaD contract N00014-94-1-0882, and ARPA grant J-FBI-93-116.
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such systems available today, DQS, Condor, LoadLeveler, LSF, CODINE, and NQS to name a few

[16][20][28][29][31][33]. Response time oriented systems are concerned with minimizing the

execution time of a single application, i.e., with harnessing the available workstations to act as a

virtual parallel machine. The purpose is to more quickly solve larger problems than would

otherwise be possible on a single workstation. Examples of such parallel processing tools available

for workstations include Express, Linda, Piranha, Mentat, P4, and PVM [9][24][7][46]. The two

objectives, throughput and response time, are not necessarily mutually exclusive.

The problem with existing systems is that they are incomplete. One system may provide

load balancing and a shared file space, but not parallel processing or fault-tolerance. Another

system may provide high application performance via parallel execution yet provide no fault

tolerance and require all hosts to see the same file system image. No single system currently

provides all of the features required.

The Legion project at the University of Virginia is an attempt to provide system services

that provide the illusion of a single virtual machine to users, a virtual machine that providesboth

improved response time via parallel execution and greater throughput [21]. Legion is targeted

towards both workstation clusters and towards larger, wide-area, assemblies of workstations,

supercomputers, and parallel supercomputers. Legion tackles problems not solved by existing

workstation based parallel processing tools such as fault-tolerance, wide area network support,

heterogeneity, the lack of a single file name space, protection and security, as well as providing

efficient scheduling and comprehensive resource management. At the same time Legion provides

the parallel processing, object-interoperability, task scheduling, security, and file system facilities

not usually found in job-based load balancing systems.

Rather than attempt to construct Legion from scratch, we have chosen an evolutionary

approach. We began by first constructing a campus-wide virtual computer (CWVC) testbed based

on Mentat [24][25]. Mentat is an existing, robust, object-oriented, parallel processing system that

supports execution across heterogeneous platforms. Starting with an existing system eliminates the

long lead times and uncertainty associated with starting from scratch. Additionally, existing

applications can be run in the new environment permitting ideas and system implementations to be

tested using real rather than synthetic applications. For example, because Mentat is implemented
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using replaceable modules (objects) we can easily experiment with new scheduling algorithms

developed for the Legion environment without changing the applications.

The campus-wide virtual computer is a direct extension of Mentat onto a larger scale, and

is a prototype for the nationwide system and reflects the fact that the university is a microcosm of

the world. The computational resources at the University are operated by many different

departments, there is no shared name space, and sharing of resources is currently rare. Resources

owned by the departments consist of a variety of workstations (SUN, DEC, HP, IBM, SGI) and

small parallel machines. This equipment is used for “production” applications during the day.

Even though the CWVC is much smaller, and the components much closer together, than

in the envisioned nationwide Legion, it still presents many of the same challenges. The processors

are heterogeneous, the interconnection network is irregular, with orders of magnitude differences

in bandwidth and latency, and the machines are currently in use for on-site applications that must

not be negatively impacted. Further, each department operates essentially as an island of service,

with its own NFS mount structure, and trusting only machines in the island.

The CWVC is both a prototype and a demonstration project. The objectives are to:

• demonstrate the usefulness of network-based, heterogeneous, parallel processing to uni-
versity computational science problems,

• provide a shared high-performance resource for university researchers,
• provide a given level of service (as measured by turn-around time) at reduced cost,
• act as a testbed for the nationwide Legion.

The prototype consists of over eighty workstations and an IBM SP-2 in six buildings and

is now operational2. Before the system could become useful to users several challenges had to be

overcome; simply scaling Mentat to run on the eighty machines was insufficient. The first

challenge is to construct a federated file system and unified name space so that files, both

executables and user data, can be accessed from any host in the system. The second challenge is to

make the system able to deal with host and network failure in a graceful fashion. If one or more

hosts fail the system must continue to operate without interruption. In a university environment,

where some of the hosts are in public labs, periodic host failure is the rule and not the exception.

The third challenge is protection and security. Mentat, like many other parallel processing systems,

2.To see the CWVC in action connect to our web page at http://uvacs.cs.virginia.edu/~mentat/legion/ and fol-
low the links to Cyberia. Cyberia is an on-line look at the running CWVC.
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does not address security. Each user either starts their own copy of Mentat and runs in their

protection domain. Alternatively, the user uses a shared copy (one set of daemons, always running),

in which case their application runs in the same protection domain as the shared copy. Thus all of

their data files must be world readable, and their output files must be world writable. This is

acceptable for a small group of colleagues, but is unacceptable for a large system.

The last two challenges have their roots in human nature rather than technical necessity.

The fourth challenge is to provide autonomy to workstation owners and system administrators. To

allow users and local system administrators to control resource utilization on their hosts in order to

enforce local scheduling policies and to allow users to throttle system utilization of their hosts. We

call this “pain management” because without the ability to effect local utilization users feel that

they are in pain and are reluctant to add their resources to the pool. The fifth and final challenge

discussed here is resource accounting. To avoid the tragedy of the commons in which everyone uses

resources yet none contribute it is necessary to know how much resource is contributed (offered

and used) by each user and how much is consumed. Users who contribute more than they use can

be rewarded, and those who consume more than the contribute can be charged. How users are

rewarded and charged is a policy issue not yet addressed. Keeping track of resource utilization

requires mechanism. Finally there is performance. While implementing solutions to the above

challenges we must not let performance suffer! For many users that is after all the whole point.

In this paper we present our early results using the CWVC and outline the shape of the

solutions to the six challenges. To demonstrate performance we use a biochemistry application,

complib, that compares DNA and protein sequences. The performance results are encouraging.

Several other production applications have been developed by and for university researchers,

including planetary atmosphere simulations, steric acid circulation tank simulations, solid state

circuit simulations, parallel genetic algorithms, and 3D image segmentation.

We begin our presentation with background material on Legion and Mentat. We then look

at the CWVC, discussing progress over the last year in each of the six challenge areas. The

computational environment is then described to provide context for the performance results. We

then briefly describe complib, presenting an English description of the problem and its

computational structure. The results are next, followed by a discussion of our next steps.
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2. Background

2.1. Legion

Legion will consist of workstations, vector supercomputers, and parallel supercomputers

connected by local area networks, enterprise-wide networks, and the National Information

Infrastructure. The total computation power of such an assembly of machines is enormous,

approaching a petaflop; this massive potential is, as yet, unrealized. These machines are currently

tied together in a loose confederation of shared communication resources used primarily to support

electronic mail, file transfer, and remote login. However, these resources could be used to provide

far more than just communication services; they have the potential to provide a single, seamless,

computational environment in which processor cycles, communication, and data are all shared, and

in which the workstation across the continent is no less a resource than the one down the hall.

A Legion user has the illusion of a single, very powerful computer on her desk. It is

Legion’s responsibility totransparently schedule application components on processors, manage

data transfer and coercion, and provide communication and synchronization in such a manner as

to minimize execution time via parallel execution of the application components. System

boundaries will be invisible, as will the location of data and the existence of faults.

Before the Legion vision can be realized, several technical challenges must be overcome.

These are software problems; the hardware challenges are being addressed and are the enabling

technologies that provide the opportunity. The software challenges revolve around eight central

themes: achieving high performance via parallelism, managing and exploiting component

heterogeneity, resource management, file and data access, fault-tolerance, ease-of-use and user

interfaces, protection and authentication, and exploitation of high-performance communications

protocols. We realize that these are serious issues; we examine them in more detail in [21][22].

In addition to the purely technical issues, there are also political, sociological, and

economic ones. These include encouraging the participation of resource-rich centers and the

avoidance of the human tendency to free-ride. We intend to discourage such practices by

developing and employing accounting policies that encourage good community behavior.
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2.2. Related Work

The vision of a seamless metasystem or metacomputer such as Legion is not novel. Indeed,

a number of systems have been designed to attack one or more of the problems mentioned above,

e.g., Andrew, Locus and NSF for file systems [32][35][49], Locus for fault-tolerance, Sun XDR

and the University of Washington HCS for heterogeneity[39][40][45]. None has been fully

successful. Several changes have occurred that make the realization of a complete high

performance metacomputer possible. First, high-speed optical communication has revolutionized

long distance data communication. Realized bandwidths have gone from T1 (1.5 mBits/Sec.) to

OC/12 over Sonet (152 mBits/sec.), with similar magnitudes of change expected in the next five

years. The increase in bandwidth makes nation-wide metasystems practical and not just a science

fiction fantasy. The second change is that achieving high performance via parallelism, previously

available only for tightly coupled parallel processors, is now possible for loosely coupled

distributed systems [7][8][9][12][27][34][37][46][51]. Related advances in resource management

driven by parallel computing have attacked the problem of decomposing and scheduling

application components to minimize elapsed time.

Legion differs from other work in heterogeneous distributed systems

[3][4][5][6][19][35][36][38][39][40][47][48][49] and object-oriented distributed systems

[2][13][38]. One major difference is our emphasis on performance. Often interoperability, fault-

tolerance, or consistency is the main focus, and performance is sacrificed. Legion though is

performance oriented. The underlying model is parallel, and the user, not the system designers, will

choose the appropriate level of fault tolerance and consistency that best meets their needs.

There are other metasystems [17][30][43][50] and heterogeneous parallel computing

[7][10][18][46] projects underway. Our work differs from other heterogeneous parallel processing

systems in the scope. We’re addressing file systems, fault-tolerance, interoperability, etc. Our work

differs from the other metasystems efforts in that we have a system already in place that can evolve

- we are not starting from scratch.

As mentioned in the introduction several systems have been developed to manage

workstation farms, DQS, Condor, LoadLeveler, LSF, and CODINE. Legion differs in that it is both

a throughput and a response time system, we attempt to both better utilize system CPU resources
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and decrease execution time via parallelism. Further, Legion provides a single name space to users

with data accessible from anywhere in the system. In other words Legion is a complete system

solution, rather than a load balancing tool.

Whether or not a metasystem is explicitly constructed by design, the nation (and perhaps

the world) will eventually build a system that shares at least some of the attributes of Legion. The

reason is simple: individual and organizational users will be required to deal with the increasingly

obvious shortcomings of a computing infrastructure consisting of islands of computational power

connected via the Internet. Internet tools such asgopher, worldwide web andMosaic are examples

of current attempts to bridge the gaps between local systems.

The issue is not whether metasystems will be developed; clearly they will. Rather, the

question is whether they will come about by design and in a coherent, seamless system – or

painfully and in an ad hoc manner by patching together congeries of independently developed

systems, each with different objectives, design philosophies, and computation models.

2.3. Approach

The principles of the object-oriented paradigm are the foundation for the construction of

Legion; our goal will be exploitation of the paradigm’s encapsulation and inheritance properties,

as well as benefits such as software reuse, fault containment, and reduction in complexity. The need

for the paradigm is particularly acute in a system as large and complex as Legion. Other

investigators have proposed constructing application libraries and applications for wide-area

parallel processing using only low-level message passing services. Use of such tools requires the

programmer to address the full complexity of the environment; the difficult problems of managing

faults, scheduling, load balancing, etc., are likely to overwhelm all but the best programmers.

3. The CWVC

In order to achieve campus wide computing it is insufficient to simply run Mentat on all

machines at the University. Mentat, like other existing parallel processing systems, was not

designed to deal with system faults, non-overlapping file systems, and other problems that plague

distributed systems as opposed to MPP’s. Further, we do not believe that the Mentat programming

language is the best language for all applications. Therefore, other models and languages will need
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to be supported in the long run for Legion to be successful. Below we present the solutions we have

implemented in the CWVC to the problems of files and I/O, fault tolerance, pain management,

accounting, protection and security, and the need to support other programming models.

3.1. The Federated File System

A problem that arises when forming a system out of hosts in different organizations is that,

unlike a single department, they usually do not share a single file system. This presents at least four

difficulties; application binaries may not be present at all sites; application components may not be

able to read and write files that they require for correct execution; sharing of data and results

between collaborators at different sites requires either sending the files via email or copying them

via ftp; and remote databases, e.g., genome databases, must be copied in their entirety into the local

environment before they can be used, resulting in wasteful copies, out-of-date data, and the

inconvenience of frequently manually copying the data.

An obvious solution to this problem is to extend some existing file system such as AFS or

NFS to both the campus wide and nation wide system. There are problems with this approach.

First, some file systems such as NFS simply will not scale to the level we require. They require far

too much human intervention (setting up mount points, etc.). Further, the use of NFS requires that

all users have the same user id on all hosts, a requirement we simply cannot meet. The Andrew file

system, on the other hand, is scalable. The problem with using Andrew is the requirement that all

hosts run Andrew. We feel that we cannot impose a file system standard on participating

organizations. Further, we do not feel that the system should dictate a particular file semantics as

Andrew does; file semantics should be based on the file type. Nevertheless we intend to borrow

heavily from early distributed file system projects such as Andrew because issues such as naming,

location transparency, fault transparency, replication transparency, and migration have been

addressed both in the literature [32] and in one or more existing operational systems.

Our solution is to construct a federated file system using the local host file systems as the

component elements. The basic idea is simple and consists of two parts, constructing a Legion

name space on top of the existing file system, and a modified set ofstdio libraries that interact with

the Legion file space and Legion file objects. The Legion name space is implemented using a
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collection of name servers that point to instances of file classes. A file is in the Legion name space

if it’ s name (complete path name) is found in one of the name servers. Otherwise it is a local file.

The name servers keep track of the name of the file, e.g., “/legion/grimshaw/mywork1”,

and a set of file attributes3. The attributes include the class of the file, e.g., unix_file, restrictions

on the placement of class instances, e.g. on hosts with a “.cs.virginia.edu” suffix, and an

initialization string to be passed to an object instance on instantiation. This string is most often the

Unix path name of the actual file data.

We also provide a set of library routines that support thestdio interface, e.g., open, close,

read, write, etc. These library routines are linked by applications and intercept calls to the I/O

system. All open calls are first examined to determine whether they are Legion files or local files.

Local file operations are passed onto the host operating system. Legion file operations are trapped

and passed onto the unix_file objects. This technique of trapping file operations is not unique to

Legion and was first used in Unix United. Unfortunately the relinking technique does not work on

all supported platforms. Therefore we have had to design and implement a separate I/O library for

use by applications on those platforms.

Finally, there exist a set of operations to manipulate the Legion namespace that are

analogous to operations that manipulate the Unix name space, e.g., lmkdir, lrm, lmv, etc. Files enter

the Legion namespace via one of three mechanisms, they are created in the Legion name space,

3. The implementation details are changing–the philosophy is not.

USER CODE

LEGION I/O LIBRARY

standard UNIX FS calls

UNIX FS
LEGION

“unix_file”
OBJECT

legion name?

yesno

Figure 1Emulation of thestdio interface allows applications to use the Legion federated file
system capabilities without modification.
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they are moved into the Legion name space, or they are linked into the Legion names space (similar

to a soft-link).

3.2. System Fault Tolerance

With a system as large as the CWVC it is a certainty that a machine will go down every few

hours. Further, whole buildings will lose power, while other buildings will not. Mentat, and other

network-capable parallel processing systems were not designed to address any form of fault

tolerance. We knew that if we wanted to construct a facility that others would use it had to be highly

available (there when they needed it) and robust to failures of all kinds, host failure, network

failure, application failure, etc. The mechanism to provide full application fault-tolerance is a long

term goal and is still in the research and design stage. In the short term though, the system itself

must be fault tolerant or no one will use the it; contemporary computer users have very high

expectations with regard to system availability. Before we can describe the current fault tolerance

mechanism a brief bit of background is required.

Each host in a running Legion system has at least two daemons (exclusive of the fault

tolerance daemons). The first is the instantiation manager (IM) which is responsible for scheduling,

keeping track of all Legion objects on the host, monitoring the load on the system, and other

management functions. The second is the token matching unit (TMU) which supports language

features [26]. The system configuration file (config.db) contains the names of all hosts in Legion4.

The set of IM’s running on those hosts define the system. If an IM goes down then Legion is down

on that host. Further, user programs, user objects, and IM’s communicate with IM’s in order to

carry out their functions. If an IM on a host goes down (either because of a program fault or host

failure) objects on other hosts will not receive a response and will lock up, i.e., they will fail. To

eliminate this form of failure we must ensure either that hosts and IM’s never fail, an impossible

goal, or deal with failure when it occurs.

To deal with failure we have constructed a new class of daemons, phoenix, that monitors

the system for failure. Phoenix is responsible for restarting system components if possible. If they

cannot be restarted phoenix notifies the remaining IM’s of a configuration change. The IM’s in turn

notify all objects on their host. If a host has been removed from the configuration due to failure

4. The configuration database is a non-scalable entity. Future releases will use a different mechanism.
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phoenix will begin to monitor the host for recovery. When the host has recovered, phoenix will

restart Legion on that host and notify the other IM’s of the configuration change.

The phoenix instances are arranged in a tree structure. Theroot phoenix startscluster

phoenix instances on a single host in each cluster. These cluster phoenix instances in turn start a

leaf phoenix instance on each host in the cluster. The leaf phoenix instances monitor the health of

the local daemons, restarting them as necessary. The root phoenix monitors the health of the leaves.

When one fails (usually due to a host failure) the root restarts it. This design is non-scalable and

has a single point of failure (the root). Because of the single point of failure we place the root on

our most reliable host. A long term solution to both the stability and single point of failure problems

is to use a distributed algorithm. So far though, neither has been a serious problem.

Transparent application fault-tolerance is being investigated but is not currently

implemented. We believe that fault-tolerance services are a necessary condition for success of any

large scale system such as Legion. We expect to have fault-tolerance for stateless objects and

applications which use them by Supercomputing. This encompasses a large class of applications.

3.3. Pain Management

A third problem is pain. The pain that workstation “owners” feel when a Legion job is

executing on their machine. Because of the pain, and the need not to antagonize resource owners,

we have constructed a Legion “thermostat” (Figure 2) that permits resource owners to set

maximum resource use limits (in percent CPU and physical memory) on Legion programs running

on their hosts. The thermostat mechanism works in a fashion similar to many home thermostats.

The owner can select resource availability during different time intervals. Further, just as with a

home thermostat, if the owner is unhappy with the current setting, she may change it at any time.

(Just like a home thermostat it may take a few minutes before the load is adjusted to the new level.)

The system guarantees that Legion resource consumption will stay below the limits

imposed by the user. The available resources are divided between user objects running on the host.

Thus, some user objects will be “throttled”, resulting in possibly longer execution times for

applications. We feel that the trade-off between autonomy and application performance must be

made in favor of the local user. If it is not, then resource owners may withdraw their resources.
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In order to encourage resource owners to participate and specify high resource limits the

resource owner receives credits when resources are consumed and when resources are offeredeven

if they are not used. The amount of credit received depends on the type of system, the time of day,

and how much resource was offered and used. Different amounts of credit are received for offered

but not used, and offered and used resource. The scale factors (for type of system and time of day)

are in essence prices. Prices are a policy issue determined by system administrators.

3.4. Accounting

If Legion and the CWVC are successful then all a user will need in order to have access to

the set of resources managed by the system is an interface such as an X-Windows interface. In such

an environment a rational user will purchase just the interface, and leave the purchase of expensive

resources to other users. It would not be long before no new equipment was purchased, resulting

in an impoverished system. To avoid this classic “tragedy of the commons”, mechanism and policy

are required to encourage good community behavior. In the case of Legion and the CWVC this

takes the form of an accounting system which monitors resource contribution and consumption.

Figure 2Legion Thermostat. Authorized users can specify both a resource schedule and modify the
current resource limits. The interface on the left controls current resource limits. By changing the sliders
resource limits may be temporarily modified. The “scheduler” button brings up the interface on the
right, which allows authorized users to change the daily schedule.
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Accounting for resource consumption is accomplished by associating each instantiated user

object with an owner, a CWVC user, and monitoring user object activity. The owner-id is the Unix

UID of the shell which launched the application5. Resource consumption is monitored on an

object-by-object basis. The run-time libraries used by objects are instrumented to collect

information such as the amount of CPU used, the number of messages sent and received, the total

volume of data moved in and out of the object, and the number of method invocations performed.

On object termination this information is forwarded to the instantiation manager. The instantiation

manager in turn places the resource data into a host specific accounting database. Periodically the

accounting data is collected, merged into a single database, and resource reports are generated.

Resource contribution is monitored similarly. Actual resource contribution is derived from

the resource consumption database; if resources were used on a host by an object then they were

contributed by that host. Offered resources are determined by maintaining thermostat logs. Recall

the thermostat is used to throttle resource consumption on a host by restricting usage to a particular

percentage. The thermostat log indicates when thermostat settings were changed on a host.

Both resource contribution and consumption are scaled using the resource scale file. The

scale file consists of scale factors for each host type, the time of day, and whether the resource was

consumed, offered, or contributed. This is used to account for the fact that, for example, a Sparc

IPC CPU second at 1:00 AM is not worth nearly as much as an SGI CPU second at noon. The scale

factors can be thought of as prices. Using the accounting files and the resource scale file we can

calculate a resource balance for each user. The resource balance is the users amount of surplus or

deficit. A system-wide surplus, available to system administrators, can be generated by

maintaining a spread between the price for resources consumed and resources offered.

The mechanism lets us to know who is using and contributing how much resource. Without

a policy on resource consumption collecting the information is an exercise in programming only.

Policy is still being worked out with resource holders. We envision a situation in which users with

chronic resource deficits can either buy (using dollars) more resource or receive “grants” from the

system. The grants will come out of the system-wide surplus. The funds generated can either be

used to pay users with chronic surpluses, or be re-invested in additional equipment.

5. Use of the Unix ID is temporary, they are not consistent across systems. A Legion user ID, LUID, will be
used in the future, introducing authentication issues not yet addressed in the implementation.
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3.5. Protection and Security

Protection and security are critical in wide-area distributed systems. Mentat does not

address security; instead it relies on having read/write permission to all application databases. Our

security plan has long-term and short-term components.

Long term. Legion cannot solve the general security problem, but a reasonable level of

privacy and integrity of data must be provided or the system will not be used. Legion will run on

top of whatever operating system is available on the participating host, thus at first blush it may

seem that the issue of security would be determined by the lowest common denominator of those

host systems. The first rule of Legion security, like the Hippocratic Oath, will be to “do no harm.”

In the first instance, that means that there should be no possibility of host data being compromised

by a Legion task. In the second instance it means that no Legion user’s data should be compromised

by a rogue host. The mechanisms are reasonably well understood and include:

• execution of Legion tasks with “least privilege” on the host,
• storing no persistent objects on a “foreign host”,
• using cryptographic authentication protocols to verify that a server is valid and that a

service request originated with a valid Legion task, and
• digital signatures to validate that data has not been corrupted.

Further, when needed for greater security, more costly techniques can be used, for example:

• messages can be encrypted,
• scheduling can be restricted to certain classes of nodes, and
• white noise can be injected into the communication stream.

Another goal of Legion security is to provide a better model and mechanism for Legion-to-

Legion security than is provided by the underlying hosts. The object-oriented computational model

suggests a capability-based access control model in which the “rights” are type (class) specific and

map one-to-one onto the methods of the class. The distributed and heterogeneous nature of the

system suggests the use of encrypted capabilities to ensure that they cannot be forged.

Short term. In the short-term we have implemented a security scheme which a determined

attacker could compromise. The basic idea is simple. Users “transfer” files to the Legion name

space. The file is placed in a hidden directory that only they have read privilege to, and a soft-link

is created with the same name as the old file. This ensures that the user can still modify the file. At

the same time a hard-link is created for Legion to the file. This permits Legion applications to read



 15

and write the file. The net result is that both the user and Legion programs may read and write the

file, but other users cannot. The “hole” in this scheme is that other users Legion programs may read

and write the file.

3.6. Support for other Models - PVM V 3.0

Clearly we cannot expect all Legion users to use MPL. Other parallel processing languages

and models must be supported. This is particularly true for legacy codes. Our plan for legacy code

and multiple model interoperability is detailed in [21]. One of the early tests for our plan is support

for PVM [46]. PVM is a message passing parallel processing system that has gained wide-spread

acceptance in the user community, and is ade facto standard.

At first glance it seams counter-intuitive to implement PVM on top of a system such as the

CWVC and Legion; they are usually layered on top of systems like PVM. We have implemented

PVM on the CWVC so that existing PVM applications can be executed in the CWVC environment

without the need to re-write the application. The ported PVM codes will not only execute, they will

benefit from CWVC features such as the federated file system, pain management, and our load-

sensitive scheduling algorithms. This ability to use existing codes, and to later integrate them with

other parallel codes, support our larger Legion goals of legacy code support and interoperability.

The implementation is straightforward. Each PVM instance is represented by a typed

Mentat object. Calls such aspvm_initiate(), pvm_send(), andpvm_recv() are implemented using

calls to the CWVC run-time system that instantiate objects, send messages, receive messages, etc.

PVM-specific services, e.g., barriers, are implemented using synchronization objects.

To both test the correctness of our implementation, and to compare the performance of our

implementation against the “native” PVM implementation, we took to already implemented PVM

applications and ran them in the same environment. The two applications are the latency/

bandwidth test code that comes with the PVM distribution, and the PVM implementation of the

NAS benchmarks.  TABLE 1 presents the performance comparison between the native PVM and

Mentat-PVM implementations on the communication benchmarks. One can see that for short

messages (<= 10,000 bytes) the Mentat-PVM implementation outperforms the native

implementation. The Mentat-PVM time is the result of the optimized communication system used
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by Mentat. That short messages are faster is significant. Most messages in many applications are

short messages.

To test application performance we selected the PVM NAS benchmark implementation

because it is familiar to most readers. TABLE 2 presents the performance results. The

measurements were taken using eight, 40 mhz Sparc 2’s, using raw encoding.

4. Results

4.1. The Application - Protein and DNA Sequence Library Comparison

Our test application,complib, compares two protein or DNA sequence libraries. Each

library contains of one or more sequences, each of which consists of a sequence name and a

variable length string of characters (also known as residues) that represent the sequence. Each

sequence in the first library, called the source library, is compared against each sequence in the

second, target, library. For each sequence comparison a score is generated reflecting sequence

a.All measurements are on an 8 processor cluster using raw (no XDR) encoding,and di-
rect routing.The time is the time to send a message of the specified size and to receive a one
byte reply. It is the average of 3 runs (each run being the average of 20 sends/receives).

a. 221 keys in the range [0..219]
b. reduced problem size of 226

c. problem size of 128

TABLE 1  Point to Point benchmarks on 40 mhz Sparc 2’sa.

Message size (bytes)
Native PVM
time (mSec)

Mentat-PVM
time (mSec)

Native PVM
bandwidth (bytes/Sec)

Mentat-PVM
Bandwidth (bytes/sec)

100 8.81 8.47 11,800 13,310

1000 9.88 9.75 101,269 102,550

10,000 27.52 26.58 363,380 376,220

100,000 194,231 196,783 514,860 509,880

1,000,000 1,920,624 1,951,618 520,670 512,790

TABLE 2 NAS Benchmark Results

Time (Sec) Communication Time (Sec) Communication Volume (MB)

Application Native PVM Mentat-PVM Native PVM Mentat-PVM Native PVM Mentat-PVM

IS Kernela 226 256 202 207 140 140

EP Kernelb 346 350 NA NA NA NA

MG Kernelc 123 110 62 59 49 49
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commonality using one of several algorithms. Three popular algorithms are Smith-Waterman [44],

FASTA [39], and Blast [1]. The latter two algorithms are heuristics; the quality of the score is

traded for speed. Smith-Waterman is the benchmark algorithm, generating the most reliable scores

although at considerable time expense. We used the Smith-Waterman algorithm to compare our

performance against previously published numbers in the biochemistry community [14][42].

Once all of the scores have been generated for one source sequence against all target

sequences the scores are sorted and statistical information is generated. Thus, there are two phases

that are executed sequentially for each source sequence, sequence comparison, and data reduction.

An important attribute of the comparison algorithms is that all comparisons are independent of one

another and, if many sequences are to be compared, they can be compared in any order. This natural

data-parallelism is easy to exploit.

The main program manipulates three objects, the source genome library, the target genome

library, and a recorder object that performs the statistical analysis and saves the results. The

application is written in the Mentat programming language and is described in detail in [23]. The

main program for loop is shown in Figure 3 below. The effect is that a pipe is formed, with

sequence extraction from the source, sequence comparison in the target, and statistics generation

are executed in a pipelined fashion. Each high-level sequence comparison is transparently

expanded into a fan-out, fan-in program graph where the “leaves” are the workers, the source

sequence is transmitted from the root of the tree to the leaves, and the results are collected and

sorted by collators.

4.2. The Campus Computing Environment

All tests were conducted on the grounds-wide6 network at the University of Virginia. The

available computing resources are shown in TABLE 3. The hosts were physically located in six

different buildings. Each building has one or more Ethernet segments connected to the grounds-

wide fiber backbone by routers. Some of the hosts are several “hops” from the fiber backbone. For

these experiments all machines had at least one shared NFS mount point where all executables and

data were stored. In general this is not a satisfactory solution as we cannot count on cross-mounted

file systems.

6. At the University of Virginia, the campus is called the “grounds”.
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4.3. Complib results & discussion

All measurements were performed in early January 1995 during the Winter break. In

general, workstations were operating under light loads except for two of the departmental Sparc 10

compute servers. Execution times for complib were generated using a 20 sequence source library

containing 4478 residues and a 10,716 sequence target library consisting of 3,647,403 residues. We

follow the tradition of the biochemistry community of reporting performance numbers in terms of

millions of matrix entries per second. The number of matrix entries is obtained by multiplying the

number of residues in the source library with the target library. In our experiment, there were

4478*3,647,403 residues, or approximately 16,333 million matrix entries.

for(i=0;i<num_source_seq;i++) {
//for each sequence
s_val = source.get_next();
//Compare against target library
result = target.compare(s_val);
//Do statistics
post_process.do_stats(result,s_val);

}

source.get_next() target.compare()

s_val

pp.display()

source.get_next() pp.do_stats()

target.compare()

Figure 3 Mentat implementation ofcomplib. The
main loop of the program is shown in (a). Three
objects are manipulated, the source, the target,
and the post_processor. The pipelined program
graph is shown in (b).Target.compare()has been
expanded showing sixteen workers in (c). The
fan-out tree distributes the source sequence to the
workers. The internal nodes of the reduction tree
are collator objects. The reduction tree sorts and
merges the results generated by the workers.

(a)
(b)

(c)
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To provide a benchmark for comparison we executed a sequential version of complib on all

the platforms that comprise the CWVC. TABLE 3 lists the sequential execution times as well as

the corresponding million matrix entries per second. In each case, the user CPU time was reported.

TABLE 4 gives the parallel execution times on the CWVC as well as the speedup relative

to each of the platforms. The number of workers ranges from 8 to 64. Three runs of each were

performed. The times shown represent the best wall clock time obtained excluding the initial

overhead of distributing the target library7. All times are given in seconds.

7. In table 6, we show the performance of complib on the CWVC against other platforms[14][42]. All mea-
surements reported were obtained by excluding the initial overhead time.

TABLE 3 . Sequential complib(20 vs. 10716 sequences, 16,333 million matrix entries)

Platforms Number
Sequential
Time (sec)

Matrix entries
per second
(millions)

Sparc 10 (fast) 4 13460 1.21

Sparc 10 (slow) 8 13998 1.17

Sparc LX 6 23146 0.71

Sparc 2 5 33823 0.48

Sparc IPC 41 57259 0.29

SGI Indigo 17 11386 1.43

TABLE 4 . CWVC T imes & Relative Speedups

Relative speedup

Workers CWVC SGI
Sparc 10

(fast)
Sparc 10

(slow)
Sparc LX Sparc 2 Sparc IPC

8 1692 6.7 7.9 8.3 13.7 20.0 33.8

16 926 12.3 14.5 15.1 25.0 36.5 61.8

24 951 12.0 15.2 14.7 24.3 35.6 60.2

32 724 15.7 18.6 19.3 32.0 46.7 79.1

64 592 19.2 22.7 23.6 39.1 57.1 96.7
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4.4. Is speedup meaningful in the CWVC?

A generalized definition for speedup in a heterogeneous environment is given in[15]. In

our particular case, we characterize the performance of complib in terms of the number of matrix

entries per second obtained. Furthermore, we define the efficiency of running complib on the

CWVC as:

The maximum theoretical performance is obtained by assuming that workers are placed on

the more powerful processors first. For example, in the case of 24 workers, the theoretical

maximum performance is 32.66 million matrix entries per second (17 workers placed on the sgis,

4 on the faster sparc10s, and 3 on the slower sparc10s). Note that efficiency is dependent on both

the particular application, and the types and numbers of hosts that make up the CWVC.

The efficiency obtained for 24 to 64 workers is slightly above 50%. There are two causes

for the reduced efficiency: other users competing for cycles, and a poor initial partition of the

data.Our initial partitioner did not handle the heterogeneous processor case well. We have re-

implemented the partitioner and expect better results in the future.

While efficiency gives us a measure of the overhead in running complib on the CWVC, the

important performance number for biochemists is the number of matrix entries per second. We

compare the number of matrix entries per second obtained against other platforms in TABLE 6. In

terms of performance, the CWVC is roughly equivalent to the 32 node Paragon at the Jet

Propulsion Lab.

TABLE 5 . Efficiency

Workers
Theoretical maximum
matrix entries per
second (millions)

Matrix entries per
second (millions) on
the CWVC

Efficiency

8 11.44 9.65 .84

16 22.88 17.64 .77

24 32.66 17.17 .54

32 40.64 22.56 .55

64 52.13 27.59 .53

efficiency CWVC,complib( ) measured performanceon theCWVC
maximum theoretical performance

------------------------------------------------------------------------------------------=
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4.5. Problems encountered

We encountered several problems transforming Mentat into the CWVC. Some of these,

such as the need for a federated file system and single name space were anticipated. Others were

not. At least three of these problems are not Legion specific, they will need to be overcome by most

systems that have the same objectives as Legion/CWVC.

The first problem is the trend in workstation operating systems towards the exclusive use

of dynamic linkers. For example, Irix, Solaris, and AIX do not support static linking. This is a

problem whenever hosts do not share the same file system structure, in other words object libraries

may be at a different location on different hosts, or not present at all. Thus, an executable that

executes on one host, will not execute on another host of the same architecture type. This limits our

ability to transport binaries from one location to another. Executable transport is not an issue in

older operating systems such as SunOS which permit static linking.

Another facet of this problem occurred when we implemented the stdio library call

traps.We could not statically link our routines in to replace the underlying C library routines. To

solve this problem required that we explicitly manage the dynamic linker in our code.

Unfortunately the mechanisms required vary from system to system.

A second class of problems that we encountered relate to Unix itself. It is not sufficient to

simply scale the number of hosts when using a Unix based parallel processing tool if there is a

single host that starts remote shells executing on other hosts. For example, if a daemon on host A

starts daemons on hosts B..Z. This technique, which we used to practice, and which PVM uses

begins to fail when there are many hosts for at least two reasons. First, the number of open files can

rapidly exceed the limits of the operating system. (These limits can be changed by recompiling the

a. The CM-2 performance numbers were obtained from
[14], the Paragon and DEC Alphas’ from [42].

TABLE 6 . Comparison against various platformsa

Platform

Matrix entries per
second (millions)

CWVC 27.59

CM-2 (32000 proc) 65

Paragon (32 nodes) 29

5 DEC Alpha AXP 300 18
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operating system.) The problem is that each rsh consumes at least two file descriptors, and possibly

more if the pipe() command is used as well. Even if these file descriptors are closed by the “main”

daemon they are not always closed immediately as called for in the manuals. Instead, there is

usually a timeout of just under five minutes. Under normal operating conditions this is not a

problem, but when a very large number of rsh’s are being generated in a short period of time, such

as when starting the parallel system up, the system may run out of descriptors.

A related problem has to do with the use of NFS file servers. Simultaneous execution of a

large number of copies ( > 60) of the same executable, as in a data parallel program or system start-

up, may overload the file server, resulting in multiple lost requests. The host operating systems treat

this as an error, and report that the executable does not exist, when clearly it does.

A final problem we encountered is application fault-tolerance. While the system itself is

fault-tolerant and recovers from host failure, applications do not. If my application has an object

on a host that has failed, then my application blocks, and never recovers. This requires the user to

kill and restart the application. We consider this unacceptable in the long run. We have

implemented fault-tolerance in two applications at the application level, and are exploring general

application fault-tolerance.

5. Summary and On-going Work

Legion is an ambitious project to construct a nation-wide virtual computer. Rather than attempt-

ing to construct Legion from scratch we have chosen to begin with an existing system, Mentat,

and transform it into Legion by incorporating research results from over twenty years of heteroge-

neous distributed computing. The first step in the transformation is the construction of the cam-

pus-wide virtual computer at the University of Virginia. The objectives of the campus-wide

virtual computer are to:

• demonstrate the usefulness of network-based, heterogeneous parallel processing to univer-
sity computational science problems,

• provide a shared high-performance resource for university researchers,
• provide a given level of service (as measured by turn-around time) at reduced cost,
• act as a testbed for the nationwide Legion.

The prototype implementation is well on its way to meeting these objectives. The

performance results provide evidence that workstation based, heterogeneous parallel processing

can be used to solve computationally challenging problems of interest to university researchers at
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reduced cost. With respect to the testbed goal, the CWVC has been an invaluable tool which has

enabled us to begin trying out designs and stressing implementations with real applications. Our

experience over the last year putting the CWVC together highlighted several critical factors that

must be addressed in both the short term and in the long term.

Finally, Legion and the CWVC are not static; both are works in progress. We will continue

to enhance the system and extend the applications running on the CWVC. With respect to Legion

we are forging ahead with enhanced security, protection, resource management, fault-tolerance, I/

O, and naming services. In addition we are working on an OS/2 Warp port.
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