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The U.S. National Cancer Institute has used a panel of 60 diverse
human cancer cell lines (the NCI-60) to screen >100,000 chemical
compounds for anticancer activity. However, not all important cancer
types are included in the panel, nor are drug responses of the panel
predictive of clinical efficacy in patients. We asked, therefore,
whether it would be possible to extrapolate from that rich database
(or analogous ones from other drug screens) to predict activity in cell
types not included or, for that matter, clinical responses in patients
with tumors. We address that challenge by developing and applying
an algorithm we term ‘‘coexpression extrapolation’’ (COXEN). COXEN
uses expression microarray data as a Rosetta Stone for translating
from drug activities in the NCI-60 to drug activities in any other cell
panel or set of clinical tumors. Here, we show that COXEN can
accurately predict drug sensitivity of bladder cancer cell lines and
clinical responses of breast cancer patients treated with commonly
used chemotherapeutic drugs. Furthermore, we used COXEN for in
silico screening of 45,545 compounds and identify an agent with
activity against human bladder cancer.

bladder neoplasms � breast neoplasms � microarray expression profiling �
NCI-60 anticancer compound screening � coexpression extrapolation

Tumors have traditionally been classified by descriptive char-
acteristics, such as organ of origin, histology, aggressiveness,

and extent of spread. That empirical rubric is being challenged,
however, as molecular-level classifications, made possible by
microarrays and other high-throughput profiling technologies,
become increasingly common and persuasive (1–3). Several
recent studies have predicted the clinical outcome of human
cancer patients by using molecular signatures (4, 5). This expe-
rience suggests that, eventually, all differences among traditional
tumor types will be reduced to statements about molecules in the
tumors and about the interactions among those molecules. It
might then be possible to study physiological processes in one
type of cancer and extrapolate the results predictively to another
type through commonalities in their molecular constitutions.
More recently, several studies have demonstrated that genomic
biomarkers can be used to predict chemotherapeutic responses
of human cancer patients (6–8).

What if we want a more ambitious prediction at the pharmaco-
logical level to extrapolate and predict drug sensitivity from one
type of cancer to another? The challenge is greater, but, we think,
approachable. Toward that end, we present here a generic algo-
rithm we term ‘‘coexpression extrapolation’’ (COXEN). The spe-
cific algorithm in essence uses specialized molecular profile signa-
tures as a Rosetta Stone for translating the drug sensitivity signature
of one set of cancers into that of another set.

The system that motivated development of COXEN was the
NCI-60 cell line screen, composed of cell lines from diverse human
cancers. The NCI-60 panel has been used by the Developmental
Therapeutics Program (DTP) of the U.S. National Cancer Institute
(NCI) to screen �100,000 chemically defined compounds plus a
large number of natural product extracts for anticancer activity

since 1990 (9–11). It has been controversial, however, whether
tumor cell activities in such in vitro assays can predict human patient
chemotherapeutic responses (12). Furthermore, it was not feasible
to include all important tumor types in the NCI-60. For example,
there are no lymphomas, sarcomas, head and neck tumors, squa-
mous cell carcinomas, small cell lung cancers, pancreatic cancers, or
urothelial bladder cancers. Even if cancer cells of the additional
histological types were added to the panel now, all compounds
screened in the past 16 years would have to be tested again in the
updated panel to gain the full predictive power of the database for
the legacy compounds.

Those limitations raise three practical questions: Can drug
sensitivity data on the NCI-60 (or analogous screening panels) be
extrapolated to predict the sensitivity of cell lines and cell line types
not included? More ambitiously, can such in vitro screening data be
used to obtain predictive power for clinical responses of human
cancers? Finally, can such extrapolation be useful in the drug
discovery process? Here we address those questions in three
different applications.

Results
Detailed descriptions of the COXEN algorithm and its slightly
different implementations for those three applications are in
Materials and Methods and supporting information (SI) Materials
and Methods. We focus first on a generic description of the
algorithm and then on the results for the three applications.

COXEN Algorithm. The COXEN algorithm is composed of six
distinct steps. The end result is what we term the ‘‘COXEN score,’’
which reflects the predicted sensitivity of a particular cell line or
human tumor to the specific drug being evaluated by the algorithm.
Generically, the steps for prediction of a drug’s activity in cells
belonging to some set 2 on the basis of its activity pattern in
different cells of some set 1 are as follows:

Step 1. Experimentally determine the drug’s pattern of activity
in cells of set 1.

Step 2. Experimentally measure molecular characteristics of the
cells in set 1.
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Step 3. Select a subset of those molecular characteristics that most
accurately predicts the drug’s activity in cell set 1 (‘‘che-
mosensitivity signature’’ selection).

Step 4. Experimentally measure the same molecular characteristics
of the cells in set 2.

Step 5. Among the molecular characteristics selected in step 3,
identify a subset that shows a strong pattern of coexpression
extrapolation between cell sets 1 and 2.

Step 6. Use a multivariate algorithm to predict the drug’s activity
in set 2 cells on the basis of the drug’s activity pattern in set
1 and the molecular characteristics of set 2 selected in step
5. The output of the multivariate analysis is a COXEN
score.

In our first application of the COXEN algorithm, for example,
cell sets 1 and 2 were the NCI-60 and BLA-40 cell panels,
respectively; the step 1 drug activities were those assessed by the
DTP in the NCI-60; the ‘‘molecular characteristics’’ in steps 2
and 4 were transcript expression levels, as assessed using Af-
fymetrix HG-U133A microarrays (13); the algorithm in step 3
was significance analysis of microarrays (14) or similar statistical
testing for differential expression; and step 5 was a coexpression
extrapolation algorithm we developed. This coexpression extrap-
olation procedure is conceptually illustrated in SI Fig. 4 and
detailed in SI Materials and Methods; step 6 was a refined
classification algorithm, ‘‘misclassification-penalized posterior’’
(MiPP) (15), which we recently introduced for selection of the
best mathematical ‘‘models’’ for such predictions. MiPP gener-
ates the final COXEN score. As will be discussed below,
COXEN predictions for both cell line and clinical trial drug
responses were prospectively and independently validated.

Although it may not be intuitively obvious, steps 3 and 5 are key
and cannot be omitted; the algorithm does not use the entire
molecular signature but only those optimal aspects of the signature
that most strongly predict the drug’s activity and that also reflect a
pattern of concordant coexpression between the two sets of cancer
cells. As will be shown below, simply using the entire molecular
signature (or even the entire chemosensitivity signature portion of
it) does not provide very much predictive power. Note that step 5
is based only on microarray coexpression patterns between set 1 and
set 2 and does not use any drug activity information on set 2 in the
gene selection. Likewise for step 6, prediction model discovery and
training are performed strictly within set 1 to maintain statistical
rigor for the prediction on any independent sets, avoiding the
pitfalls of overfitting when such information from the test sets is
used (15). In fact, in step 5 set 2 can be completely replaced by
another (historical) set of the same type of tumor, not using any
molecular information directly from set 2.

Predicting Drug Activity in Bladder Cancer Cells. Applying the par-
ticular implementation of COXEN shown in Fig. 1A and described
in Materials and Methods, we used the NCI-60 data to predict drug
activities in the BLA-40, a panel of 40 human urothelial bladder
carcinomas, profiled at the mRNA level. We first developed the
MiPP prediction models for two drugs (cisplatin and paclitaxel,
which are used clinically against bladder cancer) on the basis of their
NCI-60 cell line screening data; as expected, the models performed
extremely well on that training set with mean prediction accuracies
of 93–96% in leave-one-out cross-validation (data not shown). We
then exposed bladder cell lines in the BLA-40 panel to cisplatin and
paclitaxel and thus generated the data to test the predictions
prospectively. For that test, we focused first on prediction for the 10
most sensitive and 10 most resistant BLA-40 lines. For those cells,
prediction accuracies for the top three MiPP models averaged 85%
for cisplatin and 78% for paclitaxel (SI Table 1 and SI Fig. 4 B and
C). As expected, those prediction accuracies were lower than the
ones obtained for the training NCI-60 set but, nonetheless, were
highly statistically significant (binomial test P � 0.002 for cisplatin

Fig. 1. Application and performance characteristics of the COXEN algo-
rithm for prediction of drug sensitivity in the BLA-40 human urothelial
cancer cell lines. (A) Summary schematic diagram of the development and
validation of chemosensitivity predictions. Step numbers relate to those of
the COXEN algorithm, as described in the text. (B) Direct comparison
between COXEN prediction scores and experimentally measured paclitaxel
activities in the BLA-40 cell lines. The activity here and elsewhere is ex-
pressed as �log(GI50), where GI50 is the drug concentration leading to
50% growth inhibition of cells compared with control. The cell lines are
ordered on the basis of their �log(GI50) values. COXEN scores and GI50
values were standardized by subtracting the overall mean and dividing by
the SD across the BLA-40. The statistical significance of the set of predic-
tions (two-tailed P � 0.006) on all 40 cells of the BLA-40 was assessed by
Spearman correlation. (C) ROC analysis. ROC curves were computed for
COXEN scores generated for cisplatin sensitivity from the full COXEN
algorithm (steps 1– 6) and for variations in which either the drug chemo-
sensitivity signature selection step (step 3; �2 statistic P � 0.0067) or the
coexpression extrapolation step (step 5; �2 statistic P � 4.0 � 10�5) was
omitted.
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and 0.012–0.042 for paclitaxel, against random coin tossing). For
cisplatin, nine sensitive cell lines (all except umuc9) and eight
resistant cell lines (all except crl7197 and kk47) were consistently
correctly classified by the three prediction models. For paclitaxel,
one sensitive (X235jp) and one resistant (umuc1) cell line were
consistently misclassified by the top three models.

Because classification of the sensitive and resistant cells does not
provide predictive results for cells of intermediate sensitivity, we
next analyzed the quantitative relationship between COXEN-
predicted and actual activity values for all 40 cell lines. The results
for the top MiPP model were highly significant (Spearman corre-
lation coefficient P � 0.016 for cisplatin and 0.006 for paclitaxel);
their standardized COXEN prediction scores, in fact, predicted the
standardized log(GI50) values well, as shown in Fig. 1B and SI Fig.
4 B and D for cisplatin and paclitaxel, respectively.

The predictive power of the COXEN algorithm can also be
expressed in a receiver–operator characteristic (ROC) analysis. As
is often useful in biomarker studies, the ROC formulation permits
free choice of a set-point to use in balancing the costs of false-
positive and false-negative predictions. Fig. 1C contrasts the ROC
curves obtained for cisplatin from the full COXEN algorithm with
those obtained by leaving out either the drug chemosensitivity
signature step (step 3; �2 statistic P � 0.0067) or the coexpression
step (step 5; P � 4.0 � 10�5) (16). The overall predictive power of
an algorithm is indicated by the area between its ROC curve and
the straight dashed line representing classification at random.
Clearly, the predictions were far superior when the entire algorithm
was used. Again, note that no chemosensitivity data on the BLA-40
cells were used to ‘‘tune’’ any part of the COXEN algorithm to
obtain the results described here.

The clustered image maps (heat maps) (17) in Fig. 2 further
illustrate in graphical terms the raison d’etre for the coex-
pression extrapolation step (step 5) in COXEN. Without that
step (Fig. 2 A), the cell types tend to sort themselves out
according to whether they are NCI-60 or BLA-40; with that
step (Fig. 2B), the cells of the two panels tend to intermingle
and (as one would wish) cluster according to their sensitivity
to cisplatin. SI Fig. 5 A and B shows similar results for
paclitaxel. In essence, step 5 transforms clustering by cell panel
or histological type into clustering by sensitivity to the drug. Of
18 and 13 COXEN prediction biomarkers for cisplatin and
paclitaxel, individual genes have shown their significant dif-
ferential expression patterns between the sensitive and resis-
tant BLA-40 cell lines (Wilcoxon two-sample P � 0.001–0.05)
(Fig. 2C). Of importance, none of those genes was selected on
the basis of differences in expression pattern between the
sensitive and resistant BLA-40 groups. Thus, the genes’ ex-
pression patterns confirm the ability of COXEN to identify
real biological chemosensitivity biomarkers on a completely
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Fig. 2. Coclustering of NCI-60 and BLA-40 cells with and without the COXEN
coexpression extrapolation step (step 5). (A) Clustered image map for the
NCI-60 and BLA-40 cell lines using the first 50 chemosensitivity probe sets for
cisplatin, omitting step 5. (Only the first 50 were used simply for readability of
the figure.) Red, black, and green indicate high, intermediate, and low
expression, respectively. Red and blue in the upper bar indicate sensitive and
resistant cell types, respectively. Yellow and cyan in the lower bar indicate
NCI-60 and BLA-40 cells, respectively. Most cell lines clustered on the basis of
cell panel (NCI-60 vs. BLA-40) not sensitivity or resistance. Probe IDs were those
provided by the commercial microarray manufacturer (Affymetrix). (B) Clus-
tered image map for the NCI-60 and BLA-40 using the 18 COXEN probes
obtained for cisplatin after step 5; cells clustered primarily on the basis of
sensitivity and resistance rather than on the basis of the cell panel. (C)
Normalized expression intensities of COXEN-identified genes shown for
BLA-40 cells sensitive and resistant to cisplatin. The genes were selected on the
basis of only NCI-60 chemosensitivity information yet showed significant
differential expression between the sensitive and resistant cell lines of BLA-40.
Many of the genes have been reported to be relevant to cancer (SI Table 2).
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independent set (and type) of tumor without any drug activity
information on the independent set. Many of the genes have
been reported to be relevant to cancer (SI Table 2).

Prediction of Clinical Response to Chemotherapeutic Drugs in Breast
Cancer Patients. Given the finding that COXEN could predict drug
sensitivity, even in cell lines of histological types not included in the
NCI-60 panel, we wondered whether an analogous algorithm would
also have predictive power for chemotherapeutic responses in
human patients. Historically, it has proven difficult to predict drug
activity in mouse xenografts from cell line data or clinical responses
from mouse xenograft data. So our hope and our hypothesis was
that by bypassing the intermediate animal model, we might be able
to achieve predictiveness for the clinic on the basis of human cancer
cell line in vitro assays. Hence, we developed a modification of
COXEN that aligns the NCI-60 gene expression data with expres-
sion data from patients’ tumors, rather than cell lines. Fig. 3A shows
the algorithm in schematic form. To demonstrate that application,
we chose two cohort-based breast cancer clinical trials, DOC-24 (24
patients treated with docetaxel) and TAM-60 (60 patients treated
with tamoxifen) (4, 18). Those trials satisfied several criteria for our
analysis, most important among them: (i) the clinical response data
were publicly available; (ii) the patients’ tumors had been transcript-
profiled; and (iii) the treatment was a single agent, mirroring the
single-agent treatments of the NCI-60 panel. The latter criterion

was the hardest to satisfy, because most clinical efficacy trials are
carried out with drug combinations.

By analogy with our algorithm for bladder cancer cell lines, we
first identified the drug signature probe sets with high degrees of
coexpression between the NCI-60 and each of the clinical microar-
ray data sets (i.e., those for the docetaxel and tamoxifen trials). We
then derived the corresponding MiPP classification models on the
basis of the NCI-60 drug responses and microarray data. COXEN
response predictions were generated for the 11 responder and 13
nonresponder DOC-24 patients after four cycles of neoadjuvant
therapy reported in the original study (4). Because complete
docetaxel drug activity data were not available in the NCI-60
database, we used the data from another, very similar, taxane,
paclitaxel, to make the predictions. A previous analysis had shown
that essentially all of the taxane drugs have very similar activity
profiles in the NCI-60 (10). We then compared the predictions with
the actual clinical data on tumor response and, as summarized in SI
Table 3, the classification prediction accuracies across the top three
MiPP models were uniformly 75% (SI Fig. 6). As anticipated, the
accuracy of clinical response prediction was lower than that for the
BLA-40, but nevertheless statistically significant (binomial test P �
0.022 against random coin tossing). We next compared our
COXEN scores with the patients’ residual tumor sizes (Fig. 3B).
The rank-based Spearman correlation of those results showed
statistical significance (P � 0.033). The clustered image maps in SI

Fig. 3. COXEN prediction of chemotherapeutic response in patients with breast cancer. (A) Schematic diagram of the prediction and validation processes. (B)
Direct comparison between the COXEN predictive scores and the patients’ residual tumor sizes. The scores and tumor sizes were standardized for comparison
by subtracting the overall mean and dividing by the SD of each of the COXEN scores and residual tumor sizes. The statistical significance of the set of predictions
(two-tailed test; P � 0.022) was assessed by Spearman correlation. (C) Kaplan–Meier survival curves for the 36 COXEN-predicted responders and the 24
COXEN-predicted nonresponders in the tamoxifen trial. The predicted responder group showed a significantly longer disease-free survival time than did the
predicted nonresponder group (log-rank test; P � 0.021). (D) Normalized expression intensities of COXEN-identified genes between responder and nonresponder
DOC-24 patients treated with docetaxel. The genes were selected based only on NCI-60 chemosensitivity information yet showed significant differential
expression between responder and nonresponder DOC-24 patients. Many of them were found to be relevant to cancer (SI Table 3).
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Fig. 7 A and B (like those in the Fig. 2 A and B pair and the SI Fig.
5 A and B pair) show the importance of the coexpression extrap-
olation step for coclustering of data sets (and, therefore, for
COXEN prediction).

In the tamoxifen trial (TAM-60), 60 postmenopausal breast
cancer patients with estrogen receptor-positive tumors were uni-
formly treated with adjuvant tamoxifen alone and followed for up
to 180 months (18). Genome-wide expression profiling was per-
formed on the primary tumors using a customized cDNA microar-
ray platform. The study data did not include measures of short-term
tumor response but did include long-term disease-free survival and
disease recurrence times. Within this cohort, 28 (46%) women
developed distant metastases with a median time to recurrence of
4 years (‘‘tamoxifen recurrences’’), and 32 (54%) women remained
disease-free with median follow-up of 10 years (‘‘tamoxifen non-
recurrences’’). Hence, we made the assumption that tamoxifen
recurrences constituted tamoxifen nonresponders and tamoxifen
nonrecurrences constituted responders (SI Fig. 9A). From those
observations, we identified 11 responders and 16 nonresponders
before, and independent of, making the COXEN predictions.
Without knowing other confounding factors, e.g., other treatments
after the failure of tamoxifen, disease recurrence is a more indirect
measure of tumor response to a therapeutic agent than pathological
responses determined shortly after treatment (as in the DOC-24
chemotherapy trial described above), so we would expect less,
rather than more, power from the algorithm for prediction of
disease-free survival.

For the tamoxifen case, prediction accuracies across the top three
MiPP prediction models averaged 71%. That was lower than the
accuracy scores for the DOC-24 case, yet statistically significant
(binomial test P � 0.019–0.052 against random coin tossing) for
responders and nonresponders in the tamoxifen trial (SI Table 3
and SI Fig. 8B). To examine the robustness of COXEN predictions
for all 60 patients, we examined the data by Kaplan–Meier survival
analysis. In that analysis, the predicted responder group based on
the top MiPP prediction model showed a significantly longer
disease-free survival time (Fig. 3C) than did the predicted nonre-
sponder group (P � 0.021); for example, the 5-year disease-free
survival rate was 88% for the COXEN-predicted responders com-
pared with 49% for the COXEN-predicted nonresponders (19).
Overall, the prediction performance is impressive given that (i) only
a small proportion (�11%) of probe sets were matched in their
annotation between the Affymetrix HG-U133A and customized
cDNA microarray data and (ii) we had to use the surrogate of
disease-free survival time instead of a more conventional short-
term outcome measure (such as complete or partial tumor re-
sponse), which would probably have related more closely to the in
vitro chemosensitivity data. Finally, as for the bladder cancer
studies, it is important to note that validations were done prospec-
tively, without any ‘‘tuning’’ of the model on the basis of response
data from the clinical trials.

Of 14 and 8 COXEN prediction biomarkers for the docetaxel and
tamoxifen responses, several individual genes have shown signifi-
cant differential expression patterns between the responder and
nonresponder DOC-24 and TAM-60 patients (Wilcoxon two-
sample test; P � 0.001–0.03) (Fig. 3D). As for the BLA-40 analysis
above, none of those genes was selected on the basis of differential
expression patterns between responder and nonresponder patient
groups; rather, they were identified by COXEN, which could
identify common chemosensitivity biomarkers on the two com-
pletely different cancer cell line and patient populations. Most of
those genes were found to be important in cancer-related processes
(SI Table 3).

Using the Ingenuity pathway analysis software, we found those
COXEN-identified biomarkers to be related to the pathways and
molecular functions of each of the compounds. For example,
paclitaxel and docetaxel are known to bind to microtubules and
inhibit their depolymerization into tubulin monomers, thereby

blocking a cell’s ability to break down the mitotic spindle during
mitosis. Most of our COXEN biomarkers belong to pathways
related to DNA replication, recombination, repair, and cell-to-cell
signaling (SI Fig. 5 C and D). Cisplatin (BLA-40) is known to act
by binding DNA in several different ways, making it impossible for
rapidly dividing cells to duplicate their DNA for mitosis; most
COXEN biomarkers for cisplatin were also found to be associated
with cell-to-cell signaling and DNA replication (SI Fig. 5E).

Use of COXEN for in Silico Drug Discovery. Given the encouraging
predictive performance of COXEN, both in vitro (for BLA-40
bladder cancer lines) and in patients (with breast cancer), we next
applied it to drug discovery. For each of the 45,545 compounds
whose NCI-60 drug screening data are publicly available from the
NCI DTP, we used COXEN to predict in silico chemosensitivity
patterns for cells in the BLA-40 panel as we had done for cisplatin
and paclitaxel (SI Fig. 9 Upper). For prediction of each drug’s
activity in the BLA-40, we averaged the classification probabilities
of the top five MiPP models identified. The compounds selected
were then ranked by the number of BLA-40 cell lines predicted to
be sensitive.

In an initial screen we identified 139 compounds for which
COXEN predicted at least 35% sensitive cells among the
BLA-40. For eight of those compounds, �50% of the BLA-40
were predicted to be sensitive. Not all of the eight candidate
compounds were available from the NCI DTP but, fortunately,
our top hit, NSC637993 (6H-imidazo[4,5,1-de]acridin-6-one,
5-[2-(diethylamino) ethylamino]-8-methoxy-1-methyl-, dihydro-
chloride), was (SI Fig. 10E), and we were able to assay it for
growth inhibition in the BLA-40 panel. For NSC637993,
COXEN predicted 62% sensitive cells of the BLA-40 (SI Fig. 9
Lower). That prediction compared favorably with the experi-
mentally measured GI50 values, which were �10�6 M for �60%
of the cells. In comparison, the equivalent in vitro parameters for
cisplatin, which is one of the most potent current chemothera-
peutic agents used in bladder cancer treatment, were �10�6 M
for only 22% of the BLA-40 cells.

Discussion
We have developed an algorithm, COXEN, for in silico predic-
tion of chemosensitivity. Here we have shown illustrative studies
in which it was used (i) to extrapolate from chemosensitivity data
on the NCI-60 cancer cell panel to an analogous cell line panel
of bladder cancers, (ii) to extrapolate from the NCI-60 to data
on clinical breast cancers, and (iii) to predict sensitivity of the
bladder cancers to 45,545 candidate agents on the basis of
NCI-60 data. In each case, the algorithm was run independently
of the validating experimental results and not further tuned
thereafter. One of the conceptual principles that our COXEN
approach is based on is identifying networks of chemosensitivity
genes concordantly expressed/regulated between different can-
cer cell types or subtypes (20).

In the drug discovery test case, the top hit, NSC637993 is an
imidazoacridinone with structural similarities to drug classes such
as the anthracyclines (e.g., doxorubicin), the anthracenediones (e.g.,
mitoxantrone), and the anthrapyrazoles (e.g., oxantrazole and
biantrazole), which are known to intercalate in DNA and inhibit
DNA topoisomerase II. In our validation studies, NSC637993 was
a potent inhibitor of bladder cancer cell lines, as predicted. An
almost identical compound, C1311, has shown significant cytotoxic
activity in vitro and in vivo for a range of colon tumors (both murine
and human) and is currently being prepared for clinical trials (21,
22). Interestingly, the selectivity of NSC637993 for bladder cancer
compared with cancer cells from other tissues is indicated by its
activity pattern in the NCI-60 panel (http://dtp.nci.nih.gov); only the
leukemia call lines show inhibition. In contrast, as we show in this
article, most bladder cell lines are inhibited. Although tissue
selectivity in the NCI-60 screen does not necessarily translate into
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tumor type selectivity clinically, the results here suggest consider-
ation of NSC637993 and/or C1311 for treatment of bladder cancer.
By using human tumor tissue profiling information (such as that
used here for breast cancer), the screening application of the
COXEN algorithm could prove useful for discovery of candidate
agents to treat other cancer types.

COXEN might also prove useful for determining subsets of
patients or for ‘‘personalizing’’ their treatment. Currently, the hope
is that gene expression profiles obtained from a patient’s tumor can
be compared with the expression profiles from other tumors of the
same organ, grade, and stage to assist in prognosis and selection of
therapy. The results described here for COXEN reinforce the idea
that it is most advantageous to focus on the subset of probes that
constitutes a signature of drug sensitivity. An additional possibility
is the following: if, in the future, a drug has been found to be active
in some patients with one type of cancer, its utility in at least some
patients with a second type might be predicted by COXEN if both
types have been molecularly profiled. In other words, the first type
of cancer might provide a ‘‘training set’’ with at least some power
to predict activity in the second, in line with the generic idea that
drug response is influenced by signature molecular characteristics,
not just by organ of origin. That strategy would be particularly useful
with respect to orphan cancers for which clinical studies are
insufficient and treatments are empirical.

The present study was conducted under at least two limitations
that may not pertain to future applications. First, the available
sample sizes were relatively small. Nevertheless, statistically signif-
icant results were achieved with 60 NCI-60 cell lines, 40 BLA-40 cell
lines, and 84 breast cancer patients. Second, the microarray data
from the breast cancers came from Affymetrix HG-U95 data in the
docetaxel trial and custom cDNA arrays in the tamoxifen trial. Any
lack of concordance introduced by differences in platform would
presumably have confounded the predictions and made it harder,
not easier, to obtain positive results. Similarly, any differences in
factors such as cell culture conditions, cell heterogeneity, sample
handling, purification of RNA, hybridization conditions, drug ac-
tivity assay, or method of data analysis would be expected to have
degraded our predictive results for the BLA-40. In the face of those
limitations, the predictive results presented here demonstrate an
important feature of the COXEN algorithm: generic algorithm
steps 3 and 5 (which select probe sets related to drug activity and
probe sets concordant between cell sets 1 and 2, respectively) tend
to mitigate the influence of such confounding factors, making the
overall algorithm and strategy quite robust. We also note that our
COXEN approach needs to be further validated before its appli-
cations in clinical practice.

To share the COXEN algorithm with the scientific commu-
nity, the development of a web-based COXEN system (www.
coxen.org) is in progress, with which investigators with genomic
profiling data from bladder and breast cancer cells or patient
tumors can obtain chemosensitivity prediction results based on
FDA-approved chemotherapeutic compounds.

Materials and Methods
Development of the COXEN Algorithm. The COXEN algorithm
consists of six distinct steps: input of drug activity and transcript
expression profile data (steps 1, 2, and 4); identification of candi-
date ‘‘chemosensitivity biomarkers’’ in the NCI-60 panel (step 3);
identification of coexpression extrapolation signatures (step 5); and
development of chemosensitivity prediction models for the NCI-60
panel (step 6). These steps and the reagents used in them are
discussed in detail in SI Materials and Methods.

Sensitivity of Human Bladder Cancer Cells to Cisplatin, Paclitaxel, and
NSC637993 (Validation of COXEN Predictions). To examine the per-
formance of the COXEN prediction models objectively, we per-
formed in vitro drug response experiments to determine the sen-
sitivity of each bladder cell line to cisplatin and paclitaxel (Sigma,
St. Louis, MO) and also to the compound NSC637993 (DTP; NCI;
see SI Materials and Methods). The sensitivity to each agent (i.e., the
GI50) was calculated from dose-response experiments carried out
on the BLA-40 cells as described for the NCI-60 (http://
dtp.nci.nih.gov). In each case, the cells were seeded in 96-well cell
plates (Costar, Cambridge, MA) at a density of 1,000 cells per well
on day 0, exposed to drug in triplicate from day 1 to 3 at 37°C, and
then assayed fluorometrically using Alamar Blue aqueous dye
(BioSource International, Camarillo, CA). Each experiment was
repeated independently three to five times, and the results were
expressed as the fractional difference between the initial cell count
and the untreated control. Log10 (GI50) values were then estimated
from the resulting dose–response curves (11, 23). Bladder cell lines
were defined as sensitive or resistant, as described above for the
NCI-60 panel.

Discovery of Candidate Anticancer Compounds from the NCI-60
Screening Data. To identify candidates in the NCI public database
of 45,545 compounds that might be active against bladder cancer
cells, we automated and applied our COXEN algorithm with
several additional filtering criteria. First, compounds with flat
activity profiles across the NCI-60 were eliminated. Mathematically
that filter was defined by the slope coefficient estimate from a
simple linear regression for each drug compound for detecting/
excluding nonspecific toxic or placebo compounds from our drug
screening. Second, we excluded compounds that did not provide
�10 probe sets capable of differentiating sensitive and resistant cell
groups with statistical significance (e.g., significance analysis of
microarrays false discovery rate �0.1).
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