
 1 of 27

Avaki Data Grid – Secure Transparent Access to Data

Andrew Grimshaw

Mike Herrick

Anand Natrajan

Background
“For over thirty years science fiction writers have spun yarns featuring

worldwide networks of interconnected computers that behave as a single entity.
Until recently such science fiction fantasies have been just that. Technological
changes are now occurring which may expand computational power in the same
way that the invention of desk top calculators and personal computers did. In the
near future computationally demanding applications will no longer be executed
primarily on supercomputers and single workstations using local data sources.
Instead enterprise-wide systems, and someday nationwide systems, will be used
that consist of workstations, vector supercomputers, and parallel supercomputers
connected by local and wide area networks. Users will be presented the illusion
of a single, very powerful computer, rather than a collection of disparate
machines. The system will schedule application components on processors,
manage data transfer, and provide communication and synchronization in such a
manner as dramatically improve application performance. Further, boundaries
between computers will be invisible, as will the location of data and the failure of
processors.” [1]

The future is now; after almost a decade of research and development by the Grid
community we see Grids (then called Metasystems [3]) being deployed around the world
both in academic settings, and more tellingly, in production commercial settings.

What is a Grid? What use is a Grid? What is required of a Grid? Before we answer
these questions, let us step back and define what is a Grid and what are its essential
attributes.

Our definition, and indeed a popular definition, is: A Grid system is a collection of
distributed resources connected by a network. A Grid system, also called a Grid, gathers
resources – desktop and hand-held hosts, devices with embedded processing resources
such as digital cameras and phones, or tera-scale supercomputers – and makes them
accessible to users and applications in order to reduce overhead and accelerate projects. A
Grid application can be defined as an application that operates in a Grid environment or
is “on” a Grid system. Grid system software (or middleware), is software that facilitates
writing Grid applications and manages the underlying Grid infrastructure.

The resources in a Grid typically share at least some of the following characteristics:
• They are numerous.
• They are owned and managed by different, potentially mutually-distrustful

organizations and individuals.

I think the quote
is over-used.
Besides, several of
the phrases refer
explicitly to
compute-grids and
have no meaning for
data grids.

 2 of 27

• They are potentially faulty.
• They have different security requirements and policies.
• They are heterogeneous, i.e., they have different CPU architectures, are running

different operating systems, and have different amounts of memory and disk.
• They are connected by heterogeneous, multilevel networks.
• They have different resource management policies.
• They are likely to be geographically-separated (on a campus, in an enterprise, on a

continent).

A Grid enables users to collaborate securely by sharing processing, applications and
data across systems with the above characteristics in order to facilitate collaboration,
faster application execution and easier access to data. More concretely this means being
able to:

Find and share data. When users need access to data on other systems or networks,
they should simply be able to access it like data on their own system. System boundaries
that are not useful should be invisible to users who have been granted legitimate access to
the information.

Find and share applications. The leading edge of development, engineering, and
research efforts consists of custom applications – permanent or experimental, new or
legacy, public-domain or proprietary. Each application has its own requirements. Why
should application users have to jump through hoops to get applications together with the
data sets needed for analysis?

Share computing resources. It sounds very simple – one group has computing
cycles, some colleagues in another group need them. The first group should be able to
grant access to its own computing power without compromising the rest of the network.

Grid computing is in many ways a novel way to construct applications. It has received
a significant amount of recent press attention and been heralded as the next wave in
computing. However, under the guises of “peer-to-peer systems”, “metasystems” and
“distributed systems”, Grid computing requirements and the tools to meet these
requirements have been under development for decades. Grid computing requirements
address the issues that frequently confront a developer trying to construct applications for
a grid. The novelty in grids is that these requirements are addressed by the grid
infrastructure in order to reduce the burden on the application developer. The
requirements (described more thoroughly in []) are: security, a global name space, fault-
tolerance, accommodating heterogeneity, binary management, multi-language support,
scalability, persistence, extensibility, site autonomy and complexity management.

Solving these requirements is the task of a Grid infrastructure. A architecture for a
Grid based on sound design principles is required in order to address each of these
requirements.

In this chapter we will focus on one particular aspect of grids – data. Data grids are
used to provide secure access to remote data resources, flat-file data, relational data, and
streaming data. For example, two collaborators at sites A and B need to share the results
of a computation performed at site A, or perhaps design data for a new part needs to be

 3 of 27

accessible by multiple team members working on a new product at different sites – and in
different companies.

We will examine in detail an Avaki Data Grid. An Avaki Data Grid provides
transparent, secure, high-performance access to federated data sets across administrative
domains and organizations. Users (both people and applications) of the Avaki Data Grid
may be unaware that they are using a data grid. We begin with an examination of
alternatives to data grid solutions. We then look at ADG in detail, starting with a close
examination of the design principles and then the overall architecture. We follow with a
look at performance.

Alternatives to Data Grids
The problems that data grids purport to solve have been around for as long as

networks have existed between computers. A number of solutions have been created to
solve the problems of remote data access. In this section, we take a closer look at some of
the more popular solutions and present their advantages and disadvantages. For each
solution we will take up a case of a local user at one site trying to share a file with a
remote user at another site. The first user, say Alice, is a user on the local machines
owned by one company, whereas the second user, say Bob, is a user on the remote
machines owned by another company. The two companies may not share a mutually-
trustful relationship although the sharing of this file between Alice and Bob has been
permitted.

Network File System – NFS
NFS is the classic solution for accessing files on remote machines within a LAN. With

NFS, a disk on a remote machine can be made part of the local machine’s file system.
Accessing data from the remote system now becomes a matter of accessing a particular
part of the file system in the usual manner. In our use-case above, Alice could run an
NFS server on her machine, and Bob could run an NFS client to mount Alice’s file
system on to his. Bob can now access the exact file that Alice wishes to share.

There are several advantages to NFS, the most significant of which is that it is easy to
understand. Typically, Unix system administrators configure the server and client, and
ordinary users like Alice and Bob simply use it without necessarily realizing that they are
doing so. Moreover, applications need not be changed to access files on an NFS mount –
the NFS server supports standard OS file system calls. Accordingly, files may accessed
entirely on in parts, as desired. Finally, the NFS server and client tools come standard on
all Unixes. On Windows, a special service pack must be purchased and installed.

The biggest disadvantage with NFS is that it is a LAN protocol – it simply does not
scale to WAN environments. If Alice and Bob are separated by more than a few buildings
using NFS between them becomes unviable. Moreover, if Alice and Bob belong to
different organizations, as they are in our use-case, NFS cannot be deployed with
reasonable guarantees of security. Three characteristics of NFS doom it for use in wide-
area, multi-organizational settings. First, the caching strategy on the NFS server typically
releases data after 30 seconds and reloads the data on subsequent access. The result is a
frequent retransmission of data and over-consumption of bandwidth. A related problem is

 4 of 27

that the read block size is too small, typically 8KB. In a wide-area environment, latency
can be high, therefore larger block sizes are needed to amortize the cost of the remote
procedure call (RPC). Although the block size can be changed, most NFS clients do not.

Second, and most seriously, NFS does not address security well. An NFS request
packet is sent in the clear and contains the (integer) UID and GID of the user making the
read or write request. The NFS server “trusts” the NFS client to not lie about the identity
of the user making the request. Such a trustful relationship does not exist among multiple
organizations, such as Alice’s and Bob’s. Even if the organizations trusted each other,
man-in-the middle, imposter and snooping attacks can be made with NFS traffic. A VPN
deployed between the organizations may attenuate some of these attacks, but VPNs
introduce their own problems of management, trust and scalability. Firewalls typically do
not permit NFS traffic through them.

Third, assuming that the packets can be sent in a safe and trustworthy fashion, NFS
requires that the identity spaces at the two sites to be the same. In other words, not only
should Alice and Bob have accounts on each other’s machines, but Alice’s UID on Bob’s
machine must be the same as her UID on her own machine. Likewise, Bob must
synchronize his UIDs on his machine and Alice’s machine in the same manner. Such
synchronization is possible if Alice and Bob were within a single domain – in our
realistic use-case, they are not.

There are other disadvantages plaguing NFS – we will mention them briefly here. NFS
performance does not scale in a wide-area setting because it is a request-reply protocol
which requires acknowledgments to be sent for every request, thus increasing effective
transmission latency. NFS is a stateless protocol, i.e., the server does not keep track of the
position of files being read. Accordingly, the server cannot pre-cache data or pre-position
accesses to give clients better performance. Increasing the number of clients overwhelms
the one server deployed to serve data, thus reducing performance. In our use-case, if Bob
had some other files he wished to share with Alice, he would have to run an NFS server
on his machine and ask Alice to run an NFS client on hers. This kind of configuration can
lead to a morass of cross-mounting, which can over-burden most administrators. In
general, NFS requires m×n connections if m clients access data on n servers.

File Transfer Protocol – ftp
FTP has been the tool of choice for transferring files between computers since the

1970s. FTP is a command-line tool that provides its own command prompt and has its
own set of commands. Several of the commands resemble Unix commands, although
several new commands, particularly for file transfer as well manipulating the local file
system are different. FTP may be used within a script – however, in that case, the
password for the remote machine must be stored in a clear-text file on the local machine.
Using ftp, Alice may connect to Bob’s machine, enter a username and password relevant
to Bob’s machine, change to the appropriate remote directory and then transfer the file.

The benefit of using ftp is that it is relatively easy to use, has been around for a long
time and is therefore likely to be installed virtually everywhere. However, the
disadvantages of ftp are numerous. First, Alice must have access to an account on Bob’s
machine, complete with username and password. Having such access means that Alice

 5 of 27

potentially could do more than just file transfer – she may be able to login into Bob’s
machine and access files, directories and other machines to which she has not been given
explicit access. From Alice’s perspective, every transfer requires her typing the
appropriate machine name, username and password. She could ameliorate some of this
burden by using a configuration file for ftp, but that file may require storing a clear-text
password for Bob’s machine.

In order to eliminate some of these problems, Bob’s site may choose to implement
anonymous ftp. In this case, Alice need not have a username and password for Bob’s
machine, but must still remember the machine name and part of the directory structure.
The problem with anonymous ftp is obvious – anyone may now access Bob’s ftp
directory, not just Alice. The potential for unauthorized overwriting or filling up of disk
space is large.

FTP is inherently insecure – passwords are transmitted in the clear, as is data.
Snooping attacks may easily compromise Alice and Bob. Hence, most sites that have
firewall protection shut down the standard ftp port to discourage such attacks, making ftp
unviable. Even without firewalls, there are other disadvantages to using ftp. Since ftp
requires making a copy of the data at Bob’s machine, if Alice ever changes her own copy
of the file, she must remember to ftp the new version of the file over. Moreover, if Bob
ever changes the file, he must remember to ftp the file back to Alice and reconcile
concurrent changes, if any. This process is fraught with the potential for inconsistencies.
Also, ftp is an all-or-nothing protocol – if even one bit of a large file changes, the entire
file must be copied over. Finally, ftp is not conducive to programmatic access. Therefore,
applications cannot take advantage of remote files using ftp without significant change.

NFS over IPSec
IPsec is a protocol devised by IETF to encrypt data on a network. With IPSec installed

and configured properly, all traffic on a network can be encrypted. Consequently,
illegitimate snooping of network traffic does not affect the privacy and integrity of the
communication between a server and a client. NFS over IPSec implies traffic between an
NFS server and an NFS client over a network on which data has been encrypted using
IPsec. The encryption is transparent to an end-user. NFS over IPSec removes some, but
not all of the disadvantages of using NFS.

NFS over IPSec results in encrypted NFS traffic, thus regaining privacy and integrity.
However, NFS continues to be a LAN-based protocol which does not scale to the WAN-
like environment typical in our use-case. All of the performance, scalability,
configuration and identity space problems we discussed earlier remain. In addition, in
order to deploy IPSec, all of the machines in Alice’s and Bob’s domains must be
reconfigured. Specifically, their kernels must be recompiled in order to insert IPSec in the
communication protocol stack. This recompilation is hard – anecdotal evidence suggests
that the recompilation is risky, error-prone and ill-documented. Finally, once this
recompilation is done, all traffic between all machines is encrypted. Even web, email and
ftp traffic is encrypted whether desired or not.

 6 of 27

Secure copy – scp/sftp
SCP/SFTP belong to the ssh family of tools. SCP is basically a secure version of the

Unix rcp command that can copy files to and from remote sites, whereas sftp is a secure
version of ftp. Both are command-line tools. The syntax for scp resembles the standard
Unix cp command with a provision for naming a remote machine and a user on it.
Likewise, the syntax and usage for sftp resembles ftp.

The benefits of using scp/sftp are that their usage is similar to existing tools.
Moreover, password and data transfer is encrypted, and therefore secure. However, a
disadvantage is that these tools must be installed specifically on the machines on which
they will be used. Installations for Windows are hard to come by. Moreover, scp/sftp do
not solve several of the problems with ftp. In our use-case, Alice must still have access to
an account on Bob’s machine. Alice must continue to remember the appropriate machine
name, username and password. She could ameliorate some of this burden by using an
authorized keys file which permits password-less access, but she must then store her
private key safely on her local machine.

Sites protected by firewalls may permit scp/sftp traffic on the designated port because
the traffic is encrypted. However, scp/sftp does not attempt to solve the consistency
problems of keeping multiple copies of the file. Like ftp or rcp, a change of even one bit
requires the entire file to be copied over. Finally, these tools are not conducive to
programmatic access. Therefore, applications cannot take advantage of remote files using
scp/sftp without significant change.

De-Militarized Zone – DMZ
A DMZ is simply a third set of machines accessible to both Alice and Bob using ftp or

scp/sftp. When Alice wishes to share a file with Bob, she must transfer the file to a
machine in the DMZ, inform Bob about the transfer and request Bob to transfer the file
from the DMZ machine to his own machine. Although both Alice and Bob have
relatively unfettered access to the DMZ machines, neither party compromises his/her own
machines by letting the other have access to them.

With a DMZ, neither Alice nor Bob requires an account on the other’s machines.
Typically, companies deploying DMZs also deploy scp/sftp or some such secure means
of file transfer. Therefore, these tools must be installed on all concerned machines. Alice
and Bob both have to remember machine names, usernames and passwords for the DMZ
machines. However, they now have to remember an additional step of informing the
other whenever a transfer occurs.

DMZs worsen the consistency problems by keeping three copies of the file. Also,
because the file essentially makes two hops to get to its final destination, network usage
is increased. DMZs do not ameliorate any of the other problems with scp/sftp. However,
they do increase administrative burden. If Alice’s company decides to co-operate with a
third company, thus requiring Alice to interact with Chris at that company, she must now
remember yet another DMZ configuration for interacting with Chris. The same DMZ
cannot be reused because of the potential for Chris to access files intended for Bob.

 7 of 27

GridFTP
GridFTP is a tool for transferring files built on top of the Globus toolkit. GridFTP is

an example of a service that characterizes the Globus “sum of services” approach for a
grid architecture. Alice and Bob, in our use-case, could use GridFTP to transfer files from
one machine to another similar to the manner they would use ftp. Naturally, both parties
must install the Globus toolkit in order to use this service.

GridFTP solves the privacy and integrity of the problems with ftp by encrypting
passwords and data. Moreover, GridFTP provides for high-performance, concurrent
accesses by design. An API enables accessing files programmatically, although
applications must be re-written to use new calls. Data can be accessed in a variety of
ways, for example, blocked and striped. Part or all of a data file may be accessed, thus
removing the all-or-nothing disadvantage with ftp.

However, GridFTP does not address the identity space problems with ftp. Alice and
Bob in our use-case must still have an account on each other’s machine, thus giving them
more privileges than just file access. Instead of a machine name, username and password
as in ftp, Alice and Bob have to remember just the machine name. Their identities are
managed by Globus using session-based credentials. Finally, GridFTP does not solve the
problems of consistency maintenance between multiple copies, because Alice and Bob
would still require to keep at least two copies of the file, one on each user’s machine.

Andrew File System – AFS
The Andrew File System is a distributed network file system that enables access to

files and directories distributed across multiple sites. Access to files involves becoming
part of a single virtual file system. AFS comprises several cells, with each cell
representing an independently-administered file system. In our use-case scenario, the file
system on Alice’s machine would be one cell, whereas the file system on Bob’s machine
would be another. The cells together form a single large virtual file system that can be
accessed similar to a Unix file system.

AFS permits different cells to be managed by different organizations thus managing
trust. In our use-case, Alice and Bob would not require accounts on the other’s machines.
Also, they could control each other’s access to their cell using the fine-grained
permissions provided by AFS. When Bob accesses one of Alice’s files for which he has
permission, he accesses exactly the current copy of the file. Thus, AFS avoids the
consistency problems with other approaches. In order to improve performance, AFS
supports intelligent caching mechanisms. Since access to an AFS file system is almost
identical to accessing a Unix file system, users have to learn few new commands, and
legacy applications can run almost unchanged.

AFS implements strong security features. All data is encrypted in transit.
Authentication is using Kerberos. One drawback of using Kerberos is that the security
credentials time-out eventually. Therefore, long-running applications must be changed to
renew credentials using Kerberos’s API. Also, AFS requires that all parties migrate to the
same file system. In other words, Alice and Bob would have to migrate their entire file
systems to AFS, which can be a significant burden.

 8 of 27

Avaki Data Grid
The objective of the Avaki Data Grid is to provide high-performance, easy,

transparent, secure collaboration and coherent sharing between different administrative
domains and organizations. Let’s look briefly at each of these in turn.

High-performance. Nobody wants a low-performance system. Yet remote access is
inherently slower than local access due to the combination of higher latency and often
lower bandwidth. To provide high-performance access in the wide-area local cached
copies must be made to reduce the time spent transferring data over the wide-area
network.

Coherent. Caching data is great for performance. Unfortunately it can lead to
inconsistent copies of the data, which can lead in turn to incorrect application results or
bad decisions based on out-of-date data. Thus, the data grid must provide cache-coherent
data while recognizing and exploiting the fact that different applications have different
coherence requirements.

Easy and transparent. The data grid must be transparent to end users and applications.
If users have to change their code or behaviors in order to use the data grid they are less
likely to use it – reducing the benefit of having the grid in place.

Secure. “Secure” is a word that covers a whole range of issues. We believe that a data
grid must support strong authentication with identities that span administrative domains
and organizations, support the establishment of virtual organizations (groups that span
organizations), enforce access control policies, and protect data.

Between different administrative domains and organizations. To span administrative
domains a grid must address the identity mapping problem. To span organizations issues
of trust management must be addressed.

In designing the Avaki Data Grid to meet these goals we kept three design principles
in mind:

Provide a single-system view. With today’s operating systems we can maintain the
illusion that our local area network is a single computing resource. But once we move
beyond the local network or cluster to a geographically-dispersed group of sites, perhaps
consisting of several different types of platforms, the illusion breaks down. Researchers,
engineers, and product development specialists (most of whom do not want to be experts
in computer technology) must request access through the appropriate gatekeepers,
manage multiple passwords, remember multiple protocols for interaction, keep track of
where everything is located, and be aware of specific platform-dependent limitations
(e.g., this file is too big to copy, or to transfer to one’s system; that application runs only
on a certain type of computer). Re-creating the illusion of single resource for
heterogeneous, distributed resources reduces the complexity of the overall system and
provides a single namespace.

Provide transparency as a means of hiding detail. Grid systems should support the
traditional distributed system transparencies: access, location, heterogeneity, failure,
migration, replication, scaling, concurrency, and behavior. For example, a user or
programmer should not have to know where a peer object is located in order to use it

 9 of 27

(access, location, and migration transparency), nor does a user want to know that a
component across the country failed – they want the system to recover automatically and
complete the desired task (failure transparency). This is the traditional way to mask
various aspects of the underlying system.

Reduce “activation energy”. One of the typical problems in technology adoption is
getting users to use it. If it is difficult to shift to a new technology then users will tend not
to take the effort to try it unless their need is immediate and extremely compelling. This
is not a problem unique to Grids – it is human nature. Therefore, one of our most
important goals is to make using the technology easy. Using an analogy from chemistry,
we keep the activation energy of adoption as low as possible. Thus, users can easily and
readily realize the benefit of using Grids – and get the reaction going – creating a self-
sustaining spread of Grid usage throughout the organization. This principle manifests
itself in features such as “no recompilation” for applications to be ported to a Grid, and
support for mapping a Grid to a local operating system file system. Another variant of
this concept is the motto “no play, no pay”. The basic idea is that if you do not need a
feature, e.g., encrypted data streams, fault resilient files, or strong access control, you
should not have to pay the overhead of using it.

The Avaki Data Grid meets our goals using a federated sharing model, a global name
space, and a set of servers – called DGAS (Data Grid Access Servers) that support the
NFS protocols and can be mounted by user machines – effectively mapping the data grid
into the local file system. So, that is a lot of words. Let’s break it down.

Let’s start with the global name space. This is really a fancy word for a globally
visible directory structure where the leaves may be files, directories, servers, users,
groups, or any other named entity in the Avaki Data Grid. Thus, the path
“/shares/grimshaw/myfile” names myfile, and the path can be used anywhere in the data
grid by a client to refer to myfile regardless of where the client is located, and regardless
of where myfile is located – or wherever myfile may migrate. There’s no migration in
ADG 3.0.

Data gets into the data grid – and gets a path name in the global name space when it is
shared. The share command takes a rooted directory tree on some source machine and
maps it into the global name space. For example, I can share c:\data on my laptop into
/shares/grimshaw/data. At that point, the data on my laptop \data directory is available,
subject to access control, by any authorized user in the grid for both read and write.

Data access in the ADG is, for the most part, via the local file system on the users
machine, which in turn is an NFS client to a DGAS. The DGAS looks to the local
operating system file system like a standard NFS 3.0 server. Thus the end user is unaware
that they are even using the ADG; their shell scripts, Perl scripts, and other applications
that use stdio will work without any modification on the ADG. We choose NFS because
just about every operating system under the sun has a native NFS client.

Access control in ADG is via access control lists (ACL’s) on each grid object (file,
directory, share, group, etc.). For each operation on an object (e.g., read, write) there is an
allow list and a deny list. These lists may contain both individual identities and group
identities. A group is simply a set of individual identities. Groups are our mechanism for
creating virtual organizations that span multiple actual organizations, and may contain

 10 of 27

identities from multiple organizations (grids). The allow list is first evaluated. If a request
is not from a user in the allow list, the operation is rejected. Then, if the user is allowed,
the deny list is checked. The deny list over-rides the allow list.

In the example in Figure 1 we have shared three different directory structures into the
grid: one each from a Solaris machine, a WindowsNT machine and a Linux machine. The
ADG does not care where the data is stored, on direct attached disk as in my example
above, on NAS, on a SAN, or perhaps even on optical media. Furthermore, the data stays
where it is. That means that local applications that count on the data in a particular
directory can still access the data, and all local backup procedures continue to function.

Modifications to shared data by either direct means on the host machine, or via the
ADG, are visible to both, though in the case of subsequent ADG access the coherence
window applies (more on this later.)

Given the above example let’s examine how the ADG is viewed by both the end user
and by the system administrator.

Figure 1. Data at three different sites, on three different types of machine have been
mapped into the Avaki Data Grid. Data can now be accessed from anywhere in the Grid.
Typically access is via a Data Grid Access Server (DGAS). The DGAS appears to local
operating systems as an NFS 3.0 server, providing standardized, secure and transparent
access to data.

User view
The first thing to stress about the user’s view of the ADG is that no programming is

required at all. Applications that access the local file system will work out of the box with

Local Local

Linux NT
Solaris

AAVVAAKKII DDaattaa GGrriidd

Data mapped to the AVAKI Data Grid namespace via AVAKI

Multi LAN +
WAN Users/Apps

DGAS

Local

 11 of 27

the ADG. This is consistent with our goal of reducing the “activation energy” of grid
adoption.

There are three ways for end users to access data in the data grid, via the local file
system and an NFS mount of a DGAS, via a set of command lines tools, and via a web
interface. In addition users may want to share some of their data into the grid, manage
access control lists for files and directories that they own, etc.

NFS. We have already discussed access via the native file system. Applications
require no modification, tools such as “ls” in Unix and “dir” in Windows work on
mounted Avaki Data Grids. The user is not aware they are even using the ADG. A
similar capability via CIFS will be available in the summer of 2003.

Command Line Interface. An Avaki Data Grid can be accessed using a set of
command line tools that mimic the Unix file system commands such as ls, cat, etc. The
Avaki analogues are avaki ls, avaki cat, etc. The Unix-like syntax is intended to mask the
complexity of remote data access by presenting familiar semantics to users. The
command line access tools are rarely used and are provided for users who may be unable
for whatever reason to mount a DGAS into their file system.

Web-Based Portal. The third access mechanism is via a web-based portal. Using the
portal user can traverse the directory structure, manage access control lists for files and
directories, and create and remove shares. For example, in Figure 2 the interface to create
a new share and map it into the ADG is shown.

 12 of 27

Figure 2. The user uses the web-based GUI to add a share and thus map the data into
the global directory structure. The user provides the name of the share, i.e., the path
name, the local path of the data, the rehash interval, and the encryption level. In order to
share a directory the user must be a member of the “DataProviders” group. Thus,
management may restrict who is allowed to make data available on the grid.

The user can also use the web-based portal to view and modify access control lists on
files, directories, groups. etc. For example, Figure 3 shows the ACL for an object
“myProjects”. Figure 4 illustrates changing the ACL’s for an object “fred”.

Figure 3. View/modify access control lists for an object. Both users and groups can be

added to the access control lists via the links at the bottom of the page.

 13 of 27

Figure 4. The access control lists for the object “/home/fred” is being modified. If it is

a directory the changes can be applied recursively.

IT Manager View
Avaki ensures secure access to resources on the Grid. Files on participating computers

become part of the Grid only when they are shared, or explicitly made available to the
Grid. Further, even when shared, Avaki’s fine-grain access control is used to prevent
unauthorized access. Any subset of resources can be shared, for example, only certain
files or directories. Resources that have not been shared are not visible to Grid users. By
the same token, a user of an individual computer or network that participates in the Grid
is not automatically a Grid user, and does not automatically have access to Grid files.
Only users who have explicitly been granted access can take advantage of the shared
resources. Local administrators may retain control over who can use their computers, at
what time of day, and under which load conditions. Local resource owners control access
to their resources.

An Avaki Grid can be administered in different ways, depending on the needs of the
organization.
1. As a single administrative domain. When all resources on the Grid are owned or

controlled by a single department or division, it is sometimes convenient to
administer them centrally. The administrator controls which resources are made
available to the Grid and grants access to resources. In this case, there may still be
separate administrators at the different sites who are responsible for routine
maintenance of the local systems.

 14 of 27

2. As a federation of multiple grids – a grid of grids. When resources are part of
multiple administrative domains, as is the case with multiple divisions or companies
cooperating on a project, more control is left to administrators of the local networks.
They each define which of their resources are made available to the Grid and who has
access. In this case, a team responsible for the collaboration would provide any
necessary information to the system administrators, and would be responsible for the
initial establishment of the Grid.

With Avaki, there is little or no intrinsic need for central administration of a Grid.
Resource owners are administrators for their own resources and can define who has
access to them. Initially administrators cooperate in order to create the Grid; after that, it
is a simple matter of which management controls the organization wants to put in place.

Given the above, systems administrators perform basic tasks as shown in the system
administrators main menu web page (Figure 5):

• Server management, where the number of grid servers is specified, and hot
spares for high availability are configured.

• Grid user management, where users and groups are either imported from the
existing LDAP, Active Directory, or NIS environment, or they are defined
within the grid itself.

• Grid object management, where files and directories can be created and
destroyed, ACL set, and new shares added.

• Grid monitoring, where logging levels, event triggers, and so on are set. ADG
can be configured to generate SNMP traps and thus be integrated into the
existing network management infrastructure.

• Grid interconnects, where the system administrator manages the set of grids to
which this grid is connected.

In the following sections we will examine in more detail the architecture and servers
that sit behind this interface. For more detail on system management options please see
the Avaki ADG system administrators guide.

 15 of 27

Figure 5. The main menu for system administrators.

Architecture
ADG 3.0 has been written almost entirely in Java, with a small amount of native code

primarily for performance. The architecture is based on off-the-shelf J2EE application
servers. The application server currently being used is JBoss, although other application
servers may be deployed with little or no code change.

Every ADG component runs within an application server. A Java application server is
the equivalent of a traditional operating system but for J2EE components. Objects are
created, deactivated, reactivated and destroyed within the application server on demand.
Interactions between objects within the same application server are processed by the Java
virtual machine within the application server. Interactions between objects in different
application servers (typically, on different machines) are processed using remote method
invocations (RMI). RMI calls are encrypted using Secure Sockets Layer (SSL) or any
other off-the-shelf encryption technology. Interactions between objects may cause their
internal states to be changed. The persistent state of objects is stored in an embedded
database, currently either HyperSonic or CloudScape, accessed by the application server.
All objects log several levels of messages using log4j, which stores these logs in files
associated with the application server.

The major components of an ADG are: grid servers, share servers and data grid access
servers (DGAS). A grid server performs grid operations such as authentication, access
control and meta-data management. A share server performs bulk data transfer between a
local disk on a machine and the grid. A data grid access server enables presenting the

 16 of 27

data grid as a Unix directory or a Windows drive using the NFS protocol. In this section,
we discuss the components of an ADG. The interaction between these components
provides an insight into the workings of a data grid.

Grid Servers
A grid server is the primary component of a grid. A grid server performs grid-related

tasks such as domain creation, authentication, access control, meta-data management,
monitoring, searching, etc. When deploying an ADG, the first grid server deployed
typically bears the responsibility of starting a grid. This grid server is also called a grid
domain controller (GDC). The GDC creates and defines a domain. A domain represents a
single grid. Every domain has exactly one GDC. Multiple domains may be
interconnected by invoking the appropriate functions on their respective GDCs.

A GDC is sufficient for creating, using and maintaining a small grid of 10-15
machines. However, beyond that number, maintaining scalability requires starting more
grid servers on other machines. These grid servers are connected to the GDC. Each of
these grid servers can be made responsible for a subset of the grid-related activities. For
example, one of these grid servers can be made responsible for authentication. When a
user logs into the grid, this grid server would be responsible for receiving the user name
and password and either verifying the user’s identity using an in-built grid authentication
service or delegating this process to a third-party authentication service such as NIS,
Active Directory or Netegrity. Once the user’s identity has been verified, the grid server
is responsible for generating credentials for this session for this user.

Another important task performed by a grid server is access control. When a user
requests access to a file, directory or any other object in a grid, the grid server uses her
credentials to retrieve her identity and then check the access controls on the object to
determine if the requested access is permissible or not. Since the user may issue multiple
requests when accessing a large file or when accessing a file repeatedly, the grid server
may pass on the permission information in a handle to a share server in order to avoid
repeated access control checks.

Yet another important task performed by a grid server is meta-data management.
Every object in a grid has meta-data associated with it, such as creation time, ownership
information, etc. For file objects, modification time and size are also meta-data. A grid
server is responsible for storing this meta-data in an internal database, performing
searches on it when requested and rehashing the information when it becomes stale.

A grid server can also be configured to perform monitoring services on other grid
components. Monitoring typically involves determining the response time of other
components to ping messages. As the ADG product evolves to incorporate database
access, the grid server is expected to perform database tasks such as opening a
connection, issuing a query or executing a stored procedure and reporting results into the
data grid.

 17 of 27

Share Servers
A share server is an ADG component that is responsible for bulk data transfer to and

from a local disk on a machine. Multiple directories on a machine may be shared into the
grid using a single share server; each of these directories is called a share. A share server
is always associated with a grid server. The grid server is responsible for verifying
whether a read/write request is permissible or not. If the request is permitted, the grid
server passes a handle to the user as well as the share server. The user’s request is then
forwarded to the share server along with this handle. Subsequent requests are satisfied by
the share server without the intervention of the grid server. Naturally, if the user issues a
new request, for instance., to a new file, the grid server verifies the request anew before
delegating the transfer to the share server.

A share server’s main responsibility is to translate a grid read/write request into an
equivalent read/write on the underlying file system. Depending on how the share server is
configured, the translation may require decrypting data before writing to the file system
and encrypting data after it has been read from the file system. Another responsibility of
the share server is processing a rehash request initiated by its grid server. A rehash
ensures consistency between the grid server’s internal database about the contents of a
share and the actual contents of the equivalent directory on the file system. Since sharing
a directory does not preclude accessing the same directory using OS tools on that
machine, it is possible for the contents of a share to be changed without any Avaki
component being involved. A rehash restores the consistency of the data grid in such
situations. Rehashes may be explicit or periodic.

A share server performs bulk data transfers, whereas its grid server performs grid-
related tasks associated with the transfers. Incidentally, a grid server may also function as
a share server, but not vice versa.

Data Grid Access Servers (DGAS)
A DGAS provides a standards-based mechanism to access an ADG. A DGAS is a

server that responds to NFS 2.0/3.0 protocols and interacts with other data grid
components. When an NFS client on a machine mounts a DGAS, it effectively maps the
ADG global name space into the local file system, providing completely transparent
access to data throughout the grid without even installing Avaki software. This NFS-
based access to an ADG complements the command-line and web-based access that
Avaki provides as part of every data grid deployment. Upcoming versions of the DGAS
are expected to support the CIFS protocol for Windows clients as well.

Despite the functional similarity, a DGAS is not a typical NFS server. First, it has no
actual disk or file system behind it; it interacts with components that may be distributed,
be owned by multiple organizations, be behind firewalls, etc. Second, a DGAS supports
the Avaki security mechanisms; access control is via signed credentials, and interactions
with the data grid can be encrypted. Third, a DGAS caches data aggressively, using
configurable local memory and disk caches to avoid wide-area network access.
Furthermore, a DGAS can be modified to exploit semantic data that can be carried in the
meta-data of a file object, such as “cacheable”, “cacheable until” or “coherence window
size”. In effect, a DGAS provides a highly secure, wide-area NFS.

 18 of 27

To avoid the rather obvious hot-spot of a single DGAS at each site, Avaki encourages
deploying more than one DGAS per site. There are two extremes, one DGAS per site,
and one DGAS per machine. Besides the obvious tradeoff between scalability and the
shared cache effects of these two extremes, an added security benefit of having one
DGAS per machine is that the DGAS can be configured to accept requests from only the
local machine, eliminating the classic NFS security attacks via network spoofing.

Proxy Servers
A proxy server enables accesses across a firewall. A proxy server requires a single

port in the firewall to be opened for TCP, specifically HTTP/HTTPS, traffic. All Avaki
traffic passes through this port. Opening a firewall port essentially involves permitting
traffic in and out of that port on the firewall machine and forwarding incoming traffic to
another machine inside the firewall on which the Avaki proxy server is started. The proxy
server accepts all Avaki traffic forwarded from the firewall and redirects the traffic to the
appropriate components running on machines within the firewall. The responses of these
machines are sent back to the proxy server, which forwards this traffic to the appropriate
destination through the open port on the firewall.

A proxy server is associated with a grid domain “inside” a firewall. In other words, the
proxy server and other grid servers and share servers must be in a common DNS domain
and should be able to send messages to one another freely. Machines “outside” the
firewall, i.e., in other DNS domains that are restricted by the firewall, must communicate
with machines inside the firewall via the proxy server alone. The machines outside the
firewall are not considered part the grid domain inside the firewall. Therefore, access
through a firewall requires starting multiple grid domains (therefore, multiple GDCs) and
then interconnecting them. Multiple grid domains may access a domain inside a firewall
through the same proxy server. Two grid domains that are inside different firewalls may
communicate with each other through one proxy server associated with each of them.

A proxy server may encrypt/decrypt as well as compress/uncompress data flowing
through it. Message encryption maintains privacy and integrity of data grid traffic,
whereas compression reduces network traffic, thus improving bandwidth. These
operations occur transparently from the user’s perspective as well as independent of the
working of the rest of the grid components.

Failover Servers
A failover server is a grid server that serves as a backup for the GDC. A failover

server is configured to synchronize its internal database periodically with a GDC. As a
result, if a GDC becomes unavailable either because the machine on which it is running is
down or because the network is partitioned or for any other reason, users can continue to
access the grid without significant interruption in service. When a GDC is unavailable, all
grid objects transparently access other grid objects using a failover server.

Grid objects access one another using a unique name, called a Location-independent
Object IDentifier (LOID). The Avaki run-time system resolves LOIDs into location-
specific identifiers encoded in Web Services Description Language (WSDL) documents.
These WSDL documents typically include the address of the GDC. However, when a

 19 of 27

failover server is added to a grid, the address of the failover server is added to every
WSDL. The run-time communication protocol for every object tries the addresses in the
WSDL in order every time. If the first address, i.e., the GDC address is unreachable, the
object automatically fails over to the next address, i.e., the first failover server. If even
that address is unreachable, the object fails over to the address of the second failover
server, if one is present, and so on until either an address is reachable or no addresses are
found. In the latter case, the object reports an error and terminates the action. Thus,
multiple failover servers may be configured for a single GDC, if desired.

The database within all failover servers is synchronized with the database within the
GDC periodically. If a GDC becomes unavailable, the database in the next available
failover server is guaranteed to be closely consistent with that of the GDC. However,
subsequent actions may make the failover server database inconsistent with that of the
currently-unavailable GDC. Therefore, when a grid is operating in failover mode, i.e.,
with a failover server acting in lieu of a GDC, actions that change the database are
prohibited. Typically, this prohibition means that adding new shares or new files and
directories to existing shares may be prohibited. Reading and writing existing files and
directories can continue unhindered. This solution avoids some of the more difficult
problems of fault-tolerance on a grid. For example, after a GDC becomes unavailable,
failover servers do not have to vote among themselves to pick a new GDC – the next
failover server listed in every WSDL automatically acts as a limited GDC. When the
GDC returns, again no voting is required to pick the primary component of the grid – the
GDC resumes that role simply because it continues to be the first address in every
WSDL.

Performance

New Text
Performance is critical to acceptance of data grids. In particular, a frequent concern is

the performance of a data grid relative to NFS, since NFS is the most commonly-
deployed distributed file system. Accordingly, in this section we compare Avaki Data
Grid performance against NFS. Data in an ADG can be accessed in many different ways;
one of the ways makes the entire ADG look like an NFS-mounted directory. However,
even in this for of access, different configurations of ADG components may give
different performance results. In this study, we considered three configurations, which
represent different use-case scenarios. We describe these ADG configurations, the NFS
configuration used for comparison and the characteristics of the machines and tests.

Machine Configurations
We used three machines, testbed1, testbed9 and testbed17, for all of our tests. The

characteristics of the machines are:
• testbed9:

• Operating System: SunOS 5.8 Generic_108528-15 (Solaris 8)
• Processor: sun4u sparc SUNW,UltraAX-i2
• Memory: 512MB

 20 of 27

• Swap: 1.3GB
• Local Disk: 6GB+

• testbed1:
• Operating System: Linux 2.4.7-10 #1 (Red Hat 7.3)
• Processor: i686
• Memory: 512MB
• Swap: 1.0GB
• Local Disk: 25GB+

• testbed17:
• Operating System: Linux 2.4.7-10 #1 (Red Hat 7.3)
• Processor: i686
• Memory: 512MB
• Swap: 1.0GB
• Local Disk: 8GB+

• Connectivity: 100Mb/sec

NFS Configuration
We used one of the machines as an NFS server and another as an NFS client:

• testbed9: NFS server
• testbed1: NFS client, mount parameters:

• Protocol: TCP
• Version: 3
• Type: hard
• Attribute Cache Timeout: 600 seconds

ADG Configuration
We used three configurations of the ADG, representing three use cases. The first

configuration, called RemoteDGAS, places the Avaki DGAS on the same machine as the
share server, but NFS client on a different machine. The second configuration, called
LocalDGAS, places the Avaki DGAS on the same machine as the NFS client, but on a
different machine from the share server. The third configuration, called WideDGAS,
places the Avaki DGAS on a third machine, separate from the NFS client as well as the
share server.

The RemoteDGAS configuration effectively compares the efficiency of Avaki
components, i.e., the DGAS plus the share server plus its grid server, against that of a
standard NFS server. In this configuration, the connection between the NFS client and the
DGAS is the same as the connection between the same client and the standard NFS
server.

The LocalDGAS configuration effectively compares the efficiency of the Avaki
communication protocol against the NFS protocol.

The WideDGAS configuration presents a typical deployment configuration where the
data to be shared is located on a different machine, possibly in a different DNS domain

 21 of 27

from the machine on which the data is to be accessed. This scenario cannot be duplicated
with standard NFS.

RemoteDGAS
• testbed9: Grid Server (GDC), Share Server, DGAS
• testbed1: NFS client, mount parameters:

• Protocol: TCP
• Version: 3
• Type: hard
• Attribute Cache Timeout: 600 seconds

LocalDGAS
• testbed9: Grid Server (GDC), Share Server
• testbed1: DGAS, NFS client, mount parameters:

• Protocol: TCP
• Version: 3
• Type: hard
• Attribute Cache Timeout: 600 seconds

WideDGAS
• testbed9: Grid Server (GDC), Share Server
• testbed17: DGAS
• testbed1: NFS client, mount parameters:

• Protocol: TCP
• Version: 3
• Type: hard
• Attribute Cache Timeout: 600 seconds

For all configurations, we accessed two shares on the Share Server's local directory.
One share was configured to provide data encrypted with SSL, while the other share was
configured to provide data unencrypted.

Test Configuration
For the tests, we measured wall-clock time taken, with precision in microseconds, to

perform write and read operations. Each write operation was performed five times. Each
read operation was performed five times, recognizing that the first time represented an
uncached access, whereas the remaining four times represented cached access.

We took care to issue umounts for the NFS clients between each write and read
operation so as to eliminate the effects of caching at the mount client. This caching
benefits both ADG and NFS equally. We took care to ensure that the DGAS caches were
stored on local disks, not NFS-mounted directories to eliminate one source of delays
within the DGAS. Also, the DGAS was configured to print information, but not debug
messages. We ensured that the results of every operation were correct. For writes, we
checked the file size as reported by the Unix tool “ls”. For reads, we added several
checks, such as “wc”, “diff” and “sum”. We took care to ensure that the checks did not
pollute cached read results. We performed each operation using the Unix command “cp”

 22 of 27

as well as using a Unix program which performed the same effective operation. For the
command-based operation, we measured the time to complete the entire command. For
the program-based operation, we measured the time to complete exactly the required data
transfer, thus eliminating program startup and shutdown. For the program-based transfer,
we kept the buffer block size at 8KB, which is a traditional standard for NFS. For wide-
area ADG, we recommend changing this block size to a larger size, say 128KB, to
amortize latency. Also, we kept program block size, i.e., the block size written by the
program every single time at 128B.

In a second test, we performed 500000 random accesses on a 64MB file. Each random
access was either a read, write or seek of a random amount of bytes. Again, we
performed each operation 5 times. This test was meant to capture the performance under
non-sequential access, such as those by an application. For this test, we plotted the time
taken, not bandwidth.

Test Results
We expected NFS to outperform ADG. Since our tests were in a LAN environment,

the overhead of using multiple servers in ADG as opposed to one server in NFS plays an
important factor. In a WAN environment, the greater transmission latencies involved
would mask these overheads. Besides, in a WAN environment, we have been unable to
get NFS to finish all of the tests undertaken here successfully (results not shown here).
Again, since NFS is not a WAN protocol, the failures are unsurprising.

Between the three ADG configurations, we did not notice significant performance
difference. This lack of difference is explained by the LAN environment. An interesting
area of further study is the performance difference of the three configurations in a WAN
environment. While we can speculate on the expected relative performances, we will
defer that exercise to a later study. Another unsurprising result of our study is that when
shares are configured to serve data encrypted, performance drops. The surprise was in the
amount of performance drop – as much as 100% in some cases. Program-based I/O
versus command-based I/O did not result in significant differences, except for very small
file size, where command startup and shutdown dominates actual transfer. Therefore,
unless explicitly mentioned, all of the results shown here are for program-based I/O.
These results are presented in Figures 6-10.

The plot in Figure 6 shows DGAS write performance for unencrypted shares
compared to NFS using a program in all configurations. NFS write performance is
consistently better than Avaki write performance, as is expected. For NFS vs.
RemoteDGAS, Avaki requires passing traffic through twice as many servers as NFS. For
NFS vs. LocalDGAS, Avaki traffic generally has more volume than NFS traffic because
of grid headers and encryption. For NFS vs. WideDGAS, Avaki traffic makes two
network hops as opposed to NFS traffic. In Figure 7, we show performance for uncached
reads. In general, uncached reads are relatively similar in performance to writes for all
configurations. As compared to writes, reads result in poorer performance because they
are synchronous.

 23 of 27

Figure 6. Write Performance comparison between ADG 3.0 and native NFS.

Figure 7. Uncached Read Performance comparison between ADG 3.0 and native NFS.

For cached reads, as shown in Figure 8, the DGAS cache results in better performance
for all DGAS scenarios. When file size becomes bigger than the cache, naturally,
performance drops because the cache can no longer satisfy the operation. Contention
between the NFS client and DGAS in LocalDGAS and the DGAS and share server in
Remote DGAS results in poorer performance than WideDGAS.

 24 of 27

Figure 8. Cached Read Performance comparison between ADG 3.0 and native NFS.

Figure 9. Encrypted/Unecrypted Read/Write Performance for ADG 3.0.

The plot in Figure 9 shows the effect of encrypting shares. The DGAS pays the
penalty of encryption on writes and uncached reads, but not otherwise, since the cached
copy is unencrypted. Encryption penalty can be as high as 100%. Incidentally, this plot
also compares performance of writes, cached reads and uncached reads. Performance of
writes and uncached reads are similar, but far inferior to performance of cached reads.

 25 of 27

Figure 10. Random Access Performance comparison between ADG 3.0 and native

NFS.

Random access performance of DGAS is about 50% worse than that of NFS for
unencrypted shares. The performance for encrypted shares is worse, expectedly so.

Old Text
Performance is critical to acceptance of data grids. In particular how the data grid

compares with the native NFS performance is a key factor – since NFS is the most
frequently used distributed file system. Below we compare the performance of Avaki
ADG 3.0 versus the native NFS on Linux in a local area, 100 mbs Ethernet environment.

The test environment for the native NFS consists of two 933 MHZ PIII’s running Red
Hat Linux 7.1. Each machine had 512 MB of memory. The NFS server was on one
machine, and the client test application on another. Performance for ADG was measured
with three machines. Like the native NFS the NFS client and test program ran on the
same 933 MHZ PIII, and the DGAS ran on the other 933 MHZ PIII. The share server
(where the data actually lives) was a 2.4 GHZ P4 with 1 GB of memory running
Windows 2000.

 26 of 27

Performance was measured for file sizes from 1KB to 1GB, incrementing by a factor
of 2, e.g., 1K, 2K, 4K, 8K, and so on till 1 GB. I/O throughput was measured by starting
a timer, performing Unix “cp”, stopping the timer, and computing the throughput. To
eliminate local operating system cache effects the NFS server was unmounted between
trials (for both native NFS and ADG).

The performance results are shown in Figure 11. A few things to note about the
results. First, the cached ADG reads (client to DGAS read) performance is very similar to
the native NFS read performance, particularly for larger files. Second, the ADG un-
cached reads and ADG writes are approximately half the speed of NFS. The reason is the
network and client configuration. Our client, DGAS, and true copy of the data are all on
different machines, requiring two network hops rather than one. We choose this
configuration (rather than placing for example the DGAS and the share on the same
machine) because we believe it is more representative of actual deployments. Third, and
most significantly, if we had run this same experiment with the native NFS server on a
remote machine and the Avaki share server on a remote machine the Avaki cached read
performance would be the same. The native NFS would be much worse. Indeed it can be
hard to test because NFS often times out and fails on wide area systems.

ADG3.0 vs. Native NFS Performance

0

2

4

6

8

10

12

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

File Size (Kilobytes)

Th
ro

ug
hp

ut
 (M

B
/s

)

Native NFS Reads Native NFS Writes ADG3.0 Uncached Reads ADG3.0 Cached Reads ADG3.0 Writes
Figure 11. Performance comparison between Avaki ADG 3.0 and native NFS.

Summary
In this chapter we have presented the Avaki Data Grid, its usage, architecture, and

performance. The performance of ADG was compared to native NFS. ADG performance
was competitive with native NFS in the most common usage scenario – reading. Further

 27 of 27

we examined the alternatives to data grid technology – ftp, scp, wide area NFS, and
DMZ’s and found they fall short on several dimensions.

The bottom line is that Avaki provides high-performance, easy, transparent, secure
collaboration and coherent sharing between different administrative domains and
organizations. This allows organizations to reduce the “friction” of collaboration both
internally and externally, reducing both costs and time to market.

References
[1] A.S. Grimshaw, "Enterprise-Wide Computing," Science, 256: 892-894, Aug 12, 1994.
[2] A.S. Grimshaw and W.A. Wulf, "The Legion Vision of a Worldwide Virtual Computer,"

Communications of the ACM, 40(1): 39-45, Jan 1997.
[3] L. Smarr and C.E. Catlett, “Metacomputing, Communications of the ACM. 35(6):44-52, June

1992.
[4] FTP specification, http://www.ietf.org/rfc/rfc0765.txt?number=765

