

http://www.devx.com Printed from http://www.devx.com/TabletPC/Article/21302

The Challenge of Designing Interfaces for the Tablet PC

Designing a usable interface for a Tablet PC program is considerably trickier than simply drawing
blue lines across a yellow background and calling it a legal pad. Consider these challenges, and
learn how to overcome them.

by Larry O'Brien

The pen is a harsh mistress. While the portability and direct manipulation of the Tablet PC form-factor are a
dream come true for many users, designing a usable interface for a Tablet PC program is considerably trickier
than simply drawing blue lines across a yellow background and calling it a legal pad. UI design is made harder
because the Tablet PC is frequently compared to the versatile blank sheet of paper.

The first major challenge in designing and effective UI is obvious the moment you use a tablet: parallax. The
Tablet PC’s display is actually a couple of millimeters below the screen surface. Because your eye rarely
happens to be precisely perpendicular to the pen’s location on the display, this implies that the pen’s physical
location on the screen surface generally appears offset from the location of the mouse pointer on the display.
This phenomenon exists with PDAs and touch-screen devices such as ATM displays, but the tablet’s larger
display area, varied viewing angles, and generally higher display resolution of the Tablet PC make the parallax
more apparent. Figure 1 shows a parallax offset of 15 pixels or so when the pen moves towards the upper-right-
hand corner of the display. Note the relative size of the offset, the mouse pointer, and the form’s control boxes:
having to compensate a few pixels might sound like a trivial adjustment, but after using a Tablet PC for even a
few hours, you come to appreciate how many widgets on an interface are really quite small. So the first rule of
Tablet PC UI design is: Make Big Controls and Hotspots.

Obeying this rule helps address another challenge offered by the
Tablet PC, one that is less obvious than parallax: the “natural” size
of writing on a Tablet PC is larger than what you’re used to on
paper. A paper contract may have an ample signature area of 3” x
½” (roughly 75mm x 12 mm.), a similarly sized area on a Windows
Form feels undeniably cramped. I believe this is a result of the
combination of parallax and the relatively low resolution of the
display compared with paper. The two factors require larger strokes
to reflect the subtleties of cursive writing. After more than a year of
using a Tablet PC, I’ve found that my ~9 ¾” x 7 ¼” screen (12”
diagonal) captures about the same amount of writing as I put on a 6
½” x 4 ½” notepad. This ratio, which seems fairly constant in my
practice, is the basis of a second rule: Budget your ink-capturing
controls at 150% of the space you’d allocate for them on paper.

The next limitation on UI’s is one that jumps out the first time you
surf the World Wide Web with a Tablet PC: It’s succinctly articulated
as “You can’t see through your hand.” Many Websites place menus
along the left side of the screen and cascade sub-options to the
right. This is fine with a mouse interface, but is frustrating for right-
handed pen users, as sub-menus are obscured by the pen-holding
hand (Figure 2). This problem can cause trouble anytime your
interface requires pointing; but it is especially troublesome when the
UI design uses dynamic elements that move to the right or, to a lesser extent, downward.

The final important challenge of UI design for Tablet PC is that the pen
is a significantly “overloaded” device. It takes on the chores of pointing,
input, and command selection. Entering short amounts of text with a

Figure 1. The distance between the pen
tip and the actual screen creates a
parallax that can amount to 15 pixels or
more. So, controls and hotspots should
be made large.

Page 1 of 4The Challenge of Designing Interfaces for the Tablet PC

6/16/2004http://www.devx.com/TabletPC/Article/21302/3565?pf=true

pen is a fine thing and drawing is downright pleasurable; but other than
beyond those two activities, using a pen to control an application can
be a hassle. Less is more when it comes to the pen: focus on the core
value that the pen-and-tablet combination is providing you (mobility,
discreteness, ink capture, and text recognition) and strive to expose
those benefits immediately and directly. Avoid dialog boxes, deep
menus, and complex navigation, all of which are more annoying on a
Tablet than on a keyboard-and-mouse system. Use the pen, therefore,
as much as possible for writing and as little as possible for selecting
and pointing.

Starting In
Pragmatically, the first thing to do when developing for the Tablet PC is
to set the Font property of your Forms to a larger size than the default

8.25 points. I generally kick it up to 12 or even 14 points. The default font for a Windows Forms Control is that of
its containing Control, so setting the Font property of a Form is a quick way to “cascade” a change throughout a
Form.

As to selecting a pen (that is, as it appears on the screen) the Tablet PC SDK does not provide a standard dialog
for selecting a combination of values for the DrawingAttributes that make up a particular pen. Two UI idioms
are emerging in response to this need: a ToolBar that presents a limited number of ready-made pens, and a
dialog box that allows for separate specification of Color, PenTip, Width, and Transparency. (Microsoft
Windows Journal has a dialog of this kind.) The ToolBar with a small selection of pens appears to be gaining
acceptance as the primary idiom, although I hope a standard control will appear in future Tablet PC SDKs. In the
meantime, Figure 3 shows a PenSelectionPanel custom control that I wrote that can be incorporated into either
a dialog or tool window. My PenSelectionPanel allows the user to compose the DrawingAttributes properties,
stores specifications in a ListBox, and fires a PenChosen event that contains the DrawingAttributes as part of
the event arguments. (All of the source code and files needed to generate the dialog in Figure 3 can be
downloaded from here)

Once you have a set of DrawingAttributes, apply them to the
DefaultDrawingAttributes property of the ink-collecting object in
your form: either an InkCollector, an InkOverlay, or an InkPicture.
Selecting an appropriate ink-collecting class was covered in my
previous article.

Saving and Restoring Ink
Saving ink is simple: the Ink class has Save() and Load() methods
that return and consume byte arrays. The Save method takes as a
parameter a value from the PersistenceFormat enumeration:
InkSerializedFormat, Base64InkSerializedFormat, Gif, and
Base64Gif. The Base64X values are used for embedding ink
directly into XML format. An interesting implementation fillip of
PersistenceFormat.Gif is that native ink-as-ink data is stored in the
header fields of the GIF data, allowing you to use this bitmap format
as a “transport” for the vector-based ink data! There are a few
caveats: calling Save(PersistenceFormat.Gif) with an Ink object
that contains no data throws an Exception with the alarming error
message “Catastrophic failure.”

Similarly, you must call Load() only with an Ink object that contains no data, otherwise an Exception is thrown
with the message “The parameter is incorrect.” However, you cannot assign the Ink property of an ink-collecting
object while ink-collection is enabled. Thus, to load Ink, you must use a code block similar to this one:

myInkCollector.Enabled = false;
myInkCollector.Ink = new Ink();
myInkCollector.Ink.Load(myByteArray);
myInkCollector. Enabled = true;

Figure 2. If this selection results in
another sub-menu, a right-handed
user cannot see it because his hand
obscures it.

Figure 3. There is no standard dialog
for selecting a pen, although several
common choices are emerging.
However, you can feel free to design
your own dialog until the Tablet PC SDK
comes up with a standardized version.

Page 2 of 4The Challenge of Designing Interfaces for the Tablet PC

6/16/2004http://www.devx.com/TabletPC/Article/21302/3565?pf=true

A common desire is to use Ink to annotate existing graphics. The InkPicture control is the tool for this job, with
the graphics stored in the Image property and the Ink stored in the Ink property. (Remember that ink collection is
done in a transparent z-layer above the Control, which is why InkCollector and InkOverlay can be so flexibly
added to any Control.) While the separation of Ink and Image is great for editing purposes, you will often want
to composite the two together into a bitmap. Listing 1 is an application that demonstrates the process.

First, you use the “Load Image” button to select a picture for inkPicture1. Then, draw on it with the pen. Finally,
press the “Composite” to create a new bitmap that is loaded into the Image property of pictureBox1.

Let’s step through the behavior of button2_Click(): first, we change the AntiAliased property of all the Strokes
in inkPicture1 to false, otherwise composited artifacts will occur. Second, we create a Bitmap from the ink data,
using Ink.Save(). Third, we composite this newly created bitmap with the underlying bitmap. This is done in the
function CompositeInk().

CompositeInk()’s task is to align and scale the rasterized ink bitmap with the background image. It does this by
using the GetBoundingBox() method of the Strokes collection to set two Point objects inkOrigin and inkExtent.
The value of these Points is in ink’s native HIMETRIC space, which has to be converted into appropriate pixel
values. This is the role of the Renderer() class and its InkSpaceToPixel() method. With the bounding box of the
ink now transformed into pixel coordinates, Graphics.FromImage(dest) creates a Graphics object for drawing
the ink bitmap onto the dest bitmap.

After CompositeInk() completes, pictureBox1’s Image property is set to the composited bitmap. Compositing
ink into a bitmap removes editability, of course, but is vastly more shareable.

Input and Edit Text
The Tablet PC SDK provides an InkEdit control that accepts ink and, after a programmer-defined RecoTimeout,
places the “top string” or best guess of the recognizer into an underlying EditBox control. While impressive the
first time you use it, it doesn’t provide any pen-based editing facilities, which limits its practical use. The
forthcoming Windows XP Tablet PC Edition 2005 has significantly improved handwriting recognition and a
dramatically improved Tablet Input Panel (TIP). The new TIP provides three choices for input: a QWERTY
keyboard, a free-form text recognition panel with editing capability, and a “comb” control for handwriting on a
letter-by-letter basis (perfect for filling out formatted fields).

The TIP can be used by all applications, but recognition improves dramatically when the TIP is given context
information about what type of data is expected for an input field. The SDK for Windows Tablet PC Edition 2005
comes with a context tagging tool that makes it very easy to add context-specific information to any application:
essentially, you start up the application, drag-and-drop a “finder” icon onto the field for which you want to set
context, and then choose either a preset context (like “City” or “Phone number”) or input a regular expression.
The tool saves the set of contexts in an XML file that the TIP automatically loads thereafter. It’s a very clean
model and is the best way to support ink for filling out forms.

However, not all contexts can be described statically. Let’s say that you want to bias a field towards Contacts
from your Outlook file: the context-tagging tool isn’t going to help you. You can programmatically control text
recognition by creating a PenInputPanel object, associating it with a particular Control, and then settings its
Factoid property. For some reason, the TabletInputPanel.Factoid property takes a string, not an object of type
Factoid. The acceptable values of the Factoid vary from world region to region, but the most important for
dynamic context is generally “WordList” which strongly biases the recognizer to a set of specified values.
Unfortunately, the TabletInputPanel simply does not support the “WordList” factoid. (If you want to use a
WordList factoid without the TIP, see Listing 3 in my previous article.)

and Having Writ, Moves On
Designing for the Tablet PC is a challenge. While traditional applications are so standardized that we can fool
ourselves that we’re designing decent UIs, the ways in which people use a Tablet PC are so varied, and evolving
so fast, that there are few patterns to guide the developer toward success. However, there are two things going
for the Tablet PC programmer: The Tablet PC SDK is a tremendously powerful and easy-to-use SDK, and the
average Tablet PC owner is enthusiastic about the form-factor. Good UI design will keep that user happy.

Larry O'Brien is the founding editor of Software Development Magazine. When not working on his Tablet PC projects, he is the

Page 3 of 4The Challenge of Designing Interfaces for the Tablet PC

6/16/2004http://www.devx.com/TabletPC/Article/21302/3565?pf=true

Windows columnist for SD Times. He can be reached through his website, http://www.knowing.net.

Page 4 of 4The Challenge of Designing Interfaces for the Tablet PC

6/16/2004http://www.devx.com/TabletPC/Article/21302/3565?pf=true

