I=rom.

Eclps 3.0 '1"\@({‘@,{(ThosT

B e

‘_‘)7 C«w-l,ug\/“\Q“mk

SAMS

‘High-Grade Testing
‘Using JUnit

“Test, code, refactor, design. Repeat.”

—~ATIOTLYINOUS

Test-driven development. Testing frameworks. JUnit,
Cactus, StratsTestCase, HttpUnit, HtmlUnit, JWebUnit,
SwingUnit. These days there is almost as much to be
leamned about testing APIs as the libraries with which you
ave wiiting your code. JUnit, the most popular of the
current testing frameworks, was created by Erich Garnma
and Kent Beck. You may remember Erich Gamma as one of
the zuthors of the groundbreaking book Design Patterns.
Kent Beck, in addition to various contributions in software
analysis and design, is responsible in part for a small earth-
gquake called Extreme Programming (sometimes called Agile
Programmuming sc as not o upset the faint of heart),

Documentation, source code, and binaries for JUnit can be
found at http:/ feww. junit.org, which wili point you to
Souzceforge (Attp: IIsourceforge.net/arojects/junit/s)
where the latest version can be found. However, you are
one of the select few who have downloaded 2 tool that
already has the latest version of the most poputar testing
framework on the face of the planet. The real issue is why
you shouid use it.

Eclipse makes the creation and use of tests almost trivial
{almost because you stili have to decide what to test and
how to test it). Having JUrit built in is not unique to
Edlipse as a fava IDE, but as an additionai piece to an
diready feature-rich IDE, it makes the decision to go with
Eclipse all the more easy.

CHAPTER 6 High.Grade Testing Using jUnit

1 am not going to spend time trying to convince you thtat writing tests is good Eorc gg:, ‘32:::5
prograrns, and your paycheck. What 1 will say is that without tests to }:;ove ylfsuj: ode)
you dom't know for sure that it does work. Do tests prove that your code :;?}i : 1tn ¢ w?;§ w©
instance? Of course not. Your users will be certain to remind you of th?l%'. Y a ﬂelsa tsd Oxm

for you is guarantee that the situations you've planned for work, the sim?txto;: o
work fail gracefuily, and bugs that have been squashed stay that way. Let’s ta

you can do all this using Eclipse.

The jJUnit Framework

The Unit framework is made of a number of classes that tak_e care of .the nfitty-gritgtsdi;a‘is

of running your tests, as well as running a GUI to visually display which ¢ yo!ur st e

passed and which have failled, From your perspective, you need to 1ear.n one ¢ ass.tsuj-{ie .
Once you become comfortable with TestCase then you may, on occasion, use Tes .

The process of using JUnit can be surnmed up as follows:

Write a test class that subciasses YestCase. [t should not be able to compile because you

-[3 - -
have not yet wiitten the class t¢ be tested. Your first test has just failed.

2. Write the class that needs to be tested. Your first test now passes.

3. Add to the test class a test of functionality you have not yet written i the other class.
As your second test, this also fails.
4. Write the smallest amount of functionality in the other class. Your second test now
passes.
. Test another bit of nonexistent functionatity. This test fails.

W

. Add the missing functionality. The test now passes.

o

By now you should see a pattern emerging. Write the test, which fails, and ;hentwrrt;:j;;zethe
functionatity for which the test is checking, which causes fhe te‘st to pass. mé os na: Tt
simplest functionality and work your way up. As the f'unctxona.hty g_ets more klpn A za
know that prior functionality continues to work. If prior ?uncttonahi'y st;;is w:;: g, ¥
know it right away and you can fix it before the complexity grows out of hand.

Writing JUnit tests in Eclipse is only marginaily different. In order to takg adv.:antage ;de ;hek
TUnit Wizazrd, the class to be tested must exist, In Eclipse’s case, the previous list would loo

like this:
1. Create an empty class to be tested.
2. Create a subclass of TestCase to test the other class.
3. Wiite a test of simple functionality of the other class. The test fails.
4 Write the simplest piece of functionality for the other class. The test should now pass.

115

The jUnit Framework

5. Write another test and watch it fail.

6. Add the functionality that will cause the test to pass.

Perform steps 5 and 6 until i is time to go home, unti} you hit a milestone date, or until you
have to deliver your code. If you used use cases to drive your schedule and test-driven devel-
opment to prove that the use cases pass the good scenartios and know how to behave in the
bad scenarios, you win.

TestCase

When you write a test case, you subclass junit.framewsrk.TestCase. In the same way that a
servlet subclasses HitpServiet so that the servlet engine knows how to manage its fife ¢ycle,
you are responsible for subclassing TestCase 5o the JUnit framework can walk your test object
througk: its life cycle. The TestCase API includes assert methods that you will use to confirm
the validity of results returned by the object under testing.

Let’s discuss what happens when a test case runs within Eclipse. The JUsit framework starts
up, loads the test class selecied on the workbench (your test class does not need main(}),
creates as many copies of your test case as there are methods that start with the word test
(for example, testFindCustomer()), and begins to run the test objects one at a tme. Before
the test method is run, an initialization method calied setUp{) is called to give you the
opportunity o create whatever objects you need to make your test work. When your test
method completes, either with a success or faiture, & ¢leanup method calied tearDown() is
called so your code can safely dispose of used resources.

The Granularity of Tests

A question that always comes up in discussions about tests and testing frameworks is, how many
tests {meaning assertions) should you put in a test rethod? The quick answer would be to put
one assertion per test method because it gives [Unit the opportunity to run all your tests rather
than just the ones that passed prior to the one that failed. However, the number of tests can get
rather high, in which case you would have an immense number of test methods, which would
be hard to maintain (the second argument against tests). The longer answer is, group associated
tests together as long as they make sense. Start with one test method per method being tested.
As you find that the methods are getting too long, break them up into functional test areas. In
other words, use refactaring as a way of contraliing the inevitable onslaught of success,

TestSuite

A suite of tests can be run by creating a subclass of junit.framnework. TestSuite. Within this
class, you would list the various subciasses of TestGase that you would like JUnit to run by
overniding suite(}. When you create a test swite using Eclipse, the code generator uses code
Markers so that it can regenerate the suite as often as you like. After you complete the
example, you will get a chance to create, and re-create, & test suite,

CHAPTER 6 High-Grade Testing Using JUnit

TestRunner: The jUnit GUI

$¢ how does JUnit run within Eclipse? Do you simply select a
test and run it like a Java application? When JUnit, or one of
h 1 its variants, runs within Eclipse, it opens TestRunner, the GUI
R e used by JUnit to display the results of completed tests (see
Figure 6.1). The most visible past of TestRunner is the colored
bar that runs below the title bar. You will leam to question a
red bar when you expected a test to pass and a green bar
when you expected a test to fail. Below the colored bar are
three status values: how many tests of the available number

Ergmetes o 000 e ‘ -
sl of tests Bave run, how many errors (non-jUnit exceptions)

ek ; A occurred, and how many failures (assertion faliures) occurred.

e : Below these counters are two tabs: The Failures tab Hists the

methods that failed, and the Hierarchy tab: iists ail the
methods with either a 1ed X {ermor), a grey X (failure), o7 a
green check {success).

refiec] e ¥
ok, Lefteaisi jatecfTeaRend iva 196

A 1

FIGURE 6.1 dit;nit's Tesﬁ“”“f"’? Below the method list is the cutput of the currently selected
displaying the red bar, signaling it 15 € 1o output,
not time to go home yet. method. If the n.xethod succeeds, .there should b tp
If the result bar is red, expect to find output.
‘The title bar of TestRunner has five convenience buttons:

¥ Next or Previous Failed Test—Either of these buttons will take you directly to the
method that encountered a failure or error.

m Stop JUnit Test Run—In case the test class has encountered an infinite loop or has
simply decided to hang, you can kil JUnit from here.

a Rerun Last Test—The same as pressing Ctrl+F11, except it only runs the last JUnit test,
not the last class that was run.

m Scroll Lock—Used to keep the selected test and its output in sync.

Creating a Test Case

in order for you to get a good feel for how to use JUnit, let's create a class that simply ptints
out a greeting. The greeting is changeable, as is the name of the person being greeted.

Creating a Test Case

Create a Class

Start Eclipse and create a Java project called Greeter. Due to the way the JUnit Wizard works,
you need to create the ciass to be tested first. Create a new class called Greeter in package
example {you can create the package at the same time you are creating the class). The class
shouid be quite empty after the code generator is done creating it.

Create a Test Case

Let's look at creating a JUnit test. With the Greeter

class selected in the Package Explorer, press Ctrl+N
(o1 you can right-click the Greeter class and select
New, Other}. When the New dialog appears, sefect
Java, JUnit, JUnit Test Case (see Figure 6.2}, Click

Next. Because this is the first time you are creating
a JUnit test, the JUnit Wizard will ask if you would

o "
e like it to add the JUnit JAR file to your class path.
ke

Daveiopmare
Click Yes to go to the Jifnit Test Case page.

If you selected the Greeter class before you pressed
Ctrl+N, the jUnit Test Case page shouid be almost
completely filled in. If the page does not appear to
be populated, click Cancel and start again.

FIGURE 6.2 The New dialog with the JUnit This page lists all the information needed to gener-
test case selected. ate the class:

® The name of the source folder to which the class should be written.

® The package into which: the test class will go. You could put the test class into a differ-
ent package, but conventionally the test classes live i the same package as the class
they aze testing. This gives the test class access to package/protected methods that may
need to be tested. ' :

m The name of the class to be tested.

= The name of the test class. The wizard uses the convention of appending the word Test
to the end of any test classes. Other IDEs use the word Test as a prefix for the JUnit
classes they generate. If you come up with another convention, just be consistent.

u The super class of the test class, This will almost always be junit.framework.TestCase,
unless you come up with another class that you wosuld prefer tc extend. Be awars,
though: if the class does not uitimately extend TestCase, it will not work within the
Hnit ffamework.

CHAPTER 6 High-Grade Testing Using JUnit

The only missing information needed is which of
the lifecycle methods you want the class to
inciude. Check sesUp() and tearDown() and then
click Finish (see Figure 6.3).

£ Heor Uit i3 o -
e faxt Case

1

‘When the GreeterTest class opens in the Java
editor, go to setup(} and remove the call to
super.setUp{). In its place create a Greeter object
and store it In an instance feld called greeter:

protected void setUp(} throws Exception {
_grester = new 8reater{);

}

A light bulb and red X appear in the left margin
on the line where _greeter is declared. Click once
FIGURE 6.3 c " on the light bulb and, when the content assist
1GU . The junit Test Case page wi . et .
the two rmain fite cycle methods selected. window opens, doublen click Create f1e1d _.greeter.
Save the file once the instance fleld is created.

The code In setUp () affords you the opportunity to single-source the creation of objects used
through the test class. Because all your tests will need a Greeter object, setUp() is an ideal

place to create it

Next, empty out the tearfown{} method and set _greeter to null:

protected void tearDowa() throws Excepiien {
_gregter = nuil;

}

Now, no matter what happens, you will always have a good object to work with befoze the
test starts, and the object will always be released to garbage collection when the test
compietes. This may not seem like 2 big deal for a single test, but you can safely assume that
you wiil have dozens, huridreds, maybe even thousands of tests running as your code devel-

opment progresses.

One of the things we want the Greater class to doisto return a greeting for display. A string
returned as a result for display should not be null. (Yes, T know there are plenty of reasons
why you might want a null returned from a method, but not in this case.} Our fzst test is
now defined: a <all to the method that returns the greeting should not return nuil. Above
setUp(), define the method testGreeting() as follows:

pubiic void testGreeting() {
3

Creating 2 Test Case

Within test@resting(), make a call to the Greeter method getGreeting{):

public void testGreeting{} {
String actual = _greeter.getSreeting{);
T

Yes, it is true that there is no method in the Greeter class calied getGreeting{). Remember
step 3 of the development of JUnit tests? Your first test just failed. In order to make it
succeed, you need to add the method to the Greeter class. Eclipse makes this a trivial task.

Just single-click the light buib and double-click the sugge: ix i N
- sted fix
window: B8 in the content assist

Create method 'gat@reeting()' in Greeter.java

The Greeter class comes forward, showin,
3 g you the new method that has just
Save the Greeter. java. Just been added.

Returmn .to the GreeterTest editor window and save the fije. The light bulb is gone, and our
test-by-irnplication test is now successful. Because your first real test is to make s;ire you don'’t
fc,ret a fm[l from the call to getGreeting(), you need to take the result of the call and compare
it against an expected result, By extending TestCase, you have an extensive selection of i
methods to check the result of a call and either do nothing if the result was as ted
complain if the result was invalid. st

TesiCase extends the Assert class, which has the following assertion methods:
W asserifquals()
E assertIrue()}

W assertFalse{)

asserthNoTNuli(}
assertNuli(}
assertNotSame{)

assertSame() .

fail(y

All the .assertxxx-:) methods will throw an AssertionFailedErrer if the value they are
i:ssed is fa}se. The fail{) method throws an AssertionfailedError as 500N as it is called.
tes? one gives yqu the choice of using its default error message or one you supply. For the

In test@reeting{), you could make a call to assertEquals{) and compare the result to
miLl, but the assertNotNull() method will work much better:

TS PRI AT g s ISy Ay 3

pubiic void testGreeting() {
String actual = greeter.getGrseting();
assertiotull("getGreeting() returned null.”, actual);

Running the Test

Save your files and make sure that GreeterTest is the active editor. From the main menu,
select Run, Run As, JUnit Test, You already know that the getGreeting() method is going to
return a nuli, so running TestRunner shoudd give you a red bar (see Figure 6.4). If a grt‘fen bar
appears, make suze you are calling the proper assert method and that you are passing in the
result of the call to getGreeting(}.

Let’s fix getGreeting(} s0 it does not return a null

public String getGreeting(} {
retern %

Simply retuming an empty string should cause the test to be successfui, and pressing
Ctrl+F13, which runs the last thing you executed, causes TestRunner to retumn a green bar.
Success! :

HQO ALK -
White Box Testing Versus Black Box Testing

A black box test is a test run on code without you knowing its internal makeup. A white box testis a
test where you know exactly what is going on in the cade, JUnit tests are usaally white box tests,
but you could atso write black box tests against third-party vender libraries,

YWhen 1 first started writing tests, | found it a little disconcerting to know that | was writing tests to
prove that code would behave in the fashion | had written it. Checking whether a method returns
{or doesn‘t retusn) an expected result seemed trivial, especially when 1 knew what the code was
doing. Why should | check, for example, that a method does not returm a null when | know it will
never return a pull? There was no code anywhere (in the code | had written) that could possibly
return a null,

§ found out the reason as soon as | used someone else’s code in my algorithen,

if the set of acceptable values i3 known, a test needs to be written to check that the resuit dees not
fall outside of this set or, if the value does fall outside the acceptable set, that the bad vaiue is
returned under known conditions,

Running the Test

{rdava - Gieeclarentgova - Ectois Plolface -

BrivAEE Greeter grestes;

PTAT YOI SeatGrestisgl} {
dering sctenl = _geeecer.gacdrectingl)
SrzerINatiuzl {*geIteectang () zerussan
1
i
! Paez TarcCoindacclipn
i

prokeated veid ICURL) Thevrs Inception {
_OTERSEL ® few Oresneri):

l

FIGURE 6.4 The TestRunner GUI with the ex ected red bar and the message passed i
0 asser oLl ol ssage passed in as the first argurnent

If this were & chapter on writin

g tests in an incremental fashion, here are the next tests you
would try to write:

1. Test for a default greeting.

2. Test the ability to change the current greeting with a nuil (throw an exception), a blank
string (throw an exception}, and a nonblank string.

3. Test whether the greeting can be reset to the default.
4. Test for a default greeting that can be personalized.

5. Test the ability to change the personatizable greeting with a nuil {throw an exception),
a blank string {throw an exception), and a nonblank string.

6. Test whether the personalizable greeting can be reset to the default.
The number of things that can be impl

you can check them reliabi
digress.

lermented in the Greeter class is not insignificant, but
y by adding slightly more compilex tests in sach iteration. But I

When you discover a test that fails and the code
eye-balling it does not suggest where the probie
through your test. Debugging a JUnit test is the
breakpoint in the test code or in the class being
Debug As, JUnit Test. The Debug perspective op
the screen after the first full Tun, with the debuy,

has reached a complexity level where simply
m may be, you need to debug the code

same as debugging any other Java code: set a
tested and from the main menu select Run,
ens and displays TestRunner at the bottom of
g views and editor above it {see Figuze 6.5).

CHAPTER 6 High-Grade Testing Using junit

Creating and Running a Test Suite

To make this explanation clearer, let’s look at a class that defines suite() and returns a

TesiSuite object composed of a combinati H
rests: P ion of single-method tests and multiple-method

o
o N R
&5 tmtisntes B0

package example;

import junit.framework.Test;
iapert junit. framework, TestSuite;

public class AliTests {

Furlle wose Te3tGeeerizgll |
Horiwg ASTUOL = _GTESTar.grtOredtinglls
agsereNotuIl{TgLetreecIngd} ERERIORE Mull.T, aeoumll:

.8
=L
_Jﬂ.

public static Test suite() {

oS, TestSuite suite = new TestSuite('Test for sxampie’);
Fiox 1 | BEmest L {1 Gnly run the named methods.

suite.addTest{new TimeSeriesServiceTest{ "testGetTimeSeriest));
: H

sm-.te,addTest(new OTCQuoteServiceTest(‘testGatOTGﬂuete"]} ;

suite.adaTest (new QuoteServiceTest("testGetluote” i)

P e

Uitatiy -0 | Soatlesar 221 " &

[

/f Run all ef the tests contained within eagh class.
71$JUnit . BEGING

suite,addTestSuite (0TCOuoteServiceTest -class);
stite. addTestSuite{QuoteServiceTest, class);
suite.add¥estSuite(TimeSerissServiceTest. class};
1#$JUnit -ENDS

return suite;

EIGURE 6.5 The Debug perspective with the JUnit TestRunner dispiaying the metheds te be run.

fverything discussed so far would give you the impression that you can only run tests at the
object tevel, In fact, you can select ong method for execution to the exclusion of all the other
test methods. Select the method to be executed from the Package Explorer or the Qutline
view, or double-click the method name in the Java editor. From the main menu, selact Run,
Run As, JUnit Test. Oniy the selected method wiil be run within JUnit. Unfortunately, you
can only select one method at a time; this is not an arbigrary selection.

The AllTests class has the following features:

Creating and Running a Test Suite

As mentioned before, a Jnit test suite contains one of more 1ests thatshouldberun as a
unit. TestSuite Is a composite object that conrains Test objects (including other test suites)
that are prepazed to tun all or one of their tests. When the JUnit framework starts, it uses
reflection to make a call to the suite() methed of the object created from the incoming class
type. Because JUnit uses reflection, the only thing the class has to define to work within the
framework is suite!). The incoming class does not have 0 be a type of Test. The suite()
method roust return an object of type Test so that the framework can begin running tests.
The suite{} method returns a Test object that contains whatever test objects you decide,
Internally, JUnit performs the same operation, only it creates enough objects of your test type
1o run each individual method.

B It does not extend any JUnit class.
® [t declares a suite{) method that will return an object of type Test.
B Within suite(}, 2 TestSuite object is created.

| Z:;Ti‘e:?wgte oObject has three method-specific tests added to it through calls to
est(}. Because method names are being passed int
ooy ot e methad g into the test class constructors,

w The Testhite object has three test classes added to its internal list through calls to
addTestSuite(}, and all the tests within each test class will be executed.

CHAPTER 6 High-Grade Testing Using JUnit

If the three test classes mentioned in the AllTests class have two test methods each, the cali

sequence might look something like this:

in trestletTimeSeries{}.

n testGet0TCOuote().

1n testGetOuote().

1 testGet(TCQuote(}.

n testGet0T¢GuoteName(}.

In testGetQuote(}.

In tastGetQuoteSymbei{}.

1n tesiGetTimeSeries(}.

In testGetVimeSeriesFleat{).

[

I

The three single tests were un first. Next the test
asses weze called, in turn, and ajl their tests were
run before tnoving on to the next test object. All
these methods have a System.out.priatin(} line,
but normally the tests are silent if they succeed.

(i M LU Tist St

To generate a Class that creates a TestSuite object,
you open the New dialog and select Java, JUnit,
TestSuite and then click Next. The JUnit Test Suite
page will display the source folder in which the
code will be generated, the package o which the
class will belong, and the name of the class, which
defaults to AllTests (see Figure 6.6). In the jist
below the test suite name aie the various FUnit
tasts the builder recognizes. You <an select zero or
mote JUnit tests for inclusion in TestSurte.

AELgorsmacaled

Also for the purposes of the example, 1 have
FIGURE 6.6 The jUnit Test Sute page with deleted the comments from the code that was
al the avaiable tests checkedl generated by the JUnit wizard. Let's look at what

was created:
package exampie;

import junit.fremevork. Test;
import junit.framewcrk.‘{estsuite;

public class AliTests {
public static Test syite() {

TestSuite suite = new TestSuite{"Test for example” };
{ 15JUnit -BEGING

Creating and funning 2 Test Suite

suite.addTestSuite (0TCQuoteServiceTest. class);
suite.addTestSuite{QuoteServiceTest.class);
suite,addTestSuite{TimeSeriesServiceTest.class);
1 1$JUnit-ENDS

return suite;

}

The first dine in AllTests,suite() is the instantiation of a TestSuite object. TestSuite, asa
composite object; is the container of the various tests you want £o tun. The next Hineisa
code marker used by the JUnit builder in case you decide to regenerate the suite. Anything
outside of the code markers wil] be saved, whereas anything within the markers will disap-
pear when you regenerate the code. The next tine of code adds a class definition to the
TestSuite object using addTestSuite(). This has the effect of creating a new TestSuite
object and adding alf the methods that start with tesf to the new Test$uite object, which is
then added to your topmost suite. At the ered of al} this, suite() retummns the TestSuite
object.

What happens as you add and remove individual tests in the course of deveiopment?
Regenerate the test suite class. You can do this In one of tWo Ways:

= Press Ctrl+N (which opens the New dialog),
select Java, JUnit, Test Suite, and then click
Next. The JUnit Test Suite page will display a
warning that seite!) already exists and that
it witl be replaced uniess you give the test

R TR SO
iy Woreg Tente stesds pioht mlelh oot by vesisord

suite class 2 new name (see Figure 6.7}

® Right-click the fest suite class in the Package

Explorer and select Recreate Test Suite from
the pop-up menu. The Recreate Test Suite
dialog will list the available JUnit tests for
you to choose from. Select the tests you want
to have appear in the code and click OK (see
Figure 6.8}

Running the test suite is no different from running

a regular JUnit test (you select Run, Rux As, JUnit
Test). If you try to Tun the test suite as a regular
1ava class, it will not work {uniess you add main{}
and a call to TestRunnes).

FIGURE 6.7 The jUnit Test Sulte page
displaying the warning about suite() being
replaced.

1 have been very careful not to say that the JUnit Wizard creates a TestSuite class. The
wizard does niot. The wizard genesates a class that contains the suite(} method, which will
instantiate a TestSuite object and return it to any callers.

