Model twice, code once.

Chapter 7

Determining How to
Build Your System:
Object-Oriented Design

ﬂ ola-l\ﬁ"' P\“‘W

How to evolve your analysis model into a design mode!
How to layer the architecture of your system
How to develop a design class model
How to apply design patterns effectively
How to develop state chart diagrams
How to develop collaboration diagrams
How to develop a component-based design
How to develop a deployment model
How to develop a persistence model for your system
How to evolve your user interface prototype
How to take advantage of common object design tips

St Am Ly 2Zoo|

*

Your analysis model, although effective for identifying what will be built, doesn‘t
contain sufficient information to define how your system will be built. Object-
ariented design techniques—such as class modeling, state chart modeling,
collaboration modeling, component modeling, deployment modeling, persistence
modeling, and user interface prototyping—are used to bridge the gap between

analysis and implementation.

249

Object-oriented
design is highly
iterative.

Are you taking

a pure object
approach or a
component-based
approach?

Figure 7-1.

Overview of design
artifacts and their
refationships

The purpose of design is to determine how you are going to build your
system and to obtain the information needed to drive the actual imple-
mentation of your system. This is different from analysis, which focuses
on understanding what will be built.

As you can see in Figure 7-1, your analysis artifacts, depicted as dasheq
boxes, drive the development of your design artifacts, As with the previous
Figures 3-1 and 6-1, the arrows represent “drives” relationships; information
in your analysis (conceptual) class model drives information in your design
class model and vice versa, Figure 7-1 has three important implications: First,
as with requirements and analysis, design is also an iterative process. Second,
taken together, analysis and design are highly interrelated and iterative, As
you see in Chapter 8, which describes object-oriented programming tech-
niques, design and programming are similarly interrelated and iterative,
Third, your analysis class model evolves into your design class model, as you
see in this chapter, to reflect features of your implementation environment,
design concepts such as layering, and the application of design patterns,

You must decide on several high-level issues at the beginning of design,
First, do you intend to take a pure object-oriented approach to design ora
component-based approach? With a pure 0O approach, your software is
built from a collection of classes, whereas with a component-based
approach, your software is built from a collection of components. Com-
ponents, in turn, are built using other components or classes (it is possible
to build components from nonobject technology although that is not the
topic of this book). Component modeling is the topic of Section 7.6.

Use Case . State Chart Persistence
Model - = Diagram Model

Class Model Class Model

. Deployment
{Analysis) {Design) Diagram
A [
A 3 \i
User Interface 3%, 5| Collaboration [X Component
. Prototype - Diagram - Diagram

‘complex a'collection-of p

TR g SAAtAILCUL LITDIYIL

431

TR

.,1,,'-’-’-1—

ST

Will you follow a
common business
architecture?

Will you follow a
common technical
architecture?

Ateu ssrsguLL A S AIEECE

A second major design decision is whether you plan to follow all or a
portion of a common business architecture. This architecture may. be
defined by your organization-specific business/domain architecture
model (Ambler, 1998b), sometimes called an enterprise business model,
or by a common business architecture promoted within your business
community. For example, standard business models exist within the
manufacturing, insurance, and banking industries. If you choose to fol-
low a common business architecture, your design models need to reflect
this decision, showing how you plan to apply your common business
architecture in the implementation of your business classes.

Third, you must decide whether you plan to take advantage of all or a
portion of a common technical infrastructure. Will your system be built
using your enterprise’s technical infrastructure, perhaps comprised of a
collection of components or frameworks, such as those suggested in
Table 7-17 Enterprise JavaBeans (EJB), CORBA, and the San Francisco

Table 7-1. Common infrastructure services

Service

Description

Data Sharing

File Management

Inter-Process Communication (IPC)

Persistence

A Printing

Security

System Management

Transaction Management

Encapsulates the management of common data formats, such
as XML and EDl files.

Encapsulates and manages access to files.

Implements middleware functionality, inciuding support for
messaging between nodes, queuing of services, and other
applicable system communication services.

Encapsulates and manages access to permanent storage

devices. such as relational databases, object databases, and
object-relational databases.

Implemnents the physical autput of your system onto paper.
Implements security access control functionality, such as deter-

mining who is entitled to work with certain objects or portions
thereof, as well as encryption/decryption and authentication.

Implements system management, features, such as audit log-
ging, real-time monitoring (perhaps via SNMP), error manage-
ment, and event management.

Manages transactions, single units of work that either com-

pletely succeed or completely fail, across potentially disparate
nodes within your system.

3 : ~ DiY1L LoD
Lllﬂptﬁf 7 - ut:terzmnlng MOW LU DUUU IUUY DYDLELLL VUL ST U LTy

Component Framework (www.ibm.com) are examples of technical infra-
structures on which you may decide to base your system. Perhaps one of
the goals of your project is to produce reusable artifacts for futf.u:e pro-
jects. If so, then you want to seriously consider technical mchte@rﬂ
modeling. Although beyond the scope of this book, technical architec-
tural modeling is a topic covered in Process Patterns (Ambler, 1998b), the
third book of this series.

Fourth, you need to decide which nonfunctional requirements and
constraints, and,to what extent, your system will support. You refined
these requirements during analysis (Chapter 6) and, hopefull;f, resolved
any contradictions, but it is during design that you truly begin to tal.<e
them into account in your models. These requirements typically pertain
to many of the services described in Table 7-1. For example, it is common
to have nonfunctional requirements describing security access rights, as
well as data-sharing approaches. As you try to fulfill these requirement@
you may find you are unable to implement them completely; perhaps it

To what extent
will you be able
to support the
nonfunctional
requirements
and constraints
defined for your
system?

254

Layering your
software increases
its robustness.

Good class-type
architecture leads
to systems that
are extensible and
portable.

The Object Primer

will be too expensive to build your system to support response times of
less than a second, whereas a response time of several seconds proves to
be affordable. The moral of the story is every system has design trade-offs.

7.1 Layering Your Models—Class Type Architectufe

Layering is the concept of organizing your software design into layers/
collections of classes or components that fulfill a common purpose, such
as implementing your user interface or the business logic of your system.
A class-type architecture provides a strategy for layering the classes of your
software to distribute the functionality of your software among classes.
Furthermore, class-type architectures provide guidance as to what other
types of classes a given type of class will interact with, and how that inter-
action will occur. This increases the extensibility, maintainability, and
portability of the systems you create.

‘What are the qualities that make up good layers? First, it seems reason-
able that you should be able to make modifications to any given layer
without affecting any other layers. This will help to make the system easy
to extend and to maintain. Second, layers should be modularized. You
should be able either to rewrite a layer or simply replace it and, as long as
the interface remains the same, the rest of the system should not be
affected. This will help to increase the portability of your software.

Figure 7-2 depicts a five-layer class-type architecture for the design of
object-oriented software. As the name suggests, a user interface (UI) class
implements a major UI element of your system. The business behavior of
your system is implemented by two layers: business/domain classes and
controller/process classes. Business/domain classes implement the con-
cepts pertinent to your business domain such as “student” or “seminar,”
focusing on the data aspects of the business objects, plus behaviors spe-
cific to individual objects. Controller/process classes, on the other hand,
implement business logic that involves collaborating with several busi-
ness/domain classes or even other controller/process classes. Persistence
classes encapsulate the capability to store, retrieve, and delete objects
permanently without revealing details of the underlying storage technol-
ogy. Finally, system classes provide operating-system-specific functional-
ity for your applications, isolating your software from the operating
system (OS) by wrapping OS-specific features, increasing the portability
of your application.

Collaboration between classes is allowed within a layer. For example,
UI classes can send messages to other UI classes and business/domain
classes can send messages to other business/domain classes. Collaboration
can also occur between classes in layers connected by arrows. As you see
in Figure 7-2, user interface classes may send messages fo business/

Chapter 7 » Determining How to Build Your System: Object-Oriented Désign 255
Figure 7-2.
User Interface Classes) Layering your
systerm based on
class types
' Controller/ ——I\
Process Classes ——‘/
System
Classes
Business/Domain Classes)
__l/
Persistence Classes A
Persistent Store(s)
domain classes, but not to persistence classes. Business/domain classes - Restricting
may se1.1d messages to persistence classes, but not to user interface classes. message flow
Fy restricting the flow of messages to only one direction, you dramatically ~between layers
increase the portability of your system by reducing the coupling between, ~Increases
classes. For example, the business/domain classes don’t rely on the user * ortability by

interface of the system, implying that you can change the interface with-
out affecting the underlying business logic.

All types of classes may interact with system classes. This is because
.yom system layer implements fundamental software features such as
inter-process communication (IPC), a service classes use to collaborate
with classes on other computers, and audit logging, which classes use to
record critical actions taken by the software. For example, if your user-
interface classes are running on a personal computer (PC) and your busi-
r%ess/domain classes are running on an Enterprise JavaBean (EJB) applica-
tion server on another machine, then your UI classes will send messages

decreasing the
coupling between
classes. '

256

Your system may
need to support
several user
interfaces.

The Object Primer

to the business/domain classes via the IPC service in the system layer.
This service is often implemented via the use of middleware.

7.1.1 The User-Interface Layer

A user interface class contains the code for the user interface part of an appli-
cation. For example, a graphical user interface (GUI) will be implemented as
a collection of menu, editing screen, and report classes. Don't lose sight of the
fact that not all applications have GUIs, however. For example, integrated
voice response (IVR) systems using telephone technology are common, as are
Intemet-based approaches. Furthermore, by separating the user interface
classes from the business/domain classes, you are now in a position to
change the user interface in any way you choose. Consider the university
where users currently interact with the system through an existing GUI
application. It seems reasonable that people should also be able to interact
with the system, perhaps find out information about seminars, or even enroll
in seminars, over the phone or the Internet. To support these new access
methods, you should only have to add the appropriate user interface classes.
Although this is a dramatic change in the way the university interacts with
its customers (students), the fundamental business has not changed, there-
fore, you shouldn’t have to change your business/domain classes. The point
to be made here is that the user interface for any given system can take on
many possible forms, even though the underlying business is still the same.
The only change is the way you interact with that business functionality.

User interface classes are often identified as part of your Ul prototyp-
ing efforts, as well as sequence modeling. Referring back to Figure 6-8,
you see the sequence diagram for the basic course of action for the
“Enroll in Seminar” use case. Classes that belong to the user interface
layer include the three boxes with the stereotype of “<<UI>>": the secur-
ity logon class, the seminar selector class, and the fee display class.

User interface classes are often referred to as interface classes (Jacobson
et al., 1992) or boundary classes (Jacobson, Booch, and Rumbaugh,
1999), so don't be surprised if you see stereotypes of “<<interface class>>"
or “<<boundary class>>." As usual, pick one style and stick with it.

7.1.2 The Controller/Process Layer

The purpose of a controller/process class is to implement business logic that
pertains to several objects, particularly objects that are instances of different
classes. On Figure 7-3, controller classes are given the stereotype of “<<con-
troller>>" although you may also see “<<controller class>>" applied as well
(Jacobson, Booch, and Rumbaugh, 1999).

I reworked the analysis version of the sequence diagram, depicted in Fig-
ure 6-8, to reflect more closely how the system would actually be built,

Chapter 7 = Deter

mining How to Build Your System: Object-Oriented Design

257

258

Controller classes
collaborate with
other controller
classes and
business classes.

Classes provide
collections of their
own instances.

The Object Primer

resulting in Figure 7-3. Part of the rework effort was to layer the application
appropriately, including the refactoring (Fowler, 1999) of the controller
class to interact only with business classes. This refactoring included the
introduction of a new user interface class representing the main menu (or
front page) of the application, the purpose of which is to manage the user’s
main interactions with the rest of the system’s major user interface items.
The second aspect of the refactoring is that the controller class,
“EnrollinSeminar,” now only manages interactions between business
classes. Notice how this refactoring supports the message flow rules, indi-
cated by Figure 7-2. For example, the only types of classes that interact with
user interface classes are other user interface classes, whereas int the analysis
version of the diagram, the controller class also interacted with Ul classes.
The problem with the approach in the analysis version is the controller
classes, which should just implement business logic, has knowledge of the
user interface, reducing its portability and reusability (you couldn’t use this
controller with a browser-based Ul, for example). Now, taking a layered
approach, the class is more robust. Interesting to note is that the controller
class destroys itself at the end because it is no longer needed—it completes
its job, and then removes itself from memory when it is finished.

Another interesting aspect of Figure 7-3 is thd introduction of the “Sem-
inar” class to support getting a list of available seminar objects via the sta-
tic method “getAvailableSeminars().” You know it is a static method
because the message is being sent to a class. Had it been sent to an object,
then it would have been an instance method. Typically, the responsibility
of a class is to implement basic searching responsibilities, such as providing

a collection of all seminars or, in this case, all seminars that are available to

be enrolled in (some seminars may not be offered this term).

:SludortFans

schedula
ol

{ l esdon
“Sedont

spminarSaminar,

thaStudent

D) <<destiap>
opunlinfantalior} <ccrnates

<<orgates>.
name

vaification

wish 10 enrolt

A Student
<enclons
T
—
1

Enralt In Saminar
Hasle Course of

4. Systarn disploys sominar st

1. Stdant indicatos wiah ta anzoll
5.

3. Systarn varifis studont

2.

8. Systom dotarminas alighilty to anroll

7. Syslam dotarmises schodula ft

9. Systom calctatos loas

yos

10, Systom veriias studant wishs lo saralt

1

12, Syalom anrolls student ko auminar

9. Systam displays foes

g2
&=
w_ 8
==
SEsg?
N O =y
§8g2
K<gd
(/\&X\
gt
T -
Ty
"
B

EnroliIn

Baslic Course of
Action

S0 #: UC17-01

A Student
<<actor>>

SecuriﬁyLugon
<<Ui>>

:SeminarSelecto
<UD

enroller
<<controlier>>

1. Student indicates wish to enroll

2. Student inputs nams and number

3. System verifies student

‘g
4. System displays seminar list
5, Students picks seminar
6. System determines eligibility to enroll

7. System determines schedule fit

8. System calculates fees

9. System displays fees
10. System verifies student wishes to enroll
11. Students indicates yes.
12. System enrolls student in seminar

&

student number

IsEligible(riame, studentNumber)

:EnrolllnSeminar, Student seminar:Seminar

X
V)

D <<destroy>>
\ .

|
!
|
|
|
|
I
}

new {thiStudent) <<create>> |

open\Mlh(enm[ler) <<creale>:

I
|
!
!
f

|

| |
l
1
1

} IsEligitfeToEnroll{theStudent)

frue i

R

e s s e by i s s e]

I

openWith(enroller) <<create>>

|

1
I
|
|
|
| |

{
I
|
!
I
|
I
]
|
;
!
!
|
|

|
1
|
|
|
|

AN

timent{

T
I
|
[
|
|
enr’ollSludent(lheStudenl) Jlj
|
|

e I i A e

B L

JFigure 7-3.

A reworked
sequence diagram
respecting layering

260

Your business
objects should not
be affected by
changes to your
persistence
strategy.

The persistence
layer encapsulates
access to
permanent storage,
but it is not the
storage mechanism
itself.

The Object Primer

7.1.3 The Business/Domain Layer

A business/domain class, also called an analysis or entity class (Jacobson,
Booch, and Rumbaugh, 1999), is a class that is usually identified during
analysis. Your subject matter experts (SMEs) are often the people who
identify these classes or, at least, the concrete business/domain classes.
Referring back to Figure 6-16 we see a conceptual class model that con-
tains business/domain classes pertinent to a university information sys-
tem. The business layer enables you to encapsulate the basic business
functionality without having to concern yourself with user interface,
data management, or system management issues.

7.1.4 The Persistence Layer

The persistence layer provides the infrastructure for the storage and
retrieval of objects. This helps to isolate your application from changes to
your permanent storage approach. You might decide to install the latest
version of your database, change your existing database schema, migrate
to a new database vendor, or even change your data storage approach
completely (perhaps migrating from a relational database to an object
database). Regardless of how your persistence strategy changes, your
applications should not be affected. The persistence layer, by encapsulat-
ing data management functionality, increases the maintainability, exten-
sibility, and portability of your applications.

In the layered class-type architecture of Figure 7-2, messages flow from
the business/domain class layer to the persistence class layer. These mes-
sages take the form of “create a new object,” “retrieve this object from
the database,” “update this object,” or “delete this object.” These types of
messages are referred to as object-oriented create, retrieve, update, and delete
(OOCRUD). Another essential concept here is that the persistence layer

Chapter 7 » Determining How to Build Your System: Object-Oriented Design 261

only provides access to permanent storage; it is not the permanent stor-
age mechanism itself. For example, the persistence layer may encapsulate
access to a relational database, but it is not the database itself. The goal of
the persistence layer is to reduce the maintenance effort that is required
whenever changes are made to your database.

Why do you need a persistence Jayer? You know your database will be
upgraded. You know tables will be moved from one database to another, or
from one server to another. You know your data schema will be changed.
You know field names will be changed. The implication is clear: because the
database is guaranteed to change, we need to encapsulate it to protect our-
selves from the change. A persistence layer is the best way to do this because
it minimizes the effort required to handle changes to permanent storage.

7.1.5 The System Layer

Every operating system offers functionality that we want to be able to
access in our applications—file handling, multitasking, multithreading,
and network access to name a few. Most operating systems offer these
features, albeit in slightly different manners. Although many people find
this little fact to be worthy of great debate and, perhaps, it actually is, the
real issue is that the differenices between operating systems can make it
tough if you are writing an application that needs to work on many dif-
ferent platforms. You want to wrap the features of an operating system in
such a way that when you port an application, you only need to modify
a minimum number of classes. In other words, you need to create classes
that wrap specific features of the operating system. Even if you don't
intend to port your applications to other operating systems, you still
need to consider wrapping system functionality. The reason for this is

The persistence
layer isolates you
from the impact of
changes to your
storage strategy.

The system layer,
provides access to
the operating
system and non-
OO resources.

262

System classes
encapsulate non-
OO functionality
by wrapping it
with 0O code.

model will reflect
the wide variety of
technology
decisions you make.

. structure Eﬁhow\your software will be bu}ﬂ‘he techniques of Chapter 7

The Object Primer

simple: Operating systems constantly get upgraded. Every time an
upgrade occurs, there are always changes to the way that functionality is
currently being offered, including issues such as bug fixes and com-
pletely new ways to do things.

The key concept here is wrapping (Ambler, 1998a). System classes for
the most part encapsulate non-0O0 functionality that we need to make
accessible to objects within an application. It is quite common to wrap a
series of related operating system calls to provide a related set of func-
tionality. A perfect example would be the file stream classes commonly
found in Java and C++. When you look into the inner workings of these
classes, you find their methods make specific file-handling calls to the
operating system. These classes, particularly the Java ones, provide a
common way to work with files, regardless of the platform.

Message flow for system classes is greatly restricted. Systemn classes are
only allowed to send messages to other system classes, even though each
type of class is allowed to send messages to system classes. This is because
system classes are the lowest common denominator in software develop-
ment. This means they don‘t need to know anything about the business
logic or user interface logic to do their job. Actually, it is not completely
true that system classes don’t interact with nonsystem classes. The use of
callbacks, when one object passes itself as a message parameter to
another so the receiver can later call it back, is permitted (it is allowed
between all layers, but it is most common with system classes). For exam-
ple, instead of waiting, a business class may request that a printing sys-
tem class inform it when/if the print request was successful. When the
printing is complete, a message would be sent from the system object to
the business object informing it of success.

7.2 Class Modeling //

Your desm'ihe purpose of design is to model how the software il be built. As you

wouldhexpect, the purpose of design-class mod/eliﬁ/g is to model the static

