
525 Copyright (C) 2002 by Robert C. Martin. All Rights Reserved.

Visitor

“'T is some visitor,” I muttered, “tapping at my chamber door;
Only this and nothing more.”

-- Edgar Allen Poe, The Raven

Problem: You need to add a new method to a hierarchy of classes, but the act of adding it
will be painful or damaging to the design.

This is a common problem. For example, suppose you have a hierarchy of Modem
objects. The base class has the generic methods common to all modems. The derivatives
represent the drivers for many different modem manufacturers and types. Suppose also
that you have a requirement to add a new method, named configureForUnix, to the
hierarchy. This method will configure the modem to work with the UNIX operating sys-
tem. It will do something different in each modem derivative, because each different
modem has its own particular idiosyncrasies for setting its configuration, and dealing with
UNIX.

Unfortunately adding configureForUnix begs a terrible set of questions. What
about Windows, what about MacOs, what about Linux? Must we really add a new method
to the Modem hierarchy for every new operating system that we use? Clearly this is ugly.
We’ll never be able to close the Modem interface. Every time a new operating system
comes along we’ll have to change that interface and redeploy all the modem software.

The VISITOR family of design patterns.

The Visitor family allows new methods to be added to existing hierarchies without modify-
ing the hierarchies.

The patterns in this family are:
• VISITOR

526

• ACYCLIC VISITOR
• DECORATOR
• EXTENSION OBJECT

VISITOR1

Consider the Modem hierarchy in Figure 29-1. The Modem interface contains the generic
methods that all modems can implement. There are three derivatives shown, one that
drives a Hayes modem, another that drives a Zoom modem, and a third that drives the
modem card produced by Ernie, one of our hardware engineers.

How can we configure these modems for unix without putting the Configure-
ForUnix method in the Modem interface? We can use a technique called dual dispatch;
which is the mechanism at the heart of the VISITOR pattern.

Figure 29-2 shows the VISITOR structure and Listing 29-1 through Listing 29-6 show
the corresponding java code. Listing 29-7 shows the test code that both verifies that the
VISITOR works and demonstrates how another programmer should use it..

Notice that there is a method in the visitor hierarchy for every derivative of the visited
(Modem) hierarchy. This is a kind of 90° rotation — from derivatives to methods.

The test code shows that to configure a modem for unix a programmer creates an
instance of the UnixModemConfigurator class and passes it to the accept function of
the Modem. The appropriate Modem derivative will then call visit(this) on Modem-
Visitor, the base class of UnixModemConfigurator. If that derivative is a Hayes, then
visit(this) will call public void visit(Hayes). This will deploy to the public

1. [GOF95] p 331

Figure 29-1
Modem Hierarchy

+ Dial +Send
+ Hangup +Recv

Modem
«interface»

Hayes Zoom Ernie

527 Chapter 29: Visitor

Figure 29-2
Visitor

Listing 29-1
Modem.java
public interface Modem
{
public void dial(String pno);
public void hangup();
public void send(char c);
public char recv();
public void accept(ModemVisitor v);

}

Listing 29-2
ModemVisitor.java
public interface ModemVisitor
{
public void visit(HayesModem modem);
public void visit(ZoomModem modem);
public void visit(ErnieModem modem);

}

Listing 29-3
HayesModem.java
public class HayesModem implements Modem
{
public void dial(String pno){}
public void hangup(){}
public void send(char c){}
public char recv() {return 0;}
public void accept(ModemVisitor v) {v.visit(this);}

+ Dial +Send
+ Hangup +Recv
+ accept(ModemVisitor)

Modem
«interface»

+ visit(Hayes)
+ visit(Zoom)
+ visit(Ernie)

ModemVisitor
«interface»

UnixModem
Configurator

Hayes Zoom Ernie

public void accept(ModemVisitor v)
{
v.visit(this)
}

528

String configurationString = null;
}

Listing 29-4
ZoomModem.java
public class ZoomModem implements Modem
{
public void dial(String pno){}
public void hangup(){}
public void send(char c){}
public char recv() {return 0;}
public void accept(ModemVisitor v) {v.visit(this);}

int configurationValue = 0;
}

Listing 29-5
ErnieModem.java
public class ErnieModem implements Modem
{
public void dial(String pno){}
public void hangup(){}
public void send(char c){}
public char recv() {return 0;}
public void accept(ModemVisitor v) {v.visit(this);}

String internalPattern = null;
}

Listing 29-6
UnixModemConfigurator.java
public class UnixModemConfigurator implements ModemVisitor
{
public void visit(HayesModem m)
{
m.configurationString = "&s1=4&D=3";

}

public void visit(ZoomModem m)
{
m.configurationValue = 42;

}

public void visit(ErnieModem m)
{
m.internalPattern = "C is too slow";

}
}

Listing 29-7
TestModemVisitor.java
import junit.framework.*;
public class TestModemVisitor extends TestCase

Listing 29-3 (Continued)
HayesModem.java

529 Chapter 29: Visitor

void visit(Hayes) function in UnixModemConfigurator which then configures the
Hayes modem for Unix.

Having built this structure, new operating system configuration functions can be
added by adding new derivatives of ModemVisitor without altering the Modem hierarchy
in any way. So the VISITOR pattern substitutes derivatives of ModemVisitor for methods
in the Modem hierarchy.

This is called dual dispatch because it involves two polymorphic dispatches. The first
is the accept function. This dispatch resolves the type of the object that accept is called
upon. The second dispatch is the visit method called from the resolved accept method.
The second dispatch resolves to the particular function to be executed.

Visitor is like a Matrix. The two dispatches of VISITOR form a matrix of functions.
In our modem example, one axis of the matrix is the different types of modems. The other

{
public TestModemVisitor(String name)
{
super(name);

}

private UnixModemConfigurator v;
private HayesModem h;
private ZoomModem z;
private ErnieModem e;

public void setUp()
{
v = new UnixModemConfigurator();
h = new HayesModem();
z = new ZoomModem();
e = new ErnieModem();

}

public void testHayesForUnix()
{
h.accept(v);
assertEquals("&s1=4&D=3", h.configurationString);

}

public void testZoomForUnix()
{
z.accept(v);
assertEquals(42, z.configurationValue);

}

public void testErnieForUnix()
{
e.accept(v);
assertEquals("C is too slow", e.internalPattern);

}
}

Listing 29-7 (Continued)
TestModemVisitor.java

530

axis is the different types of operating systems. Every cell in this matrix is filled in with a
function that describes how to initialize the particular modem for the particular operating
system.

Visitor is fast. It requires only two polymorphic dispatches; regardless of the breadth
or depth of the visited hierarchy.

Acyclic Visitor.

Notice that the base class of the visited (Modem) hierarchy depends upon the base class of
the visitor hierarchy (ModemVisitor). Notice also that the base class of the visitor hierar-
chy has a function for each derivative of the visited hierarchy. Thus there is a cycle of
dependencies that ties all the visited derivatives (all the Modems) together. This makes it
very difficult to compile the visitor structure incrementally, or to add new derivatives to
the visited hierarchy.

The VISITOR works very well in programs where the hierarchy to be modified does
not need new derivatives very often. If Hayes, Zoom, and Ernie were the only Modem
derivatives that were likely to be needed; or if the incidence of new Modem derivatives was
expected to be infrequent, then the VISITOR would be very appropriate.

On the other hand, if the visited hierarchy is highly volatile such that many new deriv-
atives will need to be created, then the visitor base class (e.g. ModemVisitor) will have
to be modified and recompiled along with all its derivatives every time a new derivatives
is added to the visited hierarchy. In C++ the situation is even worse. The entire visited
hierarchy must be recompiled and redeployed whenever any new derivative is added.

To solve these problems, a variation known as ACYCLIC VISITOR2 can be used. (See
Figure 29-3.) This variation breaks the dependency cycle by making the Visitor base
class (ModemVisitor) degenerate3. The lack of any methods in this class means that it
does not depend upon the derivatives of the visited hierarchy.

The visitor derivatives also derive from visitor interfaces. There is one visitor inter-
face for each derivative of the visited hierarchy. This is a 180° rotation from derivatives to
interfaces. The accept functions in the visited derivatives cast the visitor base class4 to
the appropriate visitor interface. If the cast succeeds, the method invokes the appropriate
visit function. Listing 29-8 through Listing 29-16 show the code.

This breaks the dependency cycle and makes it easier to add visited derivatives and
do incremental compilations. Unfortunately it also makes the solution much more com-
plex. Worse still, the timing of the cast can depend upon the width and breadth of the vis-
ited hierarchy, and is therefore hard to characterize.

2. [PLOPD3], p93
3. A degenerate class is one that has no methods at all. In C++ it would have a pure virtual destruc-

tor. In java such classes are called “Marker Interfaces”.
4. In C++ we use dynamic_cast

531 Chapter 29: Visitor

Figure 29-3
Acyclic Visitor

Listing 29-8
Modem.java
public interface Modem
{
public void dial(String pno);
public void hangup();
public void send(char c);
public char recv();
public void accept(ModemVisitor v);

}

Listing 29-9
ModemVisitor.java
public interface ModemVisitor
{
}

+ Dial +Send
+ Hangup+Recv
+ accept(ModemVisitor)

Modem
«interface»

Hayes Zoom Ernie

ModemVisitor
«degenerate»

UnixModem
Configurator

public void accept(ModemVisitor v) {
try {
HayesVisitor hv = (HayesVisitor) v;
hv.visit(this);

} catch (ClassCastException e) {}
}

+ visit(Hayes)

HayesVisitor

+ visit(Zoom)

ZoomVisitor

+ visit(Ernie)

ErnieVisitor
«interface» «interface» «interface»

532

Listing 29-10
ErnieModemVisitor.java
public interface ErnieModemVisitor
{
public void visit(ErnieModem m);

}

Listing 29-11
HayesModemVisitor.java
public interface HayesModemVisitor
{
public void visit(HayesModem m);

}

Listing 29-12
ZoomModemVisitor.java
public interface ZoomModemVisitor
{
public void visit(ZoomModem m);

}

Listing 29-13
ErnieModem.java
public class ErnieModem implements Modem
{
public void dial(String pno){}
public void hangup(){}
public void send(char c){}
public char recv() {return 0;}
public void accept(ModemVisitor v)
{
try
{
ErnieModemVisitor ev = (ErnieModemVisitor)v;
ev.visit(this);

}
catch (ClassCastException e)
{
}

}

String internalPattern = null;
}

Listing 29-14
HayesModem.java
public class HayesModem implements Modem
{
public void dial(String pno){}
public void hangup(){}
public void send(char c){}
public char recv() {return 0;}
public void accept(ModemVisitor v)
{
try

533 Chapter 29: Visitor

{
HayesModemVisitor hv = (HayesModemVisitor)v;
hv.visit(this);

}
catch (ClassCastException e)
{
}

}

String configurationString = null;
}

Listing 29-15
ZoomModem.java
public class ZoomModem implements Modem
{
public void dial(String pno){}
public void hangup(){}
public void send(char c){}
public char recv() {return 0;}
public void accept(ModemVisitor v)
{
try
{
ZoomModemVisitor zv = (ZoomModemVisitor)v;
zv.visit(this);

}
catch(ClassCastException e)
{
}

}

int configurationValue = 0;
}

Listing 29-16
TestModemVisitor.java
import junit.framework.*;
public class TestModemVisitor extends TestCase
{
public TestModemVisitor(String name)
{
super(name);

}

private UnixModemConfigurator v;
private HayesModem h;
private ZoomModem z;
private ErnieModem e;

public void setUp()
{
v = new UnixModemConfigurator();
h = new HayesModem();

Listing 29-14 (Continued)
HayesModem.java

534

For hard real time systems the large and unpredictable execution time of the cast may
make the ACYCLIC VISITOR inappropriate. For other systems, the complexity of the pattern
may disqualify it. But for those systems in which the visited hierarchy is volatile, and
incremental compilation is important, then this pattern can be a good option.

Acyclic Visitor is like a Sparse Matrix. Back on page 529 I described how the
VISITOR pattern created a matrix of functions, with the visited type on one axis, and the
function to be performed on the other. Acyclic Visitor creates the a sparsematrix. The vis-
itor classes do not have to implement visit functions for each visited derivative. For
example, if Ernie modems cannot be configured for Unix, then the
UnixModemConfigurator will not implement the ErnieVisitor interface.

Using VISITOR in Report Generators

A very common use of the VISITOR pattern is to walk large data structures and generate
reports. The value of the VISITOR in this case is that the data structure objects do not have
to have any report generation code. New reports can be added by adding new VISITORs,
rather than by changing the code in the data structures. This means that reports can be
placed in separate components, and individually deployed only to those customers that
need them.

Consider a simple data structure that represents a bill of materials (See Figure 29-4).
There is an unlimited number of reports that we could generate from this data structure.
We could generate a report of the total cost of an assembly. Or we could generate a report
that listed all the piece-parts in an assembly.

z = new ZoomModem();
e = new ErnieModem();

}

public void testHayesForUnix()
{
h.accept(v);
assertEquals("&s1=4&D=3", h.configurationString);

}

public void testZoomForUnix()
{
z.accept(v);
assertEquals(42, z.configurationValue);

}

public void testErnieForUnix()
{
e.accept(v);
assertEquals("C is too slow", e.internalPattern);

}
}

Listing 29-16 (Continued)
TestModemVisitor.java

535 Chapter 29: Visitor

Each of these reports could be generated by methods in the Part class. For example,
getExplodedCost, and getPieceCount could be added to the Part class. These meth-
ods would be implemented in each derivative of Part such that the appropriate reporting
was accomplished. Unfortunately that would mean that every new report that the custom-
ers wanted would force us to change the Part hierarchy.

The Single Responsibility Principle (SRP) told us that we want to separate code that
changes for different reasons. The Part hierarchy may change as new kinds of parts are
needed. However, it should not change because new kinds of reports are needed. Thus
we’d like to separate the reports from the Part hierarchy. The VISITOR structure shown in
Figure 29-4 shows how this can be accomplished.

Each new report can be written as a new visitor. We write the accept function of
Assembly to visit the visitor and also call accept on all the contained Part instances.
Thus the entire tree is traversed. For each node in the tree the appropriate visit function
is called on the report. The report accumulates the necessary statistics. The report can then
be queried for the interesting data and presented to the user.

This structure allows us to create an unlimited number of reports without affecting the
part hierarchy at all. Moreover, each report can be compiled and distributed independently
of all the others. This is nice. Listing 29-17 through Listing 29-23 show how this looks in
java.

Figure 29-4
Bill Of Materials Report Generator Structure

Listing 29-17
Part.java
public interface Part
{
public String getPartNumber();
public String getDescription();
public void accept(PartVisitor v);

}

+ accept(PartVisitor)

Part

- partNumber
- description

Assembly

- cost
- partNumber
- description

PiecePart

«interface»
1..*

+ visit(Assembly)
+ visit(PiecePart)

PartVisitor

ExplodedCost
Visitor

PartCount
Visitor

536

Listing 29-18
Assembly.java
import java.util.*;

public class Assembly implements Part
{
public Assembly(String partNumber, String description)
{
itsPartNumber = partNumber;
itsDescription = description;

}

public void accept(PartVisitor v)
{
v.visit(this);
Iterator i = getParts();
while (i.hasNext())
{
Part p = (Part)i.next();
p.accept(v);

}
}
public void add(Part part)
{
itsParts.add(part);

}

public Iterator getParts()
{
return itsParts.iterator();

}

public String getPartNumber()
{
return itsPartNumber;

}

public String getDescription()
{
return itsDescription;

}

private List itsParts = new LinkedList();
private String itsPartNumber;
private String itsDescription;

}

Listing 29-19
PiecePart.java
public class PiecePart implements Part
{
public PiecePart(String partNumber,

String description,
double cost)

{
itsPartNumber = partNumber;
itsDescription = description;

537 Chapter 29: Visitor

itsCost = cost;
}

public void accept(PartVisitor v)
{
v.visit(this);

}

public String getPartNumber()
{
return itsPartNumber;

}

public String getDescription()
{
return itsDescription;

}

public double getCost()
{
return itsCost;

}

private String itsPartNumber;
private String itsDescription;
private double itsCost;

}

Listing 29-20
PartVisitor.java
public interface PartVisitor
{
public void visit(PiecePart pp);
public void visit(Assembly a);

}

Listing 29-21
ExplodedCostVisitor.java
public class ExplodedCostVisitor implements PartVisitor
{
private double cost = 0;
public double cost() {return cost;}

public void visit(PiecePart p)
{cost += p.getCost();}

public void visit(Assembly a) {}

}

Listing 29-22
PartCountVisitor.java
import java.util.*;

Listing 29-19 (Continued)
PiecePart.java

538

public class PartCountVisitor implements PartVisitor
{
public void visit(PiecePart p)
{
itsPieceCount++;
String partNumber = p.getPartNumber();
int partNumberCount = 0;
if (itsPieceMap.containsKey(partNumber))
{
Integer carrier = (Integer)itsPieceMap.get(partNumber);
partNumberCount = carrier.intValue();

}
partNumberCount++;
itsPieceMap.put(partNumber, new Integer(partNumberCount));

}

public void visit(Assembly a)
{
}

public int getPieceCount() {return itsPieceCount;}
public int getPartNumberCount() {return itsPieceMap.size();}
public int getCountForPart(String partNumber)
{
int partNumberCount = 0;
if (itsPieceMap.containsKey(partNumber))
{
Integer carrier = (Integer)itsPieceMap.get(partNumber);
partNumberCount = carrier.intValue();

}
return partNumberCount;

}

private int itsPieceCount = 0;
private HashMap itsPieceMap = new HashMap();

}

Listing 29-23
TestBOMReport.java
import junit.framework.*;
import java.util.*;

public class TestBOMReport extends TestCase
{
public TestBOMReport(String name)
{
super(name);

}

private PiecePart p1;
private PiecePart p2;
private Assembly a;

public void setUp()

Listing 29-22 (Continued)
PartCountVisitor.java

539 Chapter 29: Visitor

{
p1 = new PiecePart("997624", "MyPart", 3.20);
p2 = new PiecePart("7734", "Hell", 666);
a = new Assembly("5879", "MyAssembly");

}

public void testCreatePart()
{
assertEquals("997624", p1.getPartNumber());
assertEquals("MyPart", p1.getDescription());
assertEquals(3.20, p1.getCost(), .01);

}

public void testCreateAssembly()
{
assertEquals("5879", a.getPartNumber());
assertEquals("MyAssembly", a.getDescription());

}

public void testAssembly()
{
a.add(p1);
a.add(p2);
Iterator i = a.getParts();
PiecePart p = (PiecePart)i.next();
assertEquals(p, p1);
p = (PiecePart)i.next();
assertEquals(p, p2);
assert(i.hasNext() == false);

}

public void testAssemblyOfAssemblies()
{
Assembly subAssembly = new Assembly("1324", "SubAssembly");
subAssembly.add(p1);
a.add(subAssembly);

Iterator i = a.getParts();
assertEquals(subAssembly, i.next());

}

private boolean p1Found = false;
private boolean p2Found = false;
private boolean aFound = false;

public void testVisitorCoverage()
{
a.add(p1);
a.add(p2);
a.accept(new PartVisitor(){
public void visit(PiecePart p)
{
if (p == p1)
p1Found = true;

else if (p == p2)

Listing 29-23 (Continued)
TestBOMReport.java

540

p2Found = true;
}

public void visit(Assembly assy)
{
if (assy == a)
aFound = true;

}
});
assert(p1Found);
assert(p2Found);
assert(aFound);

}

private Assembly cellphone;

void setUpReportDatabase()
{
cellphone = new Assembly("CP-7734", "Cell Phone");
PiecePart display = new PiecePart("DS-1428",

"LCD Display",
14.37);

PiecePart speaker = new PiecePart("SP-92",
"Speaker",
3.50);

PiecePart microphone = new PiecePart("MC-28",
"Microphone",
5.30);

PiecePart cellRadio = new PiecePart("CR-56",
"Cell Radio",
30);

PiecePart frontCover = new PiecePart("FC-77",
"Front Cover",
1.4);

PiecePart backCover = new PiecePart("RC-77",
"RearCover",
1.2);

Assembly keypad = new Assembly("KP-62", "Keypad");
Assembly button = new Assembly("B52", "Button");
PiecePart buttonCover = new PiecePart("CV-15",

"Cover",
.5);

PiecePart buttonContact = new PiecePart("CN-2",
"Contact",
1.2);

button.add(buttonCover);
button.add(buttonContact);
for (int i=0; i<15; i++)
keypad.add(button);

cellphone.add(display);
cellphone.add(speaker);
cellphone.add(microphone);
cellphone.add(cellRadio);
cellphone.add(frontCover);
cellphone.add(backCover);
cellphone.add(keypad);

}

Listing 29-23 (Continued)
TestBOMReport.java

541 Chapter 29: Visitor

Other uses of Visitor

In general, the Visitor pattern can be used in any application where there is a data struc-
ture that needs to be interpreted many different ways. Compilers often create intermediate
data structures that represent syntactically correct source code. These data structures are
then used to generate compiled code. One could imagine visitors for each different proces-
sor and/or optimization scheme. One could also imagine a visitor that converted the inter-
mediate data structure into a cross reference listing, or even a UML diagram.

Many applications make use of configuration data structures. One could imagine the
different subsystems of the application initializing themselves from the configuration data
by walking it with their own particular visitors.

In every case where visitors are used, the data structure being used is independent of
the uses to which it is being put. New visitors can be created, existing visitors can be
changed, and all can be redeployed to installed sites without the recompilation, or rede-
ployment of the existing data structures. This is the power of the VISITOR.

public void testExplodedCost()
{
setUpReportDatabase();
ExplodedCostVisitor v = new ExplodedCostVisitor();
cellphone.accept(v);
assertEquals(81.27, v.cost(), .001);

}

public void testPartCount()
{
setUpReportDatabase();
PartCountVisitor v = new PartCountVisitor();
cellphone.accept(v);
assertEquals(36, v.getPieceCount());
assertEquals(8, v.getPartNumberCount());
assertEquals("DS-1428", 1, v.getCountForPart("DS-1428"));
assertEquals("SP-92", 1, v.getCountForPart("SP-92"));
assertEquals("MC-28", 1, v.getCountForPart("MC-28"));
assertEquals("CR-56", 1, v.getCountForPart("CR-56"));
assertEquals("RC-77", 1, v.getCountForPart("RC-77"));
assertEquals("CV-15", 15, v.getCountForPart("CV-15"));
assertEquals("CN-2", 15, v.getCountForPart("CN-2"));
assertEquals("Bob", 0, v.getCountForPart("Bob"));

}
}

Listing 29-23 (Continued)
TestBOMReport.java

558

Bibliography

[GOF95]: : Design Patterns, Gamma, et. al., Addison Wesley, 1995

[PLOPD3]: Pattern Languages of Program Design 3, Robert C. Martin, et. al., Addison
Wesley, 1998.

