

Object-Oriented Analysis and Design, Part 1
by Alistair Cockburn,
with C++ code by Chuck Allison

Object-Oriented design is easy - once you learn how to identify the
right objects.

Introduction

"If you have done an object-oriented (OO) design, how do you
describe it to another person? What do you talk about or show, to
convey your design?" I have asked this of experienced designers for
several years now. I usually get back a very long silence, ending with a
shrug of the shoulders. This is a tough question, not covered in classes
and books.

This two-article series presents a problem I use both to teach and test
OO design. It is a simple but rich problem, strong on ''design,''
minimizing language, tool, and even inheritance concerns. The problem
represents a realistic work situation, where circumstances change
regularly. It provides a good touch point for discussions of even fairly
subtle designs in even very large systems. This problem was
successfully solved by six first-year computer science students with no
OO background. It was less successfully addressed by business people,
commercial programmers learning OO, and experienced OO
programmers.

If you do a great job on this problem, congratulate yourself. If you are
taken by surprise at the developments, you are in good company. What
I hope you get from this series is:

1 of 11 1/25/2001 6:30 PM

Feature Article: May98 http://www.cuj.com/archive/1605/feature.html

I hope you get from this series is:

how to talk about designs,

a bit of how to evaluate and improve designs,

and a sample problem against which to test your favorite design
technique.

Warm-Up: What Is "Design?"

To learn what design is, I have been asking my students for years now,
before we start on any OO lectures, to sketch a simple design of an
everyday system and present it to the class on two overhead
transparencies. No talking is to accompany the transparencies. The
class then tries to understand, from the transparencies, the design of the
system. At the end the class discusses which of the teams' presentations
best captured the notion of design.

The system I ask them to design, and am now asking you to design, is a
small, one-branch bank. Sketch the design for the whole thing, not just
the computer part. Take no more than 15 minutes. Work with someone
else, if possible. Capture the design on a single sheet of paper. (Your
pencil lets you put much more on a page than the fat transparency pens
I give the students.) You should be able to show this piece of paper to
pretty much anyone on the street, and they would recognize the bank's
basic design. On your marks, get set. Go.

The acclaimed winners in my classes consistently present four things:

1. The name of the key components, or things, in the system

2. The purpose, basic function, or main responsibility of each thing

3. A drawing of the key communication paths between them

4. A list of the services provided

2 of 11 1/25/2001 6:30 PM

Feature Article: May98 http://www.cuj.com/archive/1605/feature.html

I have adopted these four things as essential to communicating design.
I see these things used to describe the design of significant parts of
large companies, of large OO systems, and also of code-level solutions
to hard programming problems (see ''In search of methodology'' [2]).

Nowadays, I insist upon these items in program or system design
documentation (along with email records of design arguments and
resolutions). The set of four design items tells us why an
UML/OMT-style drawing is not satisfying to experienced designers. A
UML/OMT drawing gives the components, but says neither what their
purpose is nor what their main communication channels are.

Of the four design elements, the
brief "responsibility statement" is the
most important. It tells an
experienced person what will be
included and what will be excluded
from the data and behavior for the
component. Ward Cunningham,
Kent Beck, and Rebecca
Wirfs-Brock have been championing
the responsibility statement for years
[1, 4]. The drawing of the
communication channels summarizes
the communication patterns and
gives a quick view of the traffic patterns and collaborations. It gives the
viewer a rapid understanding of the system's behavior. Trygve
Reenskaug's "role models" are an articulate and precise way to describe
communication channels [3]. Rebecca Wirfs-Brock's "contracts" were
an earlier attempt to capture them [4]. The communication channels
drawing expands into interaction diagrams, which demonstrate that the
components, holding to their responsibilities, really can work together
properly to deliver the services.

I gave you the bank exercise just to introduce the four key items

Figure 1: Sample bank design

3 of 11 1/25/2001 6:30 PM

Feature Article: May98 http://www.cuj.com/archive/1605/feature.html

needed for good design. The problem I use for instruction in this article
is the design of a coffee machine. In discussing and comparing designs
in this article, I shall focus on Component Names, Component Main
Responsibilities, and Intercomponent Communication Channels. The
services list will come to you through the requirements statement.
Expect me to ask, "Which component knows the price of the coffee?
Which object knows how to make the drink?" I shall show, and ask you
to show, a few interaction diagrams to demonstrate that the system
really works. Although you may use inheritance in solving the problem,
I am going to spend less time on inheritance. If you get the basic design
wrong, no inheritance structure will fix it. If your basic design is
strong, you can play with the inheritance structure to make it better.

Figure 1 shows a sample solution to the bank design question that uses
the four elements. Note that the Customer is not a component of the
bank and has no responsibilities. (There is no way, at system design
time, to distinguish a customer from a robber; that has to show up in
the operation of the system.) The components of the bank are:

The table. It provides a flat surface for writing and filling out
forms.

The teller. This person is responsible for coordinating the actions
involved in the transaction, such as getting money from the vault
and entering the transaction into the computer.

The vault. Holds the money.

The computer. Knows the current state and history of the
customers' accounts.

Now let's go on to the main problem.

The Coffee Machine Problem

You and I are contractors who just won a bid to design a custom

4 of 11 1/25/2001 6:30 PM

Feature Article: May98 http://www.cuj.com/archive/1605/feature.html

coffee vending machine for the employees of Acme Fijet Works to use.
Arnold, the owner of Acme Fijet Works, like the common software
designer, eschews standard solutions. He wants his own, custom
design. He is, however, a cheapskate. Arnold tells us he wants a
simple machine. All he wants is a machine that serves coffee for 35
cents, with or without sugar and creamer. That's all. He expects us to
be able to put this little machine together quickly and for little cost.
We get together and decide there will be a coin slot and coin return,
coin return button, and four other buttons: black, white, black with
sugar, and white with sugar.

Now design the machine using
objects. What are the components,
what are their responsibilities, how
do they work together to deliver the
simple service: give coffee for 35
cents? This process will work best if
you cover up the diagram in Figure
2 and sketch your own design before
reading further. Go.

Which component knows the price
of the drink? Which component
knows how to make the drink?

Test your design against Kim's test scenarios:

Kim puts in a quarter and then selects a coffee.

Kim puts two quarters in and then selects a coffee.

Kim puts in a quarter, then pushes the coin return lever.

Kim puts in two quarters, then walks away from the machine and
forgets to come back.

Figure 2: Design of the coffee
machine (1)

5 of 11 1/25/2001 6:30 PM

Feature Article: May98 http://www.cuj.com/archive/1605/feature.html

Kim buys two coffees, white with sugar. The sugar dispenser
runs out of sugar after the first.

Figure 2 shows the basic design that students commonly give me at this
point, after we have straightened out the standard bugs. Figure 3 shows
the interaction diagram. The code in Listing 1 shows sample C++
declarations for the classes involved (a full implementation is delayed
for a better design). For space reasons, I omit details of making change
and handling insufficient change. Note this is not a good design; it is a
typical one. I hope you do better. Try to say why your design is
"better" than this one. The answer will be clear by the time we get
done.

The typical coffee machine design submitted to me has four main
components:

COFFEE MACHINE (1) DESIGN:

Cash Box. Knows amount of money put in; gives change; knows
price of coffee; turns Front Panel on and off.

Front Panel. Captures selection; knows what to mix in each;
instructs Mixer what to mix.

Mixer. Knows how to talk to the dispensers.

Dispensers (cup, coffee powder, sugar, creamer, water). Knows
how to dispense a fixed amount; knows when it is empty.

Arnold Visits

After five machines are installed and have been operating for a while,
Arnold comes along and says, "I would like to add bouillon, at
twenty-five cents. Change the design." We add one more button for
bouillon, and one more container for bouillon powder. How else do
you change your design?

6 of 11 1/25/2001 6:30 PM

Feature Article: May98 http://www.cuj.com/archive/1605/feature.html

Below is the typical design I get at
this stage of the story (see also
Figures 4 and 5). Notice how the
division of responsibilities is
fundamentally different from the first
solution.

COFFEE MACHINE (2) DESIGN:

Cash Box. Knows amount of
money put in; gives change.

Front Panel. Captures
selection; knows price of
selections, materials needed for each; asks Cash Box how much
money was put in; instructs Mixer what to mix.

Mixer. Same as before.

Dispensers. Same as before.

Snap Analysis of Designs 1 and 2

According to popular report, we are using object-orientation to reduce
the impact of changes. Notice that we have completely revamped the
machine. Arghh! Evidently, the first design was not a really good
design. The key error was that the cash box knew the price of the
coffee. That means that asking for different prices for different drinks
raised havoc with the design. The new design is better in this regard.
Since the front panel knows the selections and the price, we can change
prices at will, and only change one component.

Figure 3: Interaction diagram
showing machine (1) serving
coffee, running out of sugar

7 of 11 1/25/2001 6:30 PM

Feature Article: May98 http://www.cuj.com/archive/1605/feature.html

I voice a worry at this point: the
front panel looks awfully smart. It
hardly deserves to be called a "front
panel." I call this the "mainframe"
approach to design. One of the
objects in the system has all the
smarts. Almost any change to the
system can be accomplished by
changing the mainframe object. You
may have come up with a slightly
different mainframe approach. You
keep the front panel dumb; all it
does is register a selection. You add
a fifth object, which in a spark of

inspiration, you call the Controller. The Controller knows everything
the second design's front panel knows, only does not physically have
the buttons. The front panel tells the Controller the selection, the
Controller talks to the cash box, the Controller tells the mixer what to
dispense.

Although the trajectory of change in the mainframe approach involves
only one object, people soon become terrified of touching it. Any
oversight in the mainframe object (even a typo!) means potential
damage to many modules, with endless testing and unpredictable bugs.
Those readers who have done system maintenance or legacy system
replacement will recognize that almost every large system ends up with
such a module. They will affirm what sort of a nightmare it becomes.

Although I voice the worry, I cannot quantify it, and so we leave the
design the way it is, with either the front panel or the controller being
the mainframe object.

Arnold Visits Again

Arnold comes back a while later with a brilliant idea. He has heard
that some companies use their company badges to directly debit the

Figure 4: Design of coffee
machine (2)

8 of 11 1/25/2001 6:30 PM

Feature Article: May98 http://www.cuj.com/archive/1605/feature.html

cost of coffee purchases from their employees' paychecks. Since his
employees already have badges, he thinks this should be a simple
change.

We add a badge reader and link to
payroll. I ask you to make the design
change. Ready, set, Go.

How does your new design change
the system? You should find that
this is not as bad as it sounds. To
make the result clean and robust, we
need only a change in attitude. It is
no longer possible to ask the cash
box for the amount of money put in.
None was put in. So we borrow the
inquiry style used by credit cards.
When you go to pay for a meal, the restaurant does not ask American
Express or Visa, "How much money does this person have?" The
restaurant asks, "Can this person accept a charge of the following
amount?" And the answer comes back yes or no.

So now, the cash box answers only one question from the front panel:
does the customer have <amount> of credit? We become indifferent to
whether the customer pays by cash or direct debit. Further, payroll can
shut the credit down at a certain point for whatever reason. If your
original design already worked this way, give yourself ten extra credit
points. Even though it would have cost nothing to have designed this
way from the start, the design was not obvious at the start. You might
have arrived at the design if you had enquired after how the design
requirements might evolve in the future. The responsibility, "knows
how much money is put in," is sensitive to assumptions and to a
technology. "Knows whether there is sufficient credit" works the same
for cash, but is less specific about assumptions and technology. It is
therefore more robust. Design (3) (Figure 6) changes very little from
design (2). The new responsibilities are:

Figure 5: First part of the
interaction diagram for design
(2)

9 of 11 1/25/2001 6:30 PM

Feature Article: May98 http://www.cuj.com/archive/1605/feature.html

COFFEE MACHINE (3) DESIGN:

Cash Box. Accepts cash or charge; answers whether a given
amount of credit is available.

Front Panel. Same as before, but only asks Cash Box if sufficient
credit is available.

Mixer and dispenser. Same as before.

The code in Listing 2 implements Design 3. Try to say why this design
is or is not "better" - in arguable terms. Avoid arguments like, "because
one should/shouldn't use objects." I have even found that "simpler" is
an argument fraught with conflict. See what you come up with.

I am still not happy with the design.
We'll see why in the next part of the
article. See if you can improve the
design, and say why it is "better,"
while waiting. If you have a really
good or different solution, send the
responsibility statements and
interaction channels to me at
arc@acm.org. I'll publish some of
the more interesting designs on my
web page,
http://members.aol.com/acockburn.
o

References

1. Ward Cunningham, and Kent Beck. "A Laboratory for Teaching
Object-Oriented Thinking," ACM SIGPLAN 24(10):1-7, 1989.

2. Alistair Cockburn. "In search of methodology," Object

Figure 6: Design (3), using
credit instead of cash

10 of 11 1/25/2001 6:30 PM

Feature Article: May98 http://www.cuj.com/archive/1605/feature.html

Magazine, July, 1994, pp.52, 54-56, 76.

3. Trygve Reenskaug, with P. Wold, O. Lehne, et al. Working with
Objects (Prentice-Hall, 1996).

4. Rebecca Wirfs-Brock, Brian Wilkerson, Lauren Wiener.
Designing Object-Oriented Software (Prentice-Hall, 1990).

About the Author

Alistair Cockburn, Consulting Fellow at Humans and Technology, is in
Oslo this year as special advisor to the Central Bank of Norway. His
recent book is Surviving OO Projects. Besides teaching OO design and
project management, Alistair specializes in cognitively simple design
techniques and asking "What is OO design quality?" He likes sitting
underwater, dancing, and learning languages.

| Top | Search

© 2001 CMP Media Inc. All Rights Reserved. | Privacy Policy

11 of 11 1/25/2001 6:30 PM

Feature Article: May98 http://www.cuj.com/archive/1605/feature.html

