
A - 1

1/15/03 A-1© 2001 T. Horton

CS 494
Object-Oriented Analysis & Design

Course Introduction
Dr. Tom Horton
Email: horton@virginia.edu
Phone: 982-2217
Office Hours: Mon. & Wed., 3:30-5 p.m.

and Thur. 2-3:30 (or by appointment)
Office: Olsson 228B

1/15/03 A-2

Course Overview

• Object-oriented SW Engineering, Development
– Low-overhead requirements analysis methods
– OO domain model of requirement-level objects,

relationships.
– Translating requirements into OO designs
– Evaluating designs for quality

• Other Design Issues
– Design patterns, refactoring, testing, architecture,

persistence,…

1/15/03 A-3

Course Overview (cont’d)

• Java development
– Core Java competency
– Translate designs into Java
– (Maybe) Explore more advance Java topic (GUI

development, database connectivity, unit-testing)

1/15/03 A-4

Technologies

• Requirements
– CRC cards, use cases, XP stories

• Modeling requirements and design
– UML: class diagrams, sequence diagrams,…
– UML tools: MS Visio (free to you!), Together

ControlCenter, others
• Implementation

– Java
• Development and Testing

– Some IDE with debugger, GUI support
– JUnit

1/15/03 A-5

Course Overview

• Balanced approach: notation vs. principles,
front-end vs. implementation

1/15/03 A-6

Outcomes: What you should learn

• Object-oriented analysis and design
– Goals, what to do, what not to do
– What to model and how to evaluation it

• UML
– Use cases, class diagrams for requirements

specification
– Class diagrams, sequence diagrams, state

diagrams, packages for design

• Design patterns
– What they are, how they’re described, a few

common patterns

A - 2

1/15/03 A-7

Outcomes (cont’d)

• Modeling and the SW lifecycle
– Clear understanding of the role of UML models

throughout lifecycle
– How requirements models are transformed to

design
– How design models transform to code

• Evaluation
– Assessing design quality
– On your own and using formal technical reviews

1/15/03 A-8

Resources

• Textbook: The Object Primer. 2nd edn. Scott W. Ambler
(Cambridge Univ Press, February 15, 2001).

• Java book:
– Got one? OK (probably)
– Just Java 2. 5th edn (Prentice Hall, 2001). By Peter van der

Linden.
– Or, Eckel’s Thinking in Java. Printed or on-line!

• Web site:
http://www.cs.virginia.edu/~horton/cs494
– Course news, slides, Java and UML links, etc.

• Student on-line survey
– Fill out ASAP, please!

1/15/03 A-9

Pre-requisites

• For programming needs: must have CS216
• This course was planned as a successor to

CS340
– CS494 is about OOP and about software

engineering
• Students in this course must:

– Know what you do in requirement specification
– Know how that differs from design
– Know how to do a formal technical review

• Review CS340 slides or Jalote’s textbook:
– Pages 73-87, 98-107, 273-294

1/15/03 A-10

Grading

• Mid-term Exam. 20%.
• Final Exam. 25%. Friday, May 9. 2-5 pm.

– Partly comprehensive

• Homework assignments, including Java
programming. 20%.

• Project work. 35%

• Question: Tell me about your Sr. Thesis
deadlines…

1/15/03 A-11

Project Work

• Create OO models and documentation for
proposed system(s)
– Requirements models, then design models
– Coding from design? Some….

• Multiple parts or in stages.
• Work done by small teams (2-3)
• You’ll evaluate others’ projects.

– Formal technical reviews (as learned in CS340)
– Evaluation checksheets and a process

1/15/03 A-12

Programming and Homework

• Problem: lots of you, less of me and grader…

• Let’s talk!

A - 3

1/15/03 A-13

Computing Needs

• Course goal: Learn a UML/OOA&D CASE tool
• Microsoft Visio

– In CS and ITC labs
– We can give you a copy!

• Rational Rose? Ugh!
– Instead, Together Control Center

http://www.togethersoft.com/
• Needs Java VM (UNIX or Windows)
• Download and talk to me about a license

1/15/03 A-14

1/15/03 A-15

Idioms, Patterns, Frameworks

• Idiom: a small language-specific pattern or technique
– A more primitive building block

• Design pattern: a description of a problem that
reoccurs and an outline of an approach to solving that
problem
– Generally domain, language independent
– Also, analysis patterns

• Framework:
– A partially completed design that can be extended to solve a

problem in a domain
• Horizontal vs. vertical

– Example: Microsoft’s MFC for Windows apps using C++

1/15/03 A-16

Examples of C++ Idioms

• Use of an Init() function in constructors
– If there are many constructors, make each one call a private

function Init()
• Init() guarantees all possible attributes are initialized
• Initialization code in one place despite multiple

constructors

• Don’t do real work in a constructor
– Define an Open() member function

• Constructors just do initialization
• Open() called immediately after construction

– Constructors can’t return errors
• They can throw exceptions

1/15/03 A-17

Design Patterns: Essential Elements

• Pattern name
– A vocabulary of patterns is beneficial

• Problem
– When to apply the pattern, what context.
– How to represent, organize components
– Conditions to be met before using

• Solution
– Design elements: relationships, responsibilities, collaborations
– A template for a solution that you implement

• Consequences
– Results and trade-offs that result from using the pattern
– Needed to evaluate design alternatives

1/15/03 A-18

Patterns Are (and Aren’t)

• Name and description of a proven solution to a
problem

• Documentation of a design decision
• They’re not:

– Reusable code, class libraries, etc. (At a higher
level)

– Do not require complex implementations
– Always the best solution to a given situation
– Simply “a good thing to do”

A - 4

1/15/03 A-19

Example 1: Singleton Pattern

• Context: Only one instance of a class is created.
Everything in the system that needs this class interacts
with that one object.

• Controlling access: Make this instance accessible to all
clients

• Solution:
– The class has a static variable called theInstance (etc)
– The constructor is made private (or protected)
– Clients call a public operation getInstance() that returns the

one instance
• This may construct the instance the very first time or be

given an initializer

1/15/03 A-20

Singleton: Java implementation

public class MySingleton {
private static theInstance =

new MySingleton();
private MySingleton() { // constructor

…
}

public static MySingleton getInstance() {
return theInstance;

}
}

1/15/03 A-21

Static Factory Methods

• Singleton patterns uses a static factory method
– Factory: something that creates an instance

• Advantages over a public constructor
– They have names. Example:

BigInteger(int, int, random) vs.
BigInteger.probablePrime()

– Might need more than one constructor with same/similar
signatures

– Can return objects of a subtype (if needed)

• Wrapper class example:
Double d1 = Double .valueOf(“3.14”);
Double d2 = new Double (“3.14”);

• More info: Bloch’s Effective Java

