
A - 1

2/6/01 D-1© 2001 T. Horton

CS 494
Object-Oriented Analysis & Design

Using PARTS to Illustrate

Requirements Concepts

2/6/01 D-2

Reminder: Requirements

• Defining what the system should do
– What the clients needs (as opposed to wants)
– Not how the solution should be designed or

implemented
• We recognize three iterative activities :

– Elicitation: capturing information from sources
– Documentation: “putting it on paper”
– Validation: confirming it meets users’ needs

• Analysis (or definition) versus Specification
– Customer-oriented requirements
– Develop-oriented requirements

2/6/01 D-3

BTW… Specification Documents

• Steven McConnell (IEEE Software, Oct. 2000) says any
of the following are called “requirements document”:
– Half-page summary of software product vision
– Two-page key features list
– 50-page list of details about end-user requirements (he

calls this a function-requirements document)
– 250-page exhaustive list of details about screens and

GUI, input and input conditions, all system states and
state changes, all persistent data, etc.

• This 4th item is what we usually mean by a Software
Requirements Specification (SRS) document

2/6/01 D-4

Examples based on PARTS

• Proposed software system:
Project Artifact Report Tracking System (PARTS)

• PARTS’ concept is very similar to commercial defect-
tracking tools

• See “Vision Statement” for product concept
• Briefly, PARTS...

– Helps a development team collect info on work-products
(e.g. requirements document, design diagrams, code
files, etc.)

– Includes status and problem reports for an artifact
– Knows about projects, team-members

2/6/01 D-5

PARTS is:

• A CASE tool for storing and tracking problem
reports
– Each report contains a problem description

and a status
– Each problem can be assigned to someone
– Problem reports are made on one of the

“artifacts” of a project
– Employees are assigned to a project
– A manager may add new artifacts and assign

problem reports to team members

2/6/01 D-6

PARTS Example: Needs vs. Wants

• Customer says: “I want a client and a server
developed in Java.”

• Real need:
– Centralized data store
– Remote access by team members

• Other possible solutions:
– Web pages and cgi-bin scripts
– Commercial database products that support

client access
– Buy a commercial product!

A - 2

2/6/01 D-7

PARTS Example: Domain, Constraints
• What’s the domain for PARTS?

Team-based Software Development
• Domain vocabulary:

– Work-product, artifact (what’s the difference?)
– Problem reports, project, team members

• Domain dictionary or Glossary: Frequently an output of
the requirements activity

• Possible examples of Constraints:
– System must use Oracle DBMS.
– System must create MS Word reports.
– System must be written in Java.

2/6/01 D-8

PARTS Example: System Boundary

• Different types of Users of the system?
– Manager: Can create projects, assign a

problem to a team-member
– “Ordinary” team-member: Can access info, but

not create projects, assign problems, etc.
• Hardware components?

– Interaction with printer subsystem of the OS
• Other system entities:

– Oracle DBMS, MS Word
– Client-server communications using sockets

2/6/01 D-9

Objects, Functions and States

• Before continuing, consider another way of thinking
about requirements…

• Alan Davis says: All requirements
– Define an object, function or state;
– Limit or control actions associated with an object,

function or state;
– Define relationships between objects, functions and

states.
• The challenges:

– Identifying these.
– Representing and documenting them effectively.
– Making use of this information later in development.

2/6/01 D-10

Objects

• Note: Davis’ discussion attempts to include
both OO and non-OO views of requirements

• What’s an Object?
– A real-world entity
– Important to the discussion of requirements
– Has a crisply-defined boundary

• Object’s have attributes, functions, states,
and relationships

• (Sometimes) Objects are groups into classes

2/6/01 D-11

Functions

• A task, service, process, activity, mathematical
function, etc. that…
– Is performed in the real world
– Is to be performed by the system to solve the real-world

problem
• Requirements about functions may

– define, limit, specify relationships, etc.
• Functions may be group hierarchically

– Abstract to specific (detailed)
– Important: This is not design!

• Organizing functions only for understanding
requirements.

2/6/01 D-12

States

• A condition of some thing...
that captures some history of that thing...
and is used by the thing to determine
behavior.

• What’s a “thing”?
– The system
– An object
– A function

A - 3

2/6/01 D-13

PARTS Example: Objects

• Objects the system must “understand”
– Project, Artifacts
– Team-member (with user-id and password?)
– Problem report

2/6/01 D-14

Class Diagram for Prob. Rep. Tool

Employee

+name : string

Manager Developer

Project

+name : string

Artifact

+name : string
+status : enum

Problem Report

History Entry

-when : Date
-whatDone : string

Code Bug Report

1

0..n

Responsible For

0..*

1

1

0..n

About

0..n

1

History Log

1..*

0..*

Assigned To

1 0..*
Managed By

2/6/01 D-15

PARTS Example: Functions

• At what level?
– (High-level) Enter a report for a given artifact.
– (Lower-level) Prompt user to confirm request to

delete a problem request

• (Note: use cases focus at high levels)
• Function classification and/or hierarchy:

– Manager operations vs. ordinary operations
– Operations related to queries and reports

2/6/01 D-16

PARTS Example: States
• System-level states:

– Operations or interface available if a manager logs into
PARTS

• Object states:
– A problem-report can be unassigned, open or closed

(i.e. resolved)

• Function states:
– Possibly an command-history list for Undo and Redo

• Perhaps some actions cannot be undone?
– Non-PARTS example:

a database transaction may be complete, in progress,
aborted, etc.

2/6/01 D-17

PARTS Use Case Model: Actors

• Manager
– A person assigned to a project with permission to do

more things than an ordinary team-member

• Super User
– Has the ability to create projects and users

• Member
– An “ordinary” member of a development team

• Non-member
– A user not assigned to a team who has been given read-

access to a project by its manager

2/6/01 D-18

PARTS Use Case Model: Use Cases

• Let’s organize these by categories:
– Project management related use cases
– Problem Report related use cases
– “Support” use cases

• In the next slides, we’ll list use case titles and
the actors who participate in them
– Even just doing this raises some good

questions about imprecise requirements!

A - 4

2/6/01 D-19

PARTS Use Cases: Management

• Create User (Actors: SU, Mgr)
• Update User Info (SU, Mgr, Member)

– Let’s say “update” includes “delete”
– Members can only update certain info about themselves

• Create Project (SU)
• Update Project (SU, Mgr)
• Add Member to Project (Mgr, SU??)

– Hmm, do the requirements say the SU can do this?

• Create Project Artifact (Mgr, SU??)
• Update Project Artifact (Mgr, SU??)

2/6/01 D-20

PARTS Use Cases: PR-related

• Create PR for Artifact (Member, SU?)
• View PR (Member, Non-Member)
• Change PR Status (Member, Mgr, SU?)
• Update PR History (Member)

– System does this too! Do we model this as part of
the use case? Not obvious how!

• Assign PR to Member (Mgr)
• Delete PR (Mgr)
• Search for PRs (Member, Non-member)

2/6/01 D-21

PARTS Use Cases: “Support”

• Display Projects
• Display Project Artifacts
• Display Artifact PRs
• Log Into PARTS

• Comments:
– All of these are “used” by other use-cases (perhaps)
– Or, are these just parts of the user-interface
– Need mechanism to look at and select a “thing”

2/6/01 D-22

PARTS Use Case Details

• On the Web site:
– More detailed examples of use cases based

on use case templates showing scenarios,
etc.

2/6/01 D-23

PARTS UML Use Case Diagram

Create Project

Manager

Create User

SuperUser

Member

Update User Info

