
A - 1

2/7/00 G-1© 2001 T. Horton

CS 494
Object-Oriented Analysis & Design

UML Class Models

2/7/00 G-2

Overview

• How class models are used? Perspectives
• Classes: attributes and operations
• Associations

– Multiplicity
• Generalization and Inheritance
• Aggregation and composition

• Later: How to find classes
– small and larger systems

2/7/00 G-3

Developing Class Models

• Class diagrams developed iteratively
– Details added over time during lifecycle
– Initially: missing names, multiplicities, other details

• Some define particular perspectives for class models:
– Conceptual
– Specification
– Implementation

• Conceptual perspective
– Represents concepts in the domain
– Drawn with no regard for implementation (language

independent)
– Used in requirements analysis

2/7/00 G-4

Class Model Perspectives (cont’d)
• Specification

– Interfaces defined: a set of operations
– But, each implementation class can include more than

one interface
– A given interface can be shared by more than one class
– Sometimes known as a “type”

• Implementation
– Direct code implementation of each class in the diagram
– A blue-print for coding

2/7/00 G-5

Documenting Your Objects

• Need some kind of record of your definitions
– Your white-board?
– A simple glossary
– A data dictionary (perhaps in a CASE tool)

• What to define?
– Attributes, operations for each class
– Also relationships between classes

• Can you define classes of related objects?
– Inheritance, Java interfaces

2/7/00 G-6

Classes in UML Diagrams

• Attributes in middle
• Operations at bottom

– Can be suppressed. (What level
of abstraction?)

• Attribute syntax:
name : type = default

• Operation syntax:
name (params) : return type

• Visibility
+ public
- private
protected etc.

nothing? Java’s default-
package?

Book

+borrow(c : Copy) : void
+copiesOnShelf() : int
+getTitle() : string

-title : string

Book

+title : string

A - 2

2/7/00 G-7

Associations

• For “real-world objects” is there an association
between classes?

• Classes A and B are associated if:
– An object of class A sends a message to an object of B
– An object of class A creates an instance of class B
– An object of class A has an attribute of type B or

collections of objects of type B
– An object of class A receives a message with an

argument that is an instance of B (maybe…)
• Will it “use” that argument?

• Does an object of class A need to know about some
object of class B?

2/7/00 G-8

More on Associations
• Associations should model the reality of the domain

and allow implementation
• Associations are between classes

– A link connects two specific objects
– Links are instances of associations
– Note we could draw an object diagram to show objects

and links
• But often interaction diagrams are more useful for

modeling objects

• Note: In practice, early in modeling, we may not name
associations

• Note: One may choose to have a dynamic view
associations: if at run-time two objects exchange
messages, their classes must be associated

2/7/00 G-9

Multiplicity

• Also known as cardinality
• Objects from two classes are linked, but how many?

– An exact number: indicated by the number
– A range: two dots between a pair of numbers
– An arbitrary number: indicated by * symbol
– (Rare) A comma-separated list of ranges

• Examples:
1 1..2 0..* 1..* * (same as 0..* but…)

• Important: If class A has association X with class B
– The number of B’s for each A is written next to class B
– Or, follow the association past the name and then read

the multiplicity

• Implementing associations depends on multiplicity
2/7/00 G-10

Examples of Associations

• From a Library catalog
example

• One book has 1 or more
copies

• One copy is linked to
exactly one book

• Should there be two
associations: borrows
and returns?

• One copy is borrowed
by either zero or one
LibraryMember

Book

Copy

LibraryMember

0..1

0..*

Borrows/Returns

1

1..*
Is A Copy Of

2/7/00 G-11

Generalization and Inheritance

• You may model “inheritance” early but not implement it
– Generalization represents a relationship at the conceptual level
– Inheritance is an implementation technique

• Generalization is just an association between classes
– But so common we put a “triangle” at the superclass

• Note this is a relationship between classes
– So no multiplicities are marked. Why not?

• Inheritance may not be appropriate when it’s time to
implement
– Objects should never change from one subclass to another
– Composition can be used instead

2/7/00 G-12

Aggregation and Composition

• Again, just a specific kind of association
between classes
– An object of class A is part of an object of

class B
– A part-whole relationship

• Put a diamond on the end of the line next to
the “whole”
– Aggregation (hollow diamond): really no

semantics about what this means!
– Composition (solid diamond): a stronger

relationship

A - 3

2/7/00 G-13

Aggregation and Composition (cont’d)

• Composition
– The whole strongly owns the parts
– Parts are copied (deleted, etc.) if the whole is

copied (deleted, etc.)
– A part cannot be part of more than one whole
– Mnemonic: the stronger relationship is

indicated by the stronger symbol (it’s solid)

• Aggregation and composition associations
are not named

• They do have multiplicities
• They can be used too often. If in doubt, use a

“plain”, named association. 2/7/00 G-14

Example 1: University Courses

• Some instructors are professors, while others
have job title adjunct

• Departments offer many courses, but a
course may be offered by >1 department

• Courses are taught by instructors, who may
teach up to three courses

• Instructors are assigned to one (or more)
departments

• One instructor also serves a department chair

2/7/00 G-15

Class Diagram for Univ. Courses

• Note this implies adjuncts can be chairs

Department

Course Professor

Instructor

Adjunct

1..*

1..*

offers

0..3

1

teaches

1..* 1..*assigned to

0..1

1

chairs

2/7/00 G-16

Example 2: Problem Report Tool

• A CASE tool for storing and tracking problem
reports
– Each report contains a problem description

and a status
– Each problem can be assigned to someone
– Problem reports are made on one of the

“artifacts” of a project
– Employees are assigned to a project
– A manager may add new artifacts and assign

problem reports to team members

2/7/00 G-17

Class Diagram for Prob. Rep. Tool

Employee

+name : string

Manager Developer

Project

+name : string

Artifact

+name : string
+status : enum

Problem Report

History Entry

-when : Date
-whatDone : string

Code Bug Report

1

0..n

Responsible For

0..*

1

1

0..n

About

0..n

1

History Log

1..*

0..*

Assigned To

1 0..*
Managed By

2/7/00 G-18

Example from Fowler

A - 4

2/7/00 G-19

Objects, Object Diagrams

• Objects drawn
like classes, but
names for all
instances
underlined

• Objects may be
“anonymous”

• Attributes are
given values

2/7/00 G-20

Class Attributes, Operations

• Recall in Java and C++ you may have class
attributes and class operations
– keyword static used
– One attribute for all members of class
– An operation not encapsulated in each object,

but “defined in” that class’ scope

• In UML class diagrams, list these in the class
box’s compartments, but underline them

2/7/00 G-21

Navigability

• Some call this “direction of visibility”
• Does each class really store a reference to

each other?
• Do we need to decide this now? (When is

“now”?)
• We can add arrows to associations to indicate

this
– What does a line with no arrows mean?

2/7/00 G-22

More on Associations: Navigability

• One reason for having an association
between classes:

Messages between objects of those classes
• But, often “knowledge” indicated by

association is only in one direction
– Example: In a computer system, a User needs

access to his/her Password
– From a Password object we should not be able

to get back to a User!

• Note: Often ignored until design!

2/7/00 G-23

More on Associations: Roles

• Review:
– Associations have an optional name
– Name might have a “direction” indicator

• But, direction or semantics often easier to
understand if we simply but a role name at
one or both ends of the line

Student Professoradvises

Student Professor
advisee

advisor

2/7/00 G-24

Dependencies
• Dependency: A using relationship between two

classes
– A change in the specification of one class may affect the

other
– But not necessarily the reverse

• Booch says: use dependencies not associations
when one class uses another class as an argument in
an operation.

• Often used for other things in UML: A general
relationship between “things” in UML
– Often use a stereotype to give more info

• Uses: binding C++ class to template; Java interfaces;
a class only instantiates objects (a factory)

A - 5

2/7/00 G-25

Stereotypes

• Extends the “vocabulary” of UML
• Creates a new kind of building block

– Derived from existing UML feature
– But specific for current problem

• Also, some pre-defined stereotypes
• UML allows you to provide a new icon!
• Syntax: Above name add <<stereotype>> inside

guillemets (French quotes)
• Again, used to provide extra info about the UML

modeling construct

2/7/00 G-26

Stereotypes (cont’d)

• UML predefines many:
– Classes: <<interface>>, <<type>>,

<<implementationClass>>, <<enumeration>>, <<thread>>
– Constraints: <<precondition>> etc.
– Dependencies: <<friend>>, <<use>>
– Comments: <<requirement>>, <<responsibility>>
– Packages: <<system>>, <<subsystem>> (maybe classes,

too)

• Or, create your own if needed.

2/7/00 G-27

Class Categories

• You can use
stereotypes
to organize
things by
category
within a
class box

2/7/00 G-28

Stereotype Example

• IStringifiable is not a class
– Interface (as in Java)
– Module implements this interface

• Printer depends on what’s in the interface

«Interface»
IStringifiable

 stringify() : string

Module

Printer

prints«use»

2/7/00 G-29

Interfaces

• Interface: specifies a set of operations that
any class implementing or realizing the
interface must provide
– More than one class may realize one interface
– One class may realize more than one interface
– No attributes, and no associations

• Notation:
– Use <<interface>> with a class; list operations
– “Lollipop” notation

2/7/00 G-30

Interface Example Diagram

A - 6

2/7/00 G-31

Classes Realize an Interface

• “Realizes” AKA implements, supports, matches, etc.
• This means that class provides all the operations in

the interface (and more?)
– Remember, no implementation in interface definition

• Realization shown with dashed line, hollow arrow
– Like dependency plus generalization

• Why have this?
– Just factor out common functionality?

• Better “pluggability”, extensibility

2/7/00 G-32

Tagged Values, Properties
• Every modeling element in UML has its set of

properties
– Classes have: name, attributes, operations, etc.
– What if we want to add our own? (e.g. author?)

• Just add text in curly-brackets, with
name=value, and put below the element name

• Note: These tell you something about the
model, not about the final system to be built!
– Often used for code generation, version

control, etc.
• Example: {abstract} classes instead of italics

2/7/00 G-33

Abstract Classes

• Implementation not provided for one or more
operations
– So, a subclass must extend this to provide

implementations
• How to show this in UML?

– Either italics for class name and operations
– Or, use {abstract} property by name

• An abstract class with no attributes and all
abstract operations is effectively an interface
– But Java provides a direct implementation

2/7/00 G-34

Constraints

• Conditions that restrict
values, relationships,…

• Can be free text or
Object Constraint
Langauge (OCL)
(see textbook)

• Recommendation: Use
sparingly!

• This example: from
UML User Guide, p. 82

Portfolio

BankAccount

{secure}

Corporation

Person

 gender : {female, male}

{or}

0..10..1 wifehusband

{self.wife.gender = female and
self.husband.gender = male}

2/7/00 G-35

Constraints and Semantics

• Example from UML User
Guide, p. 88

• A dependency and a
constraint used

• Shows Manager must be
one of Members of a
Department

• One link (say, Jane-to-
DeptA) is a subset of all
links between Persons
and DeptA

Department

Person

1..*

*

member

*

1manager

{subset}

2/7/00 G-36

Derived Associations

• Often an association in a model be deduced
from the existence of one or more other
associations

• Do we show it? Is it redundant?
• Option: Draw it but mark it as derived

– Use a slash symbol / before name

• Can use slash in front of class attributes too!

Student

Professor

/ teaches student

Course

is taking

teaches

A - 7

2/7/00 G-37

Example: Ticket Sales

2/7/00 G-38

Unused slides follow

2/7/00 G-39

Association Classes

• Recall that qualified associations really mean
that the link between two objects has an
attribute

• Often associations are “first-class” things
– They have a life-time, state, and maybe

operations
– Just like objects!

• Association classes
– Same name as the association because...
– They represent the same thing!

2/7/00 G-40

Association Class Example

Company

Person

0..*

1..*

employer

employee

Job

 description : string
 dateHired : Date
 salary : Money

2/7/00 G-41

World Cup Example

• We need a system to handle the World Cup.
Teams represent countries and are made up
of 22 players.

• Countries qualify from zones, where each
zone is either a country or a group of
countries.

• Each team plays a given number of games in
a specific city. Referees are assigned to
games. Hotel reservations are made in the city
where the teams play.

2/7/00 G-42

World Cup Problem: Class Model

Qualifying Unit

Country Zone

Team

Player

Hotel

 City

Game

Reservation

Assignment

3

Represents

*

2 *

Plays at

22

Represe
nts

1

PlaysIn

* *
*

0…1

*

5

Referee

1
4

3

2

1

*

A - 8

2/7/00 G-43

Qualified Associations

• Equivalent to programming language idea of lookup,
map, dictionary, associative array, etc.

• An object is associated with some number of other
objects in a class
– How do we identify which one we want given that

association?

• The qualifier documents attribute(s) used to identify
which object
– The “key” for “lookup”

• Formally, these are attributes of the association

2/7/00 G-44

Qualified Association Examples:

Show Ticket
1

0..1

sales

perf: Date,
seat: Number

Show Ticket
1

0..1

sales

RepairDesk ReturnedItemjobID: int
0..1

2/7/00 G-45

Identifying Classes for Requirements

• From textual descriptions or requirements or
use cases, how do we get classes?

• Various techniques, and practice!
– Key Domain Abstractions:

• Real-world entities in your problem domain
– Noun identification

• Not often useful (but easy to describe)
• Remember: external view of the system for

requirements
– Not system internals, not design components!

2/7/00 G-46

Noun Extraction

• Take some concise statement of the requirements
• Underline nouns or noun phrases that represent

things
– These are candidate classes

• Object or not?
– Inside our system scope?
– An event, states, time-periods?
– An attribute of another object?
– Synonyms?

• Again, looking for “things”

2/7/00 G-47

Identifying Good Objects

• Don’t forget from earlier:
– attributes and operations are encapsulated in objects
– objects have a life-cycle

• Also, don’t worry about user interface
– Think of user-commands as being encapsulated in the

actors

• Consider:
– Collections, things in a container
– Roles
– Organizations

2/7/00 G-48

Actors and Classes

• In some diagrams, actors represented as
class boxes
– With special stereotype above class name:

<<actor>>

• UML allows special graphical symbol (e.g. a
stick figure) to replace stereotyped classes
– See Richter, p. 53

