
A - 1

4/8/03 G-1© 2001 T. Horton

CS 494
Object-Oriented Analysis & Design

On to Design

4/8/03 G-2

Reminder: Analysis models

• Earlier we modeled requirements using...
• Class Diagrams: Known as the Conceptual Model

– Sometimes known as the logical model.
– Classes represent domain-level entities. (E.g. 

things in the user’s world.)
• Thus no classes for implementation-level things.

– Associations model domain-level relationships. 
(E.g. user-understood relationships between things 
in the user’s world.)
• Usually don’t show navigation on associations

4/8/03 G-3

Reminder: Analysis models (2)
• Use Cases and Sequence Diagrams

– Scenarios in a Use Case can be represented by 
UML sequence diagrams

– Objects in the sequence diagram could be either:
• The system and the actors, or...
• Domain-level entities modeled in the conceptual 

model (a class diagram)
– Messages between objects are:

• Again, at a high-level of abstraction
• Scenario descriptions become messages

4/8/03 G-4

Reminder: Goals for design

• Create detailed “plans” (like blueprints) for 
implementation

• Build these from requirements models so we are 
confident that all user needs will be met

• Create design models before coding so that we 
can:
– Compare different possible design solutions
– Evaluate efficiency, ease of modification, 

maintainability, etc

4/8/03 G-5

UML Notations for Design

• Several UML notations provide various views of 
a design

• Class diagrams: Possibly created at two 
different levels of abstraction for design:
– Specification level: Classes model types, and we 

focus solely on interfaces between software 
modules

– Implementation level: Think of this as a true 
“software blueprint”. We can go directly to code 
from this model.

• Two types of Interaction Diagrams:
– Sequence diagrams and Collaboration diagrams

4/8/03 G-6

UML Notations for Design (2)

• Sequence diagrams
– Objects will be variables implemented in code
– Messages are operations (e.g. C++ member 

functions) applied to objects
– Sequence diagrams thus show how a sequence of 

operations called between a set of objects 
accomplishes a larger task

– Sequence diagrams for a particular scenario help 
identify operations needed in classes

– They also allow us to verify that a design can 
support requirements (e.g. a use-case scenario)



A - 2

4/8/03 G-7

UML Notations for Design (3)

• State diagrams
– Models how a particular object responds to 

messages according to its state
– For a single object, show states and transitions

between states
– Transitions may be conditional based on a guard

condition
– May show an action an object takes on transition, 

or also activity carried out within a state
– Occasionally used to model a system’s or 

subsystem’s behavior (not just one object’s)
4/8/03 G-8

UML Notations for Design (4)

• Packages
– A simple notation that groups classes together
– Possible to use this to show contents of a 

subsystem
• Show dependencies between packages
• Show visibility of classes between packages

– Not really a rich enough notation for diagramming 
software architectures

• Component Diagrams
– Models physical modules of code (e.g. files, DLLs, 

physical databases)

4/8/03 G-9

Design Process

• There are many different approaches to design, 
but here is something typical.

• First, create a model of the high-level system 
architecture
– UML does not really provide a notation this

• Next, use the conceptual class model to build a 
design-level class model or models
– Here we’ll assume we’re just building an 

implementation-level class model

• Also, model dynamic behavior using interaction 
diagrams.

4/8/03 G-10

Design Process (cont’d)

• We’ll use sequence diagrams with objects from 
the implementation-level class model
– Sequence diagrams show how design-level 

objects will carry out actions to implement 
scenarios defined as part of use-case analysis

– Messages between objects are member-function 
calls between objects

– Important: Only member-function calls are shown, 
but other language statements (e.g. assignments) 
are executed between calls (of course).

4/8/03 G-11

Design Process (cont’d)

• Important: Development of class and sequence 
diagrams is iterative and concurrent

• When we create sequence diagrams for a new 
scenarios, we discover classes and operations 
that need to be added to the class model

• The two models grow together. Neither is a 
complete view of the system.

• Other documentation in text form is often used to 
provide details about class diagrams and 
sequence diagrams

4/8/03 G-12

Specification-Level Class Diagrams

• How does a design-level class diagram differ 
from a conceptual-level diagram?
– No longer just an external view!
– We are now modeling “how” not just “what”.

• This class diagram must document:
– Additional classes
– How you will implement associations

• Multiplicity, Navigability or Direction; 
Association classes



A - 3

4/8/03 G-13

Additional Classes in a Design

• Are additional classes needed?  Of course!
In general...

• Design-level “internal” classes
– Data manager classes. E.g. collection objects that 

were simply associations before
– Facilitator or helper classes that assist with 

complex tasks (e.g. ObservableComponent)
– Factory classes that assist in creating new objects
– Classes to implement other design patterns

• Is there any guidance or strategy for determining 
these?

4/8/03 G-14

Class Types in 
a Layered 

Architecture

• From Ambler, 
Sect. 7.1

• 5-layer model
• Classes only 

interact within 
layers, or as 
shown by 
arrows
– Direction 

matters!

• Next slide 
describes these

User Interface
Classes

System
Classes

Controller/
Process
Classes

Business/Domain
Classes

Persistence Classes

Persistent Store(s)

4/8/03 G-15

Possible Design Class Types

• UI classes
• Business/Domain classes

– Implement domain-objects from Analysis
– Data objects plus their behaviors

• Controller/Process classes
– implement business logic, collaborations between 

business objects and/or other controller

• Persistence classes
– How to store, retrieve, delete objects
– Hides underlying data stores from rest of system

• System classes
– Wrap OS-specific functionality in case that changes

4/8/03 G-16

Controller/Process Layer

• Implements business logic
– Encapsulate a business rule (Ambler, Sect. 3.6)
– These often require interactions etc. between 

objects of different classes
• Example from a student course enrollment 

system:

When can a Student enroll in a Seminar?
– Depends on schedule, pre-requisites, other 

constraints

4/8/03 G-17

More on Controllers

• Why not just put business logic into the 
Domain class?
– Business rules change. We want domain 

classes to be reusable.
– In UI class? Then must use that UI to carry out 

this process.  (Too tightly coupled.)

• How to find Controller classes?
– To start: consider one for each use-case
– If trivial or belongs in domain class, don’t.

4/8/03 G-18

Ambler’s Controller Class Example

• Example in Ambler, page 259
– Class: EnrollInSeminar (what’s interesting about that 

name?)
• Has link to a Student object
• An instance given to SeminarSelector object (UI), 

which calls seminarSelected(seminar) on it
• It tests if Student/Seminar combination is OK
• An instance given to FeeDisplay object (UI), which 

makes sure user willing to pay
• If so, it’s verifyEnrollment() is called to finalize 

enrollment



A - 4

4/8/03 G-19

Controller Classes: Good OO?

• Violates a principle of the OO approach!
– Data and behavior kept together!

• Yes, but is this always the best solution?
– DVDs and DVD players -- why not one unit?
– Cameras and film vs. disposable cameras

• Consider coupling, change, flexibility…
• Controller classes are an example of the 

Mediator design pattern
• Mediator or control classes might grow to 

become god classes
– too much control, or too centralized

4/8/03 G-20

Implementing Associations

• How associations are implemented is affected by 
multiplicity.

• Where they are implemented depends on 
navigability.
– In one class or in both?
– Until now we may not have worried about direction 

of associations. That’s fine!
– Often navigability cannot be determined until 

design phase.
– Often it changes as we do more design.
– In prototypes we often keep links bidirectional for 

flexibility.

4/8/03 G-21

Implementing Associations (2)

• Often we use class operations to hide 
implementation details of associations
– getters, setters, traversal functions, update 

functions, etc.
– Don’t forget: in C++, in-line functions are efficient
– Also, derived associations (or attributes) are 

implemented as member functions that calculate 
something that is not stored directly in the class.

4/8/03 G-22

One-Way Associations

• If an association should just be navigable in just 
one direction, use the “arrow form” of the UML 
association in your class diagram.
– In UML no arrows means two-way or bi-directional.

• For implementation, the “target” object becomes 
an attribute in the class
– In C++, it could be stored as an embedded object

or as a pointer
– In Java, objects are always references variables 

(so embedded objects really are pointers)

• Consider using association name or role name 
from the class diagram to name this attribute

4/8/03 G-23

Multiplicity and One-Way Associations

• If the multiplicity is “1” or “0..1” then the attribute 
would be a pointer to an object of the target class
– E.g. attribute in class Phone:    selectedLine: Line*

• If the multiplicity is “many” but has a fixed 
maximum, then use array of pointers (or objects)
– E.g.  “3”, “0..3”, “2..4”

• If no fixed maximum, e.g. “1..*” or “0..*”, then use 
a collection object as an attribute that stores an 
arbitrarily large number of pointers or objects

• For qualified associations use a hash-table or 
map object to associate key with target object

4/8/03 G-24

Multiplicity and One-Way Assoc. (2)

• Examples using the C++ standard library...
• A vector class is like an array with no maximum 

capacity
– Example  attribute in class Phone:

linkedLines: vector<Line*>

• Other C++ classes might be appropriate too:  set, 
list
– Arrays should only be used if you know the 

maximum

• Note:  Your team might agree not to show the “*” 
to indicate pointers. Conventions vary.



A - 5

4/8/03 G-25

Implementing Two-Way Associations

• Three options, depending on your needs
– Note: Sometimes it’s OK if traversal in one 

direction is slower than the other

• Option One: Just like one-way but in both
classes
– Advantages: Equally efficient in both directions
– But, requires more space
– Also, updating links between objects is more 

complex
• Often a good idea to use member functions to 

handle updates to links.
4/8/03 G-26

Implementing Two-Way Assoc. (2)

• Option Two:
– In one class, Class A, implement just like one-way 

(see above) to access Class B objects.
– In second class, Class B, write an operation that 

uses some kind of search of all objects of Class A 
to find the one that points back to the current B 
object.
• Why?  Saves space if access from B to A is 

very rare
• But, requires there to be some place where all 

objects of Class A are stored

4/8/03 G-27

Implementing Two-Way Assoc. (3)

• Option Three:  Implement an Association Class
– This class will have only one instance, which 

stores all the links between objects of the two 
classes

– Implemented as two dictionary or map objects
• One points to Class A objects, the other to 

Class B objects
– Search of this object is used to find links for one 

object

4/8/03 G-28

Example of Assoc. Object

Works-For

Person1

Person2

Person3

Company1

Company2

• A person works for one company. A company has 
many employees.

• If pointers are not “bi-directional”, then Works-For 
object must support efficient look-up of a Person 
object in order to find that object’s company.

• Note: This is not a UML diagram!

4/8/03 G-29

Flashback to previous slides…

• Slides on class diagrams had “unused slides” 
at the end.

• Let’s look at some of those now.

4/8/03 G-30

Association Classes

• Recall that qualified associations really mean 
that the link between two objects has an 
attribute

• Often associations are “first-class” things
– They have a life-time, state, and maybe 

operations
– Just like objects!

• Association classes
– Same name as the association because...
– They represent the same thing!



A - 6

4/8/03 G-31

Association Class Example

Company

Person

0..*

1..*

employer

employee

Job

 description : string
 dateHired : Date
 salary : Money

4/8/03 G-32

World Cup Example

• We need a system to handle the World Cup. 
Teams represent countries and are made up 
of  22 players. 

• Countries qualify from zones, where each 
zone is either a country or a group of 
countries. 

• Each team plays a given number of games in 
a specific city. Referees are assigned to 
games. Hotel reservations are made in the city 
where the teams play.

4/8/03 G-33

World Cup Problem: Class Model

Qualifying Unit

Country    Zone

Team

Player

Hotel

 City

Game

Reservation

Assignment

3

Represents

*

2 *  

Plays at

22

Represe
nts

1
PlaysIn

* *
*

0…1

*

5

Referee

1
4

3

2

1

*  

4/8/03 G-34

Return from flashback…

4/8/03 G-35

Implementing Association Classes

• Implementation depends on multiplicity
• If one-to-one, then it would be possible to...

– Put attributes and operations inside either object
– Or, put them in a separate class that’s linked to 

either object

• If one-to-many, then same choices as one-to-one, 
but do this for the object on the “many” end
– Again, could be a separate object (see next case)

• If many-to-many, you need a separate class with 
an object instantiated for each link

4/8/03 G-36

Example of Association Class 
Implementation

• Conceptual-Level Class Diagram

• Corresponding Design-Level Class Diagram

ClassA ClassB

AssocClass

0..1 1..*

ClassA ClassBAssocClass

1 1..* 0..1 1



A - 7

4/8/03 G-37

Notes on Example Implementation

• No direct link (pointer) in design or 
implementation between ClassA and ClassB 
instances!  But...

• Each instance of an AssocClass object is linked 
to exactly one ClassA object and also to one 
ClassB object
– This forms a 3-tuple for each conceptual-level link 

between a pair of ClassA and ClassB objects

• Note multiplicities reflect concept level:
– One ClassA object is linked to 1-to-many AssocClass/ClassB 

pairs. Great!
– One ClassB object links to 0-or-one AssocClass/ClassA 

pairs. Yes!


