
A - 1

3/1/01 H-1© 2001 T. Horton

CS 494
Object-Oriented Analysis & Design

Evaluating Class Diagrams

• Topics include:
• Cohesion, Coupling
• Law of Demeter (handout)
• Generalization and specialization
• Generalization vs. aggregation
• Other aggregation issues 3/1/01 H-2

Cohesion

• How diverse are the things inside an “entity”
– A what? Module, function,… In OO a class.

• What’s this mean?
– Class should represent a single abstraction
– Or, it should address a single general

responsibility

3/1/01 H-3

Problems Created by Bad Cohesion

• Hard to understand the class
• If two abstractions grouped into one class,

that implies a one-to-one relationship
– What if this changes?

• Often we specialize a class along a dimension
– This new thing is like the existing one except

we extend it in one area (dimension)
– Problems arise when each of the several

abstractions need such specialization

3/1/01 H-4

The “Multiplicity” Problem

• Consider an Account class that holds:
– Customer name, address, tax ID, Account

status, etc.
• What if one customer needs two accounts?

– Two Account objects, but each stores name
and address

• What if one account has two owners?
– You can’t do this, unless you create a

collection in each Account to hold owner info

3/1/01 H-5

Specializing along Dimensions

• Let’s say we need variations on class Account
– First, based on account type: Cash Account, Credit

Account
– Second, based on customer type: Individual Account,

Institutional Account
• These are two dimensions, but are they mutually

exclusive?
– We often compose along two dimensions
– E.g. Individual Cash Account, Individual Credit Account,

etc.
• Specialization often implemented as inheritance:

Do we want multiple inheritance?

3/1/01 H-6

Inheritance Diamonds

Account

Cash Account Credit Account Individual Account Instiutional Account

Individual Cash Account Individual Credit Account
Two more classes here

• Structures like this cause messy problems!

A - 2

3/1/01 H-7

Separating Abstractions

Account

Cash Account Credit Account Individual Customer Instiutional Customer

Customer

*

owner

1..*

• Composition across dimensions achieved by
aggregation

• You can see how this improves earlier problem
too

3/1/01 H-8

How to Achieve Better Cohesion

• Some of this is just good OO experience
• We can learn from database normalization

– Eliminate redundancy
– Attributes should have a single value and should not have

structure (repeating groups of things)
– Attributes always describe an instance of its containing

class
• That’s what attributes are all about! State values that

define a particular instance

• Note: there are always tradeoffs! Sometimes we
combine abstractions into one class for efficiency.

3/1/01 H-9

Coupling

• How dependent an object/class is on the
world around it
– How many connections
– Nature of the connections
– Will changes cause a “ripple effect”?

• Our goals:
– Reduce coupling if possible
– Improve nature of necessary coupling

3/1/01 H-10

Forms of Coupling (from Richter)

• Identity Coupling
– An object contains a reference or pointer to

another object
– Eliminate associations or make them one-way

• Representational Coupling
– An object refers to another through that

object’s interface
• How it does this affects the degree of

coupling

3/1/01 H-11

Forms of Coupling (cont’d)

• Subclass Coupling
– Object refers to another object using a subclass

reference for that object
• Not the more general superclass

– A client should refer to the most general type possible
• Why? Subclasses may be added later, possibly by

someone else
– Try to write code that minimizes dependencies on

subclass details
• Instead rely on the common interface defined in the

superclass
• Factory patterns for creation

3/1/01 H-12

Interfaces

• Java’s interfaces; C++ classes with pure
virtual functions and no data members

• Interfaces define a role not a class-abstraction
– Many classes can pay that role

• We can define a function parameter or pointer
in terms of the role (interface) instead of the
class type

A - 3

3/1/01 H-13

Forms of Coupling (cont’d)

• Inheritance coupling
– A subclass is coupled to its superclass at compile-time

• In general, prefer late to early
– Seems like the only way to do things, but ask:

While the program executes, does an object need to
change its subclass?

– Aggregation is supported at run-time
– Examples:

• PARTS: subclasses for Manager and Employee?

3/1/01 H-14

Generalization/Specialization: When?

• Why might you choose to introduce a super-class?
– A true “Is-A” relationship in the domain model
– Two or more classes share a common implementation

• Rule: “Write once!”
– Two or more classes share a common interface

• Can use super-class as parameter type
• But interfaces solve this problem too

• A subclass specializes its super-class by one of:
– Adding state info in terms of an attribute
– Adding state info in terms of an association
– Adding behavior in terms of a new method
– Replacing behavior by overriding a method

3/1/01 H-15

Generalization/Specialization: When Not?

• Avoid distinctions based on state of an instance
• Why? Objects change state!
• Solutions:

– Replace with aggregation. How?
– Factor out state-specific “extensions” to attributes and

operations into a second object
– Attach that object as needed

• Example: the State design pattern from the Gang of
Four book

3/1/01 H-16

The State Design Pattern

• A connection can be in various states
– Handles requests differently depending on state

• Connection delegates requests to its state object
– Which changes dynamically

3/1/01 H-17

Generalization/Specialization: When Not? (2)

• Concrete super-classes are often a bad idea
– Consider example of Manager as a sub-type of

Employee
– Implies Managers inherit every property of

Employee
• Nothing can be unique to non-Managers!

• Reminder: Specialization along multiple
dimensions is often better done with
aggregation
– See earlier example of Account and Customer

3/1/01 H-18

Generalization/Specialization: When Not? (3)

• Where to place properties that are common to some
but not all subclasses?
– This can get ugly! (Example in Richter’s textbook, Sect

4.3.2)
– Intermediate subclasses? Mix-in classes? Helper

classes?

• Do not (repeat, do not) use multiple inheritance when
it’s really aggregation
– Ask the “Is-A” question.
– Liskov substitutability principle:

• An instance of a child class can mimic the behavior of
the parent class and should be indistinguishable from
an instance of the parent class if substituted in a
similar situation.

A - 4

3/1/01 H-19

Coad’s Five Criteria for When to Inherit

• Peter Coad in book Java Design
• Encapsulation is weak within a class

hierarchy
• Only use inheritance when:

– “Is a special kind of”, not “Is a role played by”.
– Never need to transmute an object to be in

some other class
– Extends rather than overrides or nullifies
– Does not subclass what is merely a utility class
– For problem domain (PD) objects, it is a special

kind of role, transaction, or thing

3/1/01 H-20

Example: Java’s Observer/Observable

• Coad argues Java’s implementation of this
design pattern is poor.

• Observer interface:
public interface Observer {

void update (Observable observed,
Object argument); }

• Observable superclass. Has operations:
addObserver(), deleteObserver(),
deleteObservers(), notifyObservers()

3/1/01 H-21

Class Diagram: Observable/Observer

• Top two classifiers from java.util

3/1/01 H-22

Java’s Observable Superclass

• Does it meet Coad’s criteria? No!
– We’re subclassing a utility class

• A better implementation:
– Make Observable an interface (not a

superclass)
– Factor out the “observable-related” stuff into

an ObservableComponent object
• This is a reusable utility class
• Implements storing and notifying observers

3/1/01 H-23

Observable Interface,
ObservableComponent Class

3/1/01 H-24

Coad’s Observer Interface

• Java’s Observer interface won’t work with this model:
public interface Observer {

void update (Observable theObserved,
Object argument); }

• First parameter is an Observable
– We need it to be anything that implements our

IObservable interface

• Coad’s solution: Replace with a new Observer
interface that looks like this:

public interface IObserver {
void update (Object theObserved,

Object argument); }
Or, should it be IObservable theObserved ???

