
Preliminary version. Final version in Proceedings of Supercomputing 2006, Tampa, FL, Nov 2006.

1

Abstract— Grid portals are an increasingly popular
mechanism for creating customizable, Web-based
interfaces to Grid services and resources. Due to the
powerful, general-purpose nature of Grid technology, the
security of any portal or entry point to such resources
cannot be taken lightly, particularly if the portal is
running inside of the trusted perimeter, such as a Science
Gateway running on an SDSC machine for access to the
TeraGrid. To assess potential vulnerabilities of the current
state of Grid portal security, we undertake a comparative
analysis of the three most popular Grid portal frameworks
that are being pursued as frontends to the TeraGrid:
GridSphere, OGCE and Clarens. We explore general
challenges that Grid portals face in the areas of
authentication (including user identification),
authorization, auditing (logging) and session management
then contrast how the different Grid portal
implementations address these challenges. We find that
although most Grid portals address these security concerns
to a certain extent, there is still room for improvement,
particularly in the areas of secure default configurations
and comprehensive logging and auditing support. We
conclude with specific recommendations for designing,
implementing and configuring secure Grid portals.

I. INTRODUCTION

According to the American Heritage Dictionary, a portal
is “a doorway, entrance, or gate, especially one that is
large and imposing”. The intent behind such structures
is really one of security, to allow the welcome visitors
through, while keeping unwelcome intruders out. From a
technological perspective, a portal is something that
provides a convenient entry point to resources,
applications or content located elsewhere. Early Web
portals were typically web sites with search engines or
indexes to other content on the World Wide Web [27].
Since all of the content accessible through these web
portals was publicly available anyway, everyone was
welcomed in and security was barely a concern.

In Grid computing, the resources of interest are not
websites, but data and computational resources, services
and applications. Thus the goal of a Grid portal is to
provide a convenient entry point to these Grid resources,
typically via a Web-based front-end. While many Grid
portals expose relatively general purpose functionality
like launching jobs for remote execution or retrieving
remotely-stored data, they can also include application

specific interfaces customized for a particular domain.
Security gains prominence in Grid portals largely
because of the nature of the Grid resources they expose.
Many Grids link together powerful clusters of
computational power and large scale data stores
containing confidential, classified or proprietary
information. A compromised Grid portal could allow an
attacker to harness these powerful computational
resources to launch a large scale attack elsewhere on the
Internet or to gain user access to probe for privilege
escalation or root compromise, for example.

Although Grid portals and Grid portal toolkits have
existed since the early days of Grid computing, to date,
to our knowledge no comprehensive analysis exists
regarding the security and/or potential vulnerabilities of
Grid portals. The analysis reported in this paper is based
on our experience designing and implementing secure
Grid software (Legion, WSRF.NET) as well as our
experience securing a large supercomputing center
(SDSC). We are particularly driven by the use-case of
the TeraGrid Science Gateways. Before a TeraGrid site
will run such a Grid portal inside their trusted perimeter,
and particularly given recent increased Federal
requirements regarding national computing
infrastructure (e.g., FISMA [8]), it is crucial that Grid
portal technology be assessed with regard to security,
and best practices for running Grid portals be
established.

In order to assess the current state of security with
respect to Grid portal technology, we analyze the three
popular portal implementations. Clarens [20] is a
framework for writing Grid applications motivated by
the Compact Muon Solenoid (CMS) experiment and
processing application. Originally developed for
Apache/mod-python, there is also a Java implementation
[2] now available. GridSphere [17] is a generic Java-
based framework for writing web and Grid portals
through the standardized Java portlet API [1]. Also
included are a set of Grid portlets for proxy credential
retrieval, file management and job submission. The
Open Grid Computing Environment (OGCE) [3] is a set
of Java portlets and libraries for various Grid computing
tasks that can run in either the GridSphere or uPortal
[24] containers.

Evaluating Grid Portal Security
David Del Vecchio*, Victor Hazlewood** and Marty Humphrey*

*Department of Computer Science, University of Virginia, Charlottesville, VA 22904-4740
**San Diego Supercomputing Center, 9500 Gilman Dr, La Jolla, CA 92093-0505

Preliminary version. Final version in Proceedings of Supercomputing 2006, Tampa, FL, Nov 2006.

2

After reviewing some basic security requirements
and potential vulnerabilities of portal technology
(Section 2), we analyze these three Grid portal
implementations. First, we present the overall design
and architecture of the portals (Section 3) then examine
how they address Grid security needs, specifically in
terms of authentication, authorization and auditing
(Section 4). We find that although most Grid portals
address these security concerns to a certain extent, there
is still room for improvement, particularly in the areas of
secure default configurations and comprehensive
logging and auditing support. We conclude with
recommendations for securely deploying, configuring,
running and maintaining Grid portals (Section 5).

II. SECURITY REQUIREMENTS AND VULNERABILITIES

Most Grid portals are just Web applications [26] that
provide a front-end interface to accessing various grid
resources. Although the architecture of Web
applications vary, many applications leverage similar
sets of software components. The Web Server
(examples: Apache, IIS) processes incoming web
requests, often routing them to other pieces of software.
This is the outer layer of software for most Web
applications, serving up static content when requested or
delivering content dynamically generated by an
individual application. The Web Application
Container (examples: ASP/ASP.NET and J2EE/servlet
containers like Tomcat, JBoss, Weblogic, Websphere) is
a layer of software/libraries to facilitate writing,
deploying and running Web applications. This typically
abstracts away details like communicating with the Web
server and process lifetime management so Web
application authors can focus on exposing useful
functionality through dynamically-generated content.
Other technologies like CGI and PHP (which runs as a
module in the web server) provide some similar
capabilities, but don’t as strongly present this notion of
container. The Web Applications themselves (e.g.,
Grid portals) usually runs in a Web Application
Container and often communicate to some backend Data
Layer when generating content. Finally, the Data Layer
is usually a back-end database, but could also be a file
system or other storage mechanism.

A. Web Application Security Requirements

In the field of information security, three core principles
are confidentiality, integrity and availability. Many
experts also add accountability to the list as a fourth
component [10]. A variety of mechanisms can be
employed to achieve these three (or four) elements of
information security, but many systems (at minimum)

rely on a combination of mechanisms from the following
broad categories.

Authentication is “the process of verifying an identity
claimed by or for a system entity.” [19] Authentication
requirements can be divided into Grid portal account
creation and subsequent run-time authentication, as
when the authorized user attempts to use the portal for
job submission or data access. Some Grid portals are
architected to multiplex all users onto a single Grid
account/ID (e.g., "CMS"), while other portals are
predicated on the portal user already having a Grid
account (and the goal of the Grid portal in this case is to
perform Grid computations on a per-user basis as that
particular user). In both cases, most web portals and
applications will require user identification at portal
registration time and authentication of user identities to
(1) limit system access (authorization) based on this
identity and to (2) tie a record of system actions to this
identity (for auditing).

When only a single account/ID exists for the entire
portal, the Grid portal requirements for user registration
and identification are stringent. Section IA-4 from the
FISMA regulation [8] is representative of such
guidelines, stating that an organization (in this case the
people who have control over the Grid portal) should
manage user identifiers by (i) uniquely identifying each
user; (ii) verifying the identity of each user; (iii)
receiving authorization to issue a user identifier from an
appropriate organizational official.; (iv) ensuring that
the user identifier is issues to the intended party; (v)
disabling the user identifier after [organizational defined
time period] of inactivity; and (iv) archiving user
identifiers.

When jobs and/or data access via the Grid portal take
place based on a per-user pre-existing account, account
creation is not as critical, because presumably an
attacker could not launch jobs just by having a Grid
portal account. Nevertheless, the guidelines of FISMA
should be followed, albeit with potentially less dire
consequences if such procedures are not properly
implemented.

After the account has been created on the Grid
portal, there are a number of alternatives for
authenticating to the Grid portal to access the Grid for
either job execution or data access. The HTTP protocol
includes Basic and Digest authentication, which is built
into most web browsers and web servers. Since these are
basically plaintext protocols, Basic and Digest
authentication should generally be avoided especially
for password-based security mechanisms.

Another very popular approach is forms-based
authentication in which the security token (often a

Preliminary version. Final version in Proceedings of Supercomputing 2006, Tampa, FL, Nov 2006.

3

password) is entered in a web form for input to the web
application. Forms-based authentication gives a great
deal of flexibility and control to the web application
designer, but because of the plaintext nature of HTTP,
care must be taken to protect the submission of the
security token (usually SSL). Because of the relatively
unconstrained nature of form input data, careful input
checking must be done to avoid security vulnerabilities.
A common problem with password-based authentication
is that user-chosen passwords are often relatively weak
and easy to crack.

In contrast, certificate-based authentication, most
often via SSL is often considered a stronger way to
establish the client’s identity. Other strong forms of
authentication including smart cards and biometrics
exist as well, but SSL has the advantage of being built
into most web servers and browsers. Among the
challenges with PKI-based X.509 certificates is that the
user’s certificate must usually be physically located on a
particular machine and establishing proper trust
hierarchies through various different certificate
authorities (CAs) can difficult to setup and get right.

In most cases the web application with be interested
in authenticating its users, but it can also be important
for users to verify the identity of the web application.
The most common way to do this is via the certificate
based server authentication of SSL/HTTPS. Many
attackers exploit users’ confusion about the web
application’s identity to trick them into revealing
sensitive information.

Authorization is the process by which a “right or a
permission is granted to a system entity to access a
system resource.” [19] The goals of authorization or
access control are to restrict system access to those users
or entities which actually need it. In addition to
preventing unwelcome, unwanted system usage, access
control is also used to limit the possible actions that are
allowed by a properly authenticated user. Typically, this
means following the principle of least privilege: a user
should only be granted the lowest authorization level
needed to carry out the desired action. Giving all users
administrative-level access may be an easy way to
ensure that valid user requests aren’t rejected, but it’s
hardly a secure configuration.

Authorization is most commonly managed through
access control lists (user-centric) or capabilities
(resource-centric). Simple lists can be fine when the set
of users and resources is small, but gets to be difficult to
manage as these sets grow. One way to combat this
complexity is role-based access control, in which users
are assigned roles and these roles are used as the unit of
authorization. Another variation is to assign attributes to

the users and then restrict access to resources based on
the attributes presented. Access to a resource is usually
not all-or-nothing, and authorization incorporates what
action or operation is intended as well.

Important considerations for web application
authorization involve out-of-the box (default) security
and ease of proper configuration. The default
configuration for a newly-installed web application
should be very restrictive, but often this is not the case.
Many default configurations allow access to everyone,
or include default guest or administrator accounts with
well known passwords. Properly configuring access
control mechanisms can also be challenging for web
applications. A highly sophisticated, securely
programmed authorization mechanism is worthless if it
is not configured correctly so care must be taken to
enable administrators to easily allow access only to
those that need it.

Auditing is the process of verifying that security
requirements have been satisfied, with corrections
suggested where they haven’t been met. Essential to
effective auditing is that actions are traced and logged
through all parts of the system. With web applications,
this means that logging of significant operations must
happen in the web server, web application and data
layer, in addition to the web application itself. Events of
interest include: errors, failures, state accesses,
authentication, access control and other security checks,
in addition to application-specific operations and
actions. Care must be taken to protect the integrity of
logging and trace data, even (and perhaps especially) in
the case of system failures. Logs that are tampered with
or destroyed are useless in performing an effective audit.

Auditing of log and trace data can either be done
manually or it can be automated and often a combination
of both is used. Either way, auditing should be done on a
regular basis. Automated systems that continually
monitor, detect, and in some cases even correct (or at
least recommend corrections for) security problems can
be particularly useful for maintaining a secure web
application. Somewhat related to logging and auditing,
Web applications should be careful to ensure that errors
or failures somewhere in the system do not introduce
security vulnerabilities. Attackers, for instance, are often
able to exploit the detailed error information provided
by web applications to gain unauthorized access.

Session Management. Web-based applications, in
contrast to desktop-based application clients, have a
challenge with regard to where client-related state
information is stored. A desktop application would store
state locally on the client machine, but because of the

Preliminary version. Final version in Proceedings of Supercomputing 2006, Tampa, FL, Nov 2006.

4

relatively stateless nature of the web browser, client
state in web applications tends to be stored remotely on
the server. The challenge then becomes securely
managing and associating session state with an
authenticated client identity. Unlike the other areas
mentioned above, session state management is not
strictly a security concern. However, the potential for
security vulnerabilities in this area as well as its unique
relevance to web applications merit its discussion here.

Many web application containers include built-in
session management capabilities, and in most cases it is
desirable to leverage this functionality where possible.
When session state management must be built by the
web application, care must be taken to ensure that
session state can not be tampered with and is securely
(i.e., cryptographically) and consistently mapped to an
authentication token. From the client perspective,
session identifiers are often included in cookies that are
automatically saved and presented by the web browser.
Such information could also be presented elsewhere in
user input data. Care must be taken to protect the
integrity and confidentiality of these session identifiers
as attackers can use this information to gain
unauthorized access to the system (see the attack
scenario below). As much as possible web application
interfaces should be constructed such that users can
keep their session state secure (often this means
including sensible logout procedures, among other
things).

B. Grid Portal Security Requirements

Generally, the security needs of web applications
discussed above apply wholesale to Grid portals as well.
To their advantage, Grid resources tend to have their
own security (authentication and authorization in
particular) mechanisms in place, so breaking into a Grid
portal, while concerning, may not necessarily allow the
attacker access to backend Grid resources. For instance,
simply being able to submit jobs through a portal is not
useful without proper Grid credentials to authenticate to
the actual job execution service. Consequently, the key
security challenge of most Grid portals is that at some
level, they manage Grid credentials on behalf of clients.
Compromised Grid credentials are an extremely serious
security breach because they allow an attacker to
effectively impersonate a valid Grid user until the
credentials are revoked or expire.

Thus, extra care must be taken in the management of
these Grid credentials, which can effectively be viewed
as a special kind of session state. The integrity and
confidentiality of these credentials must be maintained
even in the case of errors or failures. Accesses to the
credentials should be logged and monitored

continuously for suspicious behavior. Further the
credentials, especially if stored on disk must be
protected from other users or applications running on
the web application server. A compromise elsewhere in
the server’s software stack should not lead to
compromise of user’s Grid credentials.

C. Vulnerabilities of Web Applications

A great challenge in developing secure web applications
is that the vulnerabilities in any component of the
architecture can often result in compromise of the web
application as a whole. For instance, even though the
code of a particular web application might be carefully
written and free of security holes, vulnerabilities in the
web server could still be exploited, causing the secure
web application to be hijacked or overridden with a
malicious version. Another challenge of the architectural
complexity of many web applications is that it is often
difficult to configure all of the components correctly and
securely. So, even if the components as developed are
free of security vulnerabilities, misconfiguration can
unwittingly open the web application to compromise.

The Open Web Application Security Project
(OWASP) compiled a list of ten of the most common
security vulnerabilities afflicting Web applications [22]
(and thus Grid portals, which are just a specific type of
web application):
• Unvalidated Parameters – input contained in web

requests is not properly checked (by the application)
before being acted on. Attackers can craft
parameters to hijack the application or cause it to
behave in dangerous, unexpected ways. Injection
Flaws, Buffer Overflows, and XSS Flaws are all
specific types of Unvalidated Parameter
vulnerabilities.

• Broken Access Control – access control
mechanisms work inconsistently or incorrectly,
allowing unintended access to resources. This is
particularly troublesome for web application
administrative interfaces.

• Broken Authentication and Session Management
– authentication problems can range from weak
authentication mechanisms that are easily broken
(plain text secrets to retrieve forgotten passwords),
to insufficient session protection (exploiting access
to one set of session information to gain access to
someone else’s) to forged sessions or session
cookies (allowing session impersonation).

• Cross-Site Scripting (XSS) Flaws – involves
exploiting an unvalidated parameter vulnerability to
send a script to the web application that is in turn
delivered to and executed by the end user’s web
browser.

Preliminary version. Final version in Proceedings of Supercomputing 2006, Tampa, FL, Nov 2006.

5

• Buffer Overflows – specially crafted input results
in the execution of arbitrary code on the target
server. This is particularly problematic if the server
is running as root or an administrator account as the
malicious code will also have those privileges. In
general, Java applications do not suffer from this
type of vulnerability (although the JVM itself
could).

• Injection Flaws – in contrast to the other
unvalidated parameter attacks, this refers to when
injected code or command strings are passed
through the web application directly to some
backend system. SQL injection attacks are probably
the most common.

• Improper Error Handling – this type of
vulnerability surfaces when error messages
displayed to the user in some way reveal details
about how the system or application works (the
attacker could then exploit this knowledge). This is
typically a problem when very detailed stack traces
are displayed to the user giving some information of
the structure of the code and its operation. Attackers
can also probe for inconsistencies in error messages
returned (“file not found” vs. “access denied”) to
gain a better understanding of the application.

• Insecure Storage – storage of sensitive data
(passwords, account information, etc.) without
proper encryption or access control mechanisms.
This could be on disk, in a database, or in memory.
Usually one of the other exploits is needed to
actually gain access to this insecure data.

• Denial of Service – when the sheer volume of
requests to the web application overwhelms the
capacity, denying access to legitimate users. This is
usually an even more troublesome problem as web
server DoS attacks (like SYN flooding), because it’s
very hard for web applications to distinguish
between legitimate and malicious requests. The
complexity of web applications usually means a
fairly low threshold of concurrent connections needs
to be exceeded to deny access.

• Insecure Configuration Management – problems
here range from unpatched software to unchanged
insecure default settings to outright configuration
mistakes caused by incomplete or incorrect
understanding of some very complex software.
Clearly this is a human problem as much as a
software problem, but delivering software that’s
easy to understand, easy to configure and comes in a
secure configuration out of the box would certainly
help.

III. ARCHITECTURE OF GRID PORTALS: GRIDSPHERE,
OGCE, AND CLARENS

To get a better appreciation for the specific security
requirements and features of the three Grid portals in
our comparison, we first detail their design and
architecture. Both GridSphere and OGCE rely on the
Java portlet specification, JSR-168 and as such their
architectures are similar because of the constraints of
this specification. The OGCE portlets, being standards-
compliant, can theoretically run in a number of different
portlet containers, including GridSphere. To broaden
our discussion, we will assume that OGCE is running
over the uPortal portlet container instead. When it
comes to specifics, we distinguish whether a design or
feature is a function of the portlet container or elsewhere
in the software. Clarens also has two implementation
choices: Apache/mod_python and Java (JClarens). For
the purposes of our discussion here, only the Python
implementation is considered, although bear in mind
that the server-side APIs are similar between the two
implementations and the web client support is targetable
to either service implementation.

A. GridSphere

GridSphere consists of a JSR-168 [1] compliant portlet
container along with a collection of general-purpose
utility and Grid-specific portlets. As defined by the
specification, a portlet is a Java web component that
generates dynamic content in response to processed
requests. Portlets are managed by a portlet container,
which in addition to providing a runtime environment to
the portlets, manages their lifecycles and provides them
with a persistent storage mechanism. The portlet
container specification effectively extends the Java
Servlet specification [7] and portlet containers are
expected to support the functionality described by this
latter specification as well. GridSphere relies on the
Apache Tomcat [5] servlet container to host the
GridSphere portlet container (see Figure 1).

Figure 1: Architecture of a Java Portlet-based Portal

Client
Web

Browser

GET/POST

HTTP/HTTP

Portal Server/Servlet Container (Tomcat)

HTML

Web

Portlet Container
(GridSphere/Pluto)

Portlet 1

Portlet 2

Portlet 3

Portlet 4
Markup

Fragment

Portlet
Content

Portal Web
Content

Preliminary version. Final version in Proceedings of Supercomputing 2006, Tampa, FL, Nov 2006.

6

A portlet is typically displayed as a small window
inside of a web page (complete with minimize-maximize
and close buttons). Thus a user interface in portlet
containers (including GridSphere) is constructed from
one or more of these portlet windows, often grouped
into tabs (see Figure 2). The portlet lifecycle is managed
by the portlet container, which drops into user-
developed code at well-defined times:

• when the portlet is loaded – init()
• when the portlet's interface is rendered –

render()
• when the portlet's user interface is manipulated,

i.e. an action or event
• when the portlet is unloaded – destroy()

GridSphere also includes a manager portlet to allow for
dynamic loading/re-loading of portlet classes. Portlets
much like servlets are packaged in to a Web ARchive
(WAR file, similar to a JAR file) and are configured via
an included deployment descriptor file. GridSphere
includes a custom user-interface tag library for Java
Server Pages (JSP) to hide browser-specific HTML and
enable a consistent look and feel across portlets (JSPs
are the standard way to construct portlet user interfaces).
GridSphere relies on Hibernate [9], an object-relational
persistence service, to hide the underlying details of the
specific database used and allow developers to access
persistent data through Java objects instead. Hibernate
works with most databases that have a JDBC driver
including MySQL, DB2, MySQL and others.

Figure 2: User interface of a portlet-based web
portal. Figure adapted from the Java Portlet
Specification [1].

In addition to the portlet container, the GridSphere
distribution includes a collection of basic
user/administrative portlets and some Grid-specific
portlets. Portlets are provided for users to login/logout,
manage profile information, adjust portlet

layout/placement and modify the set of portlets they are
currently subscribed to. Administrative portlets are
provided for managing the set of users and groups the
portal recognizes and for starting, stopping or
redeploying portlets as needed. Grid-specific
functionality in GridSphere is structured as re-usable
"services" that can be shared across several portlets.
These services include well-defined APIs for portlet
developers and make use of the Java CoG [25] to
actually carry out Grid-related operations. The included
services are:

• CredentialManagerService, for accessing (listing,
adding to, removing from) the set of credentials
currently available for a given portal user

• CredentialRetrievalService, for retrieving a
credential from a credential repository such as
MyProxy

• FileBrowserService, for accessing remote file
resources (filesystems) and performing basic file
operations (list, change directory, etc.)

• LogicalFileBrowserService, similar to the
FileBrowser, but for logical rather than physical
file resources

• JobSubmissionService, for creating job
specifications and submitting them to job
resources

• ResourceRegistryService, for discovering, listing,
adding or removing any of a number of Grid-
related resources of interest

Developers are certainly free to make use of these
services when writing their own application specific
portlets, although GridSphere does distribute a
collection of their own Grid Portlets for: credential
management, resource browsing, job submission and file
management.

B. OGCE

The Open Grid Computing Environments Collaboratory
(OGCE) has developed its own set of JSR-168
compliant portlets for Grid portals. We will consider the
combination of these portlets deployed in the uPortal
portlet container. Unsurprisingly, the architecture of this
combination is quite similar to that of GridSphere/Grid
portlets with much of the design dictated by the Java
Portlet Specification (Figures 1 and 2 are applicable).
The goal of uPortal is to be a framework for building
portals to serve the members of a university community.
As much uPortal development occurred before the
portlet specification was finished. uPortal initially
developed its own portlet-like concept called a channel.
Recent work has transitioned uPortal to more complete
compatibility with the portlet specification, with portlets
as the natively supported unit of portal content. uPortal

Portal Web Page

Portlet 1

Portlet 1
Content

Portlet 2

Portlet 2
Content

Portlet 3

Portlet 3
Content

Portlet 4

Portlet 4
Content

Title Controls

Portlet
Window

Portlet
Markup

Fragment

Preliminary version. Final version in Proceedings of Supercomputing 2006, Tampa, FL, Nov 2006.

7

relies on Apache Pluto [4] the reference portlet
container implementation for this support. uPortal, like
GridSphere uses Tomcat, another Apache project, as its
hosting servlet container.

Regarding user interface and presentation, a pair of
XSLT stylesheets is used to transform a user layout
XML document into the desired page structure and
theme. For persistence, uPortal relies on the Spring
JDBC [13] library which is similar to vanilla JDBC, but
with some enhancements making connections easier to
manage and query results easier to translate into
business-level objects (short of full object-relational
mapping). Internally, the uPortal framework makes use
of several classes that manage various aspects of the
portal's operation including: SessionManager handling
http/servlet sessions, UserLayoutManager handling
portlet layout and preferences, ChannelManager for
managing portlet instances, ChannelRenderer for
handling portlet rendering/refresh and a
PropertiesManager for aggregating portal configuration
and making it available to other classes.

Although uPortal does include some sample
portlets/channels, the most important security
implications are from the Grid-related functionality
exposed by the OGCE portlets. Four core portlets are
currently included with OGCE, most of which make use
of the Java CoG under the hood to abstract the
underlying Grid protocols.
• Proxy Manager Portlet, for retrieving credentials

from MyProxy servers
• File Manager Portlet, using GridFTP to browse the

contents of remote file system and upload/download
files to/from the desktop (or 3rd party transfer
between machines)

• Job Submission Portlet, using GRAM to submit jobs
for execution remotely

• Information Services Portlet, using GPIR [18] to
display the current features and status of various
storage and compute resources within or across
organizations

C. Clarens

Clarens differs from GridSphere and OGCE in that its
goal is to enable development of both client and server-
side in a generic way. Services in Clarens are usually
XML-RPC or SOAP-speaking Web services, and clients
can be any Web service clients. Clarens clients are not
constrained to the Web browser, although it is a
supported interface option and perhaps the one of most
interest here. The Clarens server is implemented in
Python and server code gets triggered in response to
Web requests to an Apache web server through the
mod_python module [16] (see Figure 3). Clarens will

look at the HTTP headers, URL and content of the
request to determine how to process it: GET requests
return the requested file (if it exists), while POST
requests result in XML-RPC or SOAP responses as
appropriate. Clarens handles the serialization/de-
serialization of these messages, freeing service
developers to concentrate on developing service logic in
Python. Core functionality in the Clarens server includes
the following:

• Security (authentication and authorization)
• Service Discovery
• Session Management (persistent data storage)
• Logging
• Plug-in Management

For storing session data, Clarens uses a database called
TDB [21], which has built-in support for multiple
simultaneous writers and internal locking. New services
in Clarens can be deployed simply by placing the Python
files in the proper directories and setting up a
configuration-file with service-specific parameters in the
configuration directory.

There are a number of Grid-related service
implementations distributed with the Clarens server,
including:

• Proxy escrow service, for managing Grid
credentials

• File management service, for listing directory
contents, file read and write

• Shell service, for executing arbitrary commands
via a remote shell-like access

• Registry and discovery service, for tracking
resources and availability

There also exist some management services for grouping
services into an organizational hierarchy and managing
access control for various aspects of the server and its
services.

Figure 3: Clarens Architecture

Clarens clients could theoretically be developed in
any language with Web services support, but in practice,
most developers will want to take advantage of the

Command
Line
Client
(Python)

Web Browser
Client
(JavaScript)

A
pp

lic
at

io
n

S
er

vi
ce

 1

JSON-RPC

HTTP/HTTPS

XML-RPC/SOAP

HTTP/HTTPS

Web Server (Apache)

A
pp

lic
at

io
n

S
er

vi
ce

 2

A
pp

lic
at

io
n

S
er

vi
ce

 3

mod_python

Clarens

SOAP

XML-RPC

PUT

GET

Security Services

Service Discovery

Session Manager

Logging

Plug-In Manager

Core Functionality

Preliminary version. Final version in Proceedings of Supercomputing 2006, Tampa, FL, Nov 2006.

8

Clarens-provided client library support. Library support
for message security and XML serialization makes
Python-based command line clients relatively
straightforward to author. Browser-based Web clients
are the other primary interface option, with Clarens
relying on JavaScript and JSON-RPC for this support.
The JavaScript Object Notation (JSON) [11] is a simple,
compact data format based on the JavaScript language.
JSON-RPC [14] leverages this data format to encode
simple, two-way remote procedure calls over a
connection (often a TCP socket or HTTP). The interface
itself is constructed as a combination of HTML for
input, formatting and display and JavaScript for
submitting the JSON-RPC request to the Clarens server
and processing the response. A Python implementation
of JSON-RPC is used to process these requests in the
Clarens server.

IV. GRID PORTAL SECURITY FEATURES

Although there are many facets to portal security, in this
section we will primarily compare the security features
of the different portal implementations in four key areas:
authentication, authorization, auditing and session
management. Section 5 includes some discussion of
other areas of security along with recommendations.
Throughout the discussion in this section, we assume
communications with backend Grid resources follow
properly secured protocols (e.g., GSI/TLS), and instead
we focus on interaction between the client software and
the Grid portal server and subsequent vulnerabilities.

A. Authentication

GridSphere supports authentication via one or more
configurable modules, similar to the Pluggable
Authentication Modules (PAM) support of UNIX
systems. The default module authenticates based on a
username and password (hashed) stored in the
GridSphere database. From a client perspective, this
would appear as username and password text fields in
the portal entry page or forms-based authentication as
discussed in Section 2.2. Another included
authentication module is an adapter for authentication
via the Java Authentication and Authorization Service
(JAAS) API [12]. A number of JAAS LoginModules
exist that include support for LDAP-based
authentication, among other things. If more than one
authentication module is configured, GridSphere will try
them all, in configured priority order until one succeeds.

The authentication features of uPortal are similar to
GridSphere in that it supports several different
authentication options, depending on configuration. The
default configuration includes a login channel (or
portlet) with a form for username/password entry. This

form data is submitted to an authentication servlet which
in turn engages an authentication service. The
authentication service is responsible for performing the
actual authentication, looking up user attributes (via a
directory service such as LDAP) and setting up the
user’s context and layout based upon the authenticated
identity. Authentication modules must conform to a
uPortal-defined Security Provider interface, with the
default module doing a simple hash-based
username/password lookup in the portal’s database.
Once authenticated, an interface is provided to make
user principal information, attributes and preferences
available across different portlets.

Authentication to Clarens services is primarily
X.509 certificate-based, over the SSL handshake
protocol. This could either mean mutual authentication
at the transport level (i.e., HTTPS) or Clarens also
supports a packaging of the SSL handshake data in the
AUTHORIZATION header as for HTTP Basic
authentication. A configurable CA certificates directory
is used to setup the trusted root certificates on the server
and Clarens also supports the use of proxy certificates
[23] for client authentication. The Clarens Web-based
interface typically follows the same authentication
approach, but also enables a password-based option for
users that may not have their certificate installed in the
browser of a particular machine. A login form allows
users to specify a DN and password for a previously
uploaded proxy certificate to authenticate to the Clarens
server and allow it to lookup credentials to use for
subsequent interactions.

Comparing the various portal authentication
strategies we’ve just discussed, we see that GridSphere
and uPortal both use some kind of forms-based
authentication by default and Clarens also supports this
as a secondary authentication option. Forms-based
authentication (See Section 2) necessitates meticulous
input checking to avoid security vulnerabilities and
usually requires encrypted transmission as well.
Although all three portals could theoretically be run
over HTTPS, none of the portals require such a
configuration and all of them expose HTTP non-
encrypted communications in their default
configurations. Clarens would seem to have an edge in
its built-in support for SSL-based mutual authentication.
While there don’t seem to be obvious security problems
with their handshake-over-HTTP Basic authentication
protocol and implementation, widely distributed, well
tested security libraries are usually preferred over
custom implementations (i.e., HTTPS is the safer bet).
Clarens also lacks support for pluggable, custom
authentication modules, both a curse and a blessing. A
curse because it limits authentication flexibility; a

Preliminary version. Final version in Proceedings of Supercomputing 2006, Tampa, FL, Nov 2006.

9

blessing because poorly written custom authentication
modules are an easy way to introduce security
vulnerabilities.

B. Authorization

Portlets in GridSphere are assigned to groups either
statically or dynamically and each group has its own
access control settings. As such, it implements a form of
role-based access control. Portlet groups can be
designated: public, meaning that any authenticated user
has access; private, meaning that users are aware of the
group’s existence but require an administrator to grant
access; or hidden, meaning the group is private and
hidden from users that don’t have access to it. Granting
users access to portlet groups is primarily done through
a Group Manager Portlet that only administrators have
access to. The other dimension of authorization in
GridSphere is user roles. Currently users can be
assigned to one of four role categories for the portlet
groups they have access to: guest, user, administrator or
super-user, each with their own privilege levels.
Interestingly, the default configuration for GridSphere is
to allow anyone who visits the portal login screen to
create a user-level account for themselves (although this
capability can be restricted to administrators only). From
a developer’s perspective, this authorization
functionality is built into a “portlet service,” which is
basically some encapsulated software functionality that
can be shared across multiple portlets. Portlet authors
could certainly leverage the standard
AccessControlManagerService (whose behavior was
just described) included with GridSphere, or could
theoretically write their own authorization portlet
service. However, as of this writing, limited
documentation on the latter could make for a risky
undertaking from a security perspective.

The fundamental units of authorization in uPortal
are called Permissions. Permissions are granted by
portlet owners to user Principals, giving rights to
perform certain activities. Permissions can also specify a
timeframe in which they are valid and a target resource
to which they apply. So, an example permission might
grant user Bob (principal) the right to subscribe
(activity) to the job submission channel/portlet (target).
Note that in addition to individual users, a principal can
also refer to configurable groups of users, simplifying
administration. Every portlet and channel each has
access to its own PermissionManager, which can store
and retrieve permissions related to the target, enabling it
to answer access control questions for the permission
owner. Principal groups can also have permissions
associated with them; these would deal mostly with
group management (who can add users to a group, etc.).

An AuthorizationPrincipal functions as the permissions
manager for a group; this is primarily an access control
list model rather than a capabilities model. From an
administration perspective, uPortal includes two
management interfaces, a ChannelManager and
GroupsManager that can be used to configure
permissions for channels/portlets and principal groups,
respectively. The use of abstract interfaces to represent
these permissions management classes suggests that it
might be possible to insert customized authorization
controls. How one might go about this, however, is
somewhat unclear. The next major release version of
uPortal aims for more sophisticated pluggable
authorization architecture.

Clarens relies on a collection of access control lists
as its authorization mechanism. An access control file
can specify who is permitted or denied access to a
particular service module as a whole or to specific
methods that module exposes. Access control for files is
similar and controllable on a per-directory or per-file
basis. Users in Clarens are identified by their
distinguished names (DNs) and these DNs can be
assigned to hierarchical groups as desired. Members of
higher-level groups are automatically members of
groups below them in their branch of the tree and a
Clarens admins group is at the root of the hierarchy. It is
either these groups or individual DNs that are then used
to define access control policy for methods and files.
Through the Clarens web interface, it is possible to
manage groups and edit access control lists as an
alternative to editing these configuration files by hand.

All three portal frameworks rely on some form of
access control list-based authorization, but vary in their
level of sophistication and embellishment. Clarens has
the simplest mechanism overall; easy understood, it may
satisfy most authorization needs. Unfortunately, the
Clarens web based ACL configuration interface doesn’t
add much in the way of ease of use and may actually be
more confusing than hand-editing the configuration
files. uPortal is at the opposite end of the complexity
spectrum with support for customizing the permissions
of both user/group principals and channels/portlets.
Such features would likely make it easier to use more
complex authorization policies with uPortal, but this
complexity could make defining simple policies more
complicated and error-prone. GridSphere’s authorization
mechanism lies somewhere between Clarens and
uPortal. uPortal and GridSphere also allow for custom-
defined authorization mechanisms, a extremely useful
avenue for extensibility that Clarens lacks. Many
organizations have some existing authorization services
in place that they may wish to leverage for their newly
deployed Grid portals. A notable area of concern

Preliminary version. Final version in Proceedings of Supercomputing 2006, Tampa, FL, Nov 2006.

10

affecting all three portals is secure default access
configurations. The software should really be distributed
with access disabled until administrators explicitly
configure the access control policy and mechanisms as
desired for their organization. In general, default
configurations tend to be far more open.

C. Auditing

As a Java-based Grid portal framework, GridSphere
relies on the widely used log4j [15] package for its
logging support. Log4j allows the level of logging
output (debug, info, warn, error, etc.) to be configured
independently for the Java packages and classes in a
project. Also configurable are the formatting/layout of
the log messages and where they should be written to
(file, standard output, etc.). By default, these messages
are standard out which means that they get re-directed
into Tomcat’s general output log file (catalina.out) along
with any other messages generated by Tomcat itself or
any other servlets hosted by Tomcat. Due to a lack of
documentation about what kind of message logging
support is built-in to the various Java packages that
make up GridSphere, it’s difficult to determine how to
configure GridSphere to generate the desired audit trails,
or even if it’s possible to get GridSphere to log the
desired events. Curiously absent is the use of syslog
capabilities in logging with use of syslog facilities like
auth.

uPortal, like GridSphere, makes use of log4j for its
logging support. As a result, it shares many of the same
logging features and shortcomings with GridSphere. By
default, uPortal logs info, warn and error messages to a
file called portal.log. While this is an improvement over
throwing portal log messages in together with other
Tomcat log messages, uPortal also lacks documentation
about what events and information can be recorded and
what can’t. So while fine-grained control over logging
policy might be theoretically possible, in practice it
would entail a laborious inspection of the uPortal source
code.

Clarens taps the logging support of the Apache web
server for its log messages. Apache can record accesses
to pages and mod_python modules (both failed and
successful). Within a Clarens module or service, support
is provided to write messages to the Apache error log
with any other errors generated by the Web server.
Logging configuration possibilities seem to be limited to
enabling or disabling the output of debug related
messages, although what is included in this category
isn’t really clear.

Overall, the logging support provided by the portal
frameworks seems largely intended to log debugging
and error messages rather than for the purposes of

generated useful audit trails. This is especially true in
the case of Clarens, which lacks a general purpose,
configurable logging mechanism. In contrast, the log4j
library used by the other two portals is designed to be
very general purpose and could conceivably be
configured to generate detailed audit trails in a
consistent format. The obstacle to accomplishing this
with existing implementations is that the Java classes
that perform interesting actions or events must
consistently report detailed information of these events
to the logging system. There does not appear to be a
systematic effort in either GridSphere or uPortal to log
information about interesting events for the purposes of
auditing. This is particularly evidenced by the lack of
documentation about what events or information even
could be logged for each class or package. Without the
ability to generate audit trails with the desired content, it
is basically impossible to systematically detect, much
less correct security vulnerabilities.

D. Session Management

The Java Portlet Specification [1] defines a
PortletSession object that portlets are expected to use to
store their session data. Although some of the
implementation details of this session object are left to
the portlet container, the specification does define the
important aspects of session features and usage. Portlets
within a portlet application share the same session
object for each client. (A portlet application is a web
application consisting of a collection of portlets and
their deployment configuration, along with possibly
other servlets, web pages, etc.) The session data in a
PortletSession object cannot be shared between portlet
applications. The basic interface provided by the session
object is for setting and retrieving arbitrary attributes as
Java objects. This session management capabilities of
portlets are built on top of the Java Servlet session
features and in fact, attributes set for a PortletSession
must be stored in the HttpSession object of the
containing portlet/web application. Servlet containers
(such as Tomcat) have several choices with regard to
how sessions are tracked. The most popular approach is
probably through a session-tracking cookie named
JSESSIONID, whose contents (a session identifier of
some sort) would be presented by the web browser to
retrieve session state for a client. Other session-tracking
possibilities include using the built-in session support of
SSL (for HTTPS connections) and URL rewriting, in
which the session identifier manifests itself in the URL
used for subsequent portal requests.

As GridSphere and uPortal are both portlet-based,
they both rely on the portlet session management
features. Largely this means that the session

Preliminary version. Final version in Proceedings of Supercomputing 2006, Tampa, FL, Nov 2006.

11

implementation is provided by the servlet container,
which would be Tomcat in both cases. By default,
Tomcat uses cookies for session tracking, although this
is configurable through the Tomcat configuration file.
Tomcat typically stores session data in memory within
the Java Virtual Machine (JVM), but can also be
configured to store session data persistently (in the
filesystem or in a database) so that it survives container
restarts.

Clarens relies on the session IDs generated as part of
the SSL protocol for session-tracking purposes (recall
that Clarens uses the SSL protocol over HTTPS or
HTTP-Basic for authenticating clients). Session state
can then be stored and retrieved from a database (TDB)
using the client and server session IDs. The server is
responsible for making sure that this pair of session IDs
is unique for each unique IP address. Because of
persistence of the database, session state should survive
server restarts without incident and is shared across all
services/applications a server hosts.

Contrasting the session management features of the
different portals, we see one that’s very simple and
home-grown (Clarens) and another that’s more
sophisticated and widely used (the portlet/servlet model
used by GridSphere and uPortal). With any security-
sensitive software, well-tested implementations are
generally preferred over custom-built solutions that tend
to have a greater potential for security vulnerabilities.
This is of particular concern for the Clarens
implementation. Clarens' limited library support for
service writers to manipulate session data is another
possible source of problems. In general though, session
management is a critical area, and regardless of the level
of library support, services that deal with session data
must do so carefully to avoid introducing security
vulnerabilities.

V. RECOMMENDATIONS

Designing, implementing, configuring and deploying
secure Grid portals is a significant challenge and as a
result of the relative newness of this area useful
guidance on is often lacking. Prior to the analysis of
Grid portals described in this paper, we established a set
of general, minimum security guidelines for portals [6]:

1. The portal project must provide contact
information a person in charge of the portal’s security.

2. If the portal has a domain name, it must have
appropriate mailboxes as per RFC 2142.

3. The system running the portal must have a risk
and vulnerability assessment every two years.

4. System logging must be enabled on the portal
host system and duplicated on a central log server.

5. The system log/audit trail must include for each
portal application: application name, authentication
success or failure, remote host address, remote user (if
identified, RFC 931), authenticated user identity,
authentication token type (password, X.509 certificate,
kerberos, etc.).

6. Login and accounting data must be saved for 90
days, minimum.

7. Portal audit trails should include service requests
initiated to back-end resources.

Upon completing our analysis of these three state-
of-the-art Grid portal systems, we believe that the Grid
portals should be improved to meet the basic guidelines
enumerated above, as none of the three systems was
particularly strong in its ability to generate audit trails.
Furthermore, we now augment our initial list by
focusing on the requirements of authentication,
authorization and session management:

Require user identification and strong initial
passwords. Particular for Grid portals that multiplex
onto a single Grid account, one area that could be
exploited would be to register with fake credentials (not
fake Grid credentials) in the hope of gaining access to
the portal and, possibly, to the backend resources.
Policy and procedures should be in place for the
registration of portal users which include verification of
identity of the registrant (as per FISMA [8], discussed
earlier in this paper) and when the user registers only
allow selection of a reasonably strong password which
could be implemented by the use of the libcrack tools.

Require strong on-the-wire authentication
mechanisms whenever possible. Password-based
authentication, though convenient, is a common source
of security vulnerabilities, often through compromised
passwords. Additionally, forms-based authentication,
which is probably the most popular implementation
mechanism for password-based systems, is notorious for
introducing vulnerabilities in system designs. Stronger
authentication mechanisms such as PKI-based X.509
certificates, Kerberos, etc. should be used where
possible, preferably as the only authentication
mechanism.

Require HTTPS for secure connections. To
reduce the possibility of stolen session cookies and other
sensitive data exchanges between the client and server,
an encrypted connection should be used. As Grid portals
are generally Web-based and the vast majority of web
browsers support https, this is the easiest solution. This
also allows for authentication of the server, giving
clients confidence in their use of the portal and reducing
the risk of cross-site scripting attacks. HTTP (as
opposed to HTTPS) should no longer be accepted in the
community for such information exchanges -- by

Preliminary version. Final version in Proceedings of Supercomputing 2006, Tampa, FL, Nov 2006.

12

assuming that everything should be transmitted over
HTTPS, it makes it much easier for users and deployers
to recognize misconfigured servers.

Use secure default configurations. Software that is
not secure out of the box may never be secure, even
when it’s deployed and operational. To their credit, in
the past few years, Microsoft has been promoting secure
default configurations as one of the best approaches for
securing software. Grid portals should have default
configurations that restrict access, especially to
administrative functionality. Default accounts and
passwords are also problematic and introduce
vulnerabilities that can be easily exploited. Force
administrators to set the security configuration they
want for their organization before deploying the portal.
In general, insecure default configurations are a serious
problem afflicting the state of the art in portal
frameworks.

Prefer well-established security implementations
to custom-built ones. This recommendation applies to a
number of different areas: authentication, authorization
and particularly session management. If a widely-used,
well-tested security code exists for one of these areas,
try to use it. Custom mechanisms are an easy way to
introduce vulnerabilities. If custom mechanisms are
required, take great care in the implementation and rely
on code reviews and other well-established techniques
to reduce security related errors.

Design administrative interfaces that are easy to
use correctly. Even if an authorization or authentication
module is implemented securely, configuration mistakes
can easily introduce vulnerabilities. Configuration
should be kept simple and straightforward wherever
possible to reduce this possibility.

Clearly document configuration procedures and
parameters. The importance of secure configuration
cannot be overstated. The Grid portals we analyzed had
gaps in documentation that could easily lead to
configuration mistakes and security holes.

Log every access to Grid credentials stored by
the portal. To facilitate access to backend resources, a
Grid portal will often store delegated Grid credentials on
behalf of the user. As compromise of these credentials is
quite serious and could suggest a widespread security
vulnerability, all accesses (store, read, remove, etc.)
should be securely recorded. The use of syslog auth
facility for recording this would be a good choice.

Regularly audit security logs. Although how often
it is appropriate to do so may depend on the
organization, waiting until you a problem shows up
elsewhere is usually too late. Once the systems to record
appropriate security events are in place and configured
(as suggested by the SDSC guidelines), the audit trails

that are generated must be analyzed regularly to detect
and fix problems.

Some of the above recommendations are more

relevant for portal implementers, some for portal
administrators and some for portal application
developers. This should not be surprising, as it requires
a concerted effort from each of these groups to produce
a secure Grid portal.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

While the primary goal of Grid portals is clearly to make
the Grid easier to use, the role of security in Grid portals
cannot be overstated. A compromised Grid portal can
have serious consequences for the backend Grid
resources the portal makes available, so it is essential
that Grid portal developers and deployers eliminate or
reduce security vulnerabilities. In our analysis of the
state of the art in Grid portal environments (GridSphere,
OGCE/uPortal and Clarens), we found that they vary in
the sophistication and complexity of their security
features in the key areas we examined: authentication,
authorization, auditing and session management. This
only underscores the importance of configuration. Any
of the portals we looked at could be configured
relatively securely but is perhaps more likely to be
configured without comprehensive protection. Careful
examination of the documentation and a thorough
understanding of the various components in a portal’s
architecture are critical to ensure proper deployment.
Following the recommendations we establish from our
analysis further safeguards Grid users and resources.

We hope to use the results of our analysis to
motivate improvements in portal security. Of particular
interest is the area of logging and auditing, as a system
in which portal logging policy is easily specified and
configured and logs are written to a secure centralized
location would certainly be welcome. Likewise a system
for automatically analyzing Grid-portal-specific audit
trails for detection of suspicious behavior on a regular
basis would be a significant step forward. Finally, we
plan to complement this architectural-level study of Grid
portals with an analysis of the security record of a real,
deployed and working Grid portal such as a TeraGrid
Science Gateway. Issued considered will include: actual
user registration, validation, and delivery of user
identifiers in practice; implementation details of
mapping portal users to resource provider users; how
data access is limited between portal users when single
portal role accounts are in use on the backend resource
providers; breaches, etc. This could further clarify the
magnitude and nature of the risk Grid portals actually
face.

Preliminary version. Final version in Proceedings of Supercomputing 2006, Tampa, FL, Nov 2006.

13

REFERENCES

[1] Abdelnur, A. and Hepper, S., eds. “Java Portlet
Specification.” JSR-168, Version 1.0, 7 October 2003.
Available at http://jcp.org/aboutJava/
communityprocess/final/jsr168/index.html.

[2] Ali, A., et al. “JClarens: A Java Based Interactive Physics
Analysis Environment for Data Intensive Applications.”
Proceedings of ICWS, the International Conference of
Web Services, San Diego, USA, 2004.

[3] Amin, K., Hategan, M., von Laszewski, G. and Zaluzec,
N.J. “Abstracting the Grid.” Proceedings of the 12th
Euromicro Conference on Parallel, Distributed and
Network-Based Processing (PDP 2004), pp. 250-257, La
Coruna, Spain, 11-13 February 2004.

[4] “Apache Pluto.” Apache Software Foundation. Available
at http://portals.apache.org/pluto. Accessed 24 March
2006.

[5] “Apache Tomcat.” The Apache Software Foundation.
Available at http://tomcat.apache.org. Accessed 24 March
2006.

[6] “CIP/SDSC Portal Minimum Security Standards.” Draft v
1.1. Available at
http://security.sdsc.edu/policy/PortalPolicy.html.
Accessed 24 March 2006.

[7] Coward, D. and Yoshida, Y., eds. “Java Servlet
Specification.” JSR-158, Version 2.4, 24 November 2003.
Available at
http://jcp.org/aboutJava/communityprocess/final/jsr154/in
dex.html.

[8] Federal Information Security Management Act (FISMA).
NIST Special Publication 800-53

[9] “Hibernate: Relational Persistence for Java and .NET.”
JBoss, Incorporated. Available at
http://www.hibernate.org. Accessed 24 March 2006.

[10] “Information security.” From Wikipedia, the free
encyclopedia.
http://en.wikipedia.org/wiki/Information_security.
Accessed 24 March 2006.

[11] “Introducing JSON.” Available at http://www.json.org.
Accessed 24 March 2006.

[12] “Java Authentication and Authorization Service (JAAS).”
Sun Microsystems, Inc. Available at
http://java.sun.com/products/jaas. Accessed 24 March
2006.

[13] Johnson, R., et al. “Spring – Java/J2EE Application
Framework.” Reference Documentation, Version 1.2.7,
Chapter 11: Data Access Using JDBC. Available at
http://www.springframework.org/docs/ reference.
Accessed 24 March 2006.

[14] “JSON-RPC Specifications.” Available at http://json-
rpc.org/wiki/ specification. Accessed 24 March 2006.

[15] “Log4J Logging Services Project.” The Apache Software
Foundation. Available at
http://logging.apache.org/log4j/docs/index.html. Accessed
24 March 2006.

[16] “Mod_Python: Apache/Python Integration.” The Apache
Software Foundation. Available at
http://www.modpython.org. Accessed 24 March 2006.

[17] Novotny, J., Russell, M. and Wehrens, O. “GridSphere: A
Portal Framework for Building Collaborations.”
Proceedings of the 1st International Workshop on
Middleware in Grid Computing, Rio de Janeiro, Brazil,
2003.

[18] Roberts, E., et al. “GPIR - Grid Portals Information
Repository.” Available at
http://www.tacc.utexas.edu/projects/gpir.php. Accessed
24 March 2006.

[19] Shirley, R., ed. “Internet Security Glossary.” IETF
Newtork Working Group, RFC-2828. May 2000.
Available at http://www.ietf.org/rfc/ rfc2828.txt.

[20] Steenberg, C. et al. “The Clarens Grid-Enabled Web
Services Framework: Services and Implementation.”
Proceedings of CHEP 2004, paper 184, 2004.

[21] “TDB: Trivial Database.” Available at
http://sourceforge.net/projects/ tdb. Accessed 24 March
2006.

[22] “The Ten Most Critical Web Application Security
Vulnerabilities.” The Open Web Application Security
Project (OWASP). 2004 Update, 27 January 2004.
Available at http://www.owasp.org/documentation/
topten.html.

[23] Tuecke, S., Welch, V., Engert, D., Pearlman, L.,
Thompson, M. Internet “X.509 Public Key Infrastructure
(PKI) Proxy Certificate Profile.” IETF Network Working
Group, Standards Track, RFC 3820, June 2004. Available
at http://www.ietf.org/rfc/rfc3820.txt.

[24] “uPortal: Evolving Portal Implementations from
Participating Universities and Partners.”
http://www.uportal.org. Accessed 24 March 2006.

[25] von Laszewski, G., Foster, I., Gawor, J. and Lane, P. “A
Java Commodity Grid Kit,” Concurrency and
Computation: Practice and Experience, vol. 13, no. 8-9,
pp. 643-662, 2001. Software available at
http://www.cogkit.org.

[26] “Web application.” From Wikipedia, the free
encyclopedia.
http://en.wikipedia.org/wiki/Web_application. Accessed
24 March 2006.

[27] “Web portal.” From Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/Web_portal. Accessed 24
March 2006.

