Boolean Model

Hongning Wang CS@UVa

Abstraction of search engine architecture

Sell user data (Ryan) •

Search with Boolean query

- Boolean query
 - E.g., "obama" AND "healthcare" NOT "news"
- Procedures
 - Lookup query term in the dictionary
 - Retrieve the posting lists
 - Operation
 - AND: intersect the posting lists
 - OR: union the posting list
 - NOT: diff the posting list

Search with Boolean query

• Example: AND operation

frequency ones

Deficiency of Boolean model

- The query is unlikely precise
 - "Over-constrained" query (terms are too specific): no relevant documents can be found
 - "Under-constrained" query (terms are too general): over delivery
 - It is hard to find the right position between these two extremes (hard for users to specify constraints)
- Even if it is accurate
 - Not all users would like to use such queries
 - Not all relevant documents are equally important
 - No one would go through all the matched results
- Relevance is a matter of degree!

Document Filtering vs. Ranking

Ranking is often preferred

- Relevance is a matter of degree

 Easier for users to find appropriate queries
- A user can stop browsing anywhere, so the boundary is controlled by the user
 - Users prefer coverage would view more items
 - Users prefer precision would view only a few
- Theoretical justification: Probability Ranking Principle

Retrieval procedure in modern IR

- Boolean model provides <u>all</u> the ranking candidates
 - Locate documents satisfying Boolean condition
 - E.g., "obama healthcare" -> "obama" OR "healthcare"
- Rank candidates by relevance

– Important: the notion of relevance

• Efficiency consideration

– Top-k retrieval (<u>Google</u>)

Notion of relevance

CS@UVa

Intuitive understanding of relevance

• Fill in magic numbers to describe the relation between documents and words

	information	retrieval	retrieved	is	helpful	for	you	everyone
Doc1	1	1	0	1	1	1	0	1
Doc2	1	0	1	1	1	1	1	0
Query	1	1	0	0	0	0	0	0

E.g., 0/1 for Boolean models, probabilities for probabilistic models

Some notations

- Vocabulary V={w₁, w₂, ..., w_N} of language
- Query q = $t_1, ..., t_m$, where $t_i \in V$
- Document $d_i = t_{i1}, ..., t_{in}$, where $t_{ij} \in V$
- Collection C= {d₁, ..., d_k}
- Rel(q,d): relevance of doc d to query q
- Rep(d): representation of document d
- Rep(q): representation of query q

Vector Space Model

Hongning Wang CS@UVa

Relevance = Similarity

- Assumptions
 - Query and documents are represented in the same form
 - A query can be regarded as a "document"
 - Relevance(d,q) \propto similarity(d,q)
- $R(q) = \{d \in C | rel(d,q) > \theta\}, rel(q,d) = \Delta(Rep(q), Rep(d))$
- Key issues
 - How to represent query/document?
 - How to define the similarity measure $\Delta(x,y)$?

Vector space model

- Represent both document and query by <u>concept</u> vectors
 - Each concept defines one dimension
 - K concepts define a high-dimensional space
 - Element of vector corresponds to concept weight
 - E.g., d=(x₁,...,x_k), x_i is "importance" of concept i
- Measure relevance
 - Distance between the query vector and document vector in this concept space

VS Model: an illustration

• Which document is closer to the query?

What the VS model doesn't say

- How to define/select the "basic concept" – Concepts are assumed to be orthogonal
- How to assign weights
 - Weight in query indicates importance of the concept to the user's information need
 - Weight in doc indicates how well the concept characterizes the doc
- How to define the similarity/distance measure

What is a good "basic concept"?

- Orthogonal
 - Linearly independent basis vectors
 - "Non-overlapping" in meaning
 - No ambiguity
- Weights can be assigned automatically and accurately
- Existing solutions
 - Terms or N-grams, i.e., bag-of-words
 - Topics, i.e., topic model

How to assign weights?

- Important!
- Why?
 - Query side: not all terms are equally important
 - Document side: some terms carry more information about the content
- How?
 - Two basic <u>heuristics</u>
 - TF (Term Frequency) = Within-doc-frequency
 - IDF (Inverse Document Frequency)

TF weighting

- Idea: a term is more important if it occurs more frequently in a document
- TF Formulas
 - Let f(t, d) be the frequency count of term t in doc d

 $-\operatorname{Raw} \mathsf{TF}: tf(t,d) = f(t,d)$

- Query: *iphone 6s*
 - D1: iPhone 6s receives pre-orders on September
 12.
 - D2: iPhone 6 has three color options.
 - D3: iPhone 6 has three color options. iPhone 6 has three color options. iPhone 6 has three color options.

- Two views of document length
 - A doc is long because it is verbose
 - A doc is long because it has more content
- Raw TF is inaccurate
 - Document length variation
 - "Repeated occurrences" are less informative than the "first occurrence"
 - Relevance does not increase proportionally with number of term occurrence
- Generally penalize long doc, but avoid overpenalizing
 - Pivoted length normalization

• Sublinear TF scaling

$$-tf(t,d) = \begin{cases} 1 + \log f(t,d), & \text{if } f(t,d) > 0\\ 0, & \text{otherwise} \end{cases}$$

Maximum TF scaling

$$-tf(t,d) = \alpha + (1-\alpha) \frac{f(t,d)}{\max_t f(t,d)}$$

- Normalize by the most frequent word in this doc Norm. TF 1 α

Raw TF

Document frequency

 Idea: a term is more discriminative if it occurs only in fewer documents

Figure 2.1. A plot of the hyperbolic curve seleting f, the dieguency of occurrence and r, the sank outer (Adaped from Natura⁴⁴ here 129): Information Retrieval

IDF weighting

- Solution
 - Assign higher weights to the rare terms
 - Formula • $IDF(t) = 1 + \log(\frac{N}{df(t)})$ Non-linear scaling Total number of docs in collection Number of docs containing term t
 - A corpus-specific property
 - Independent of a single document

Pop-up Quiz

• If we remove a document from the corpus, how would it affect a term's IDF?

Why document frequency

How about total term frequency?

 $-ttf(t) = \sum_{d} f(t,d)$

Table 1. Example total term frequency v.s. document frequency in Reuters-RCV1 collection.

Word	ttf	df
try	10422	8760
insurance	10440	3997

 Cannot recognize words frequently occurring in a subset of documents

TF-IDF weighting

- Combining TF and IDF
 - Common in doc \rightarrow high tf \rightarrow high weight
 - Rare in collection \rightarrow high idf \rightarrow high weight

 $-w(t,d) = TF(t,d) \times IDF(t)$

• Most well-known document representation schema in IR! (G Salton et al. 1983)

"Salton was perhaps the leading computer scientist working in the field of information retrieval during his time." - wikipedia

Gerard Salton Award

highest achievement award in IR

How to define a good similarity measure?

• Euclidean distance?

How to define a good similarity measure?

- Euclidean distance
 - -dist(q,d) =
 - $\sqrt{\sum_{t \in V} [tf(t,q)idf(t) tf(t,d)idf(t)]^2}$
 - Longer documents will be penalized by the extra words
 - We care more about how these two vectors are overlapped

From distance to angle

- Angle: how vectors are overlapped
 - Cosine similarity projection of one vector onto another

Cosine similarity

• Angle between two vectors _ TF-IDF vector

$$-cosine(V_q, V_d) = \frac{V_q \times V_d}{|V_q|_2 \times |V_d|_2} = \frac{V_q}{|V_q|_2} \times \frac{V_d}{|V_d|_2}$$

Document length normalized

Fast computation of cosine in retrieval

- $cosine(V_q, V_d) = V_q \times \frac{V_d}{|V_d|_2}$
 - $-|V_q|_2$ would be the same for all candidate docs
 - Normalization of V_d can be done in indexing time
 - Only count $t \in q \cap d$
 - Score accumulator for each query term when intersecting postings from inverted index

Fast computation of cosine in retrieval

 Maintain a score accumulator for each doc when scanning the postings

> Query = "info security" $S(d,q)=g(t_1)+...+g(t_n)$ [sum of TF of matched terms] Info: (d1, 3), (d2, 4), (d3, 1), (d4, 5) Security: (d2, 3), (d4, 1), (d5, 3) Can be easily applied to TF-IDF weighting!

Advantages of VS Model

- Empirically effective! (Top TREC performance)
- Intuitive
- Easy to implement
- Well-studied/Most evaluated
- The Smart system
 - Developed at Cornell: 1960-1999
 - Still widely used
- Warning: Many variants of TF-IDF!

Disadvantages of VS Model

- Assume term independence (i.e., BoW)
- Assume query and document to be the same
- Lack of "predictive adequacy"
 - Arbitrary term weighting
 - Arbitrary similarity measure
- Lots of parameter tuning!

What you should know

- Document ranking v.s. selection
- Basic idea of vector space model
- Two important heuristics in VS model
 - TF
 - IDF
- Similarity measure for VS model
 - Euclidean distance v.s. cosine similarity

Today's reading

- Chapter 1: Boolean retrieval
 - 1.3 Processing Boolean queries
 - 1.4 The extended Boolean model versus ranked retrieval
- Chapter 6: Scoring, term weighting and the vector space model
 - 6.2 Term frequency and weighting
 - 6.3 The vector space model for scoring
 - 6.4 Variant tf-idf functions