CS4780: Information Retrieval Course Policy

Hongning Wang CS@UVa <u>http://www.cs.virginia.edu/~hw5x/Cour</u> <u>se/IR2021-Spring/_site/</u>

Instructor

- Hongning Wang
 - Graduated from University of Illinois at Urbana-Champaign in 2014

Instructor

- Hongning Wang
 - Research area
 - Information retrieval
 - Data mining
 - Machine learning
 - Industry experience
 - Yahoo Labs
 - Microsoft Research
 - Snap
 - Google Research

Goal of this course

- Discuss fundamental problems in information retrieval
 - Building blocks of search engine systems
 - Wide coverage of important IR techniques
 - Personalized recommendation
 - Online advertising
- Get hands-on experience by developing practical systems/components
- Prepare students for doing cutting-edge research in information retrieval and related fields
 - Open the door to the amazing job opportunities in IT industry

Outcomes

• Letters from former students

Character of this course

- Discussion oriented
 - This is how great ideas are created!
 - You are encouraged to express your thoughts, confusions, and suggestions
 - Focusing on why, rather than how

Prerequisites

- Programming skills Important!
 - Basic data structures: CS 2150 or equivalent
 - <u>Java</u> is required for machine problems
 - Most open source packages are written in Java
 - Any language you choose for the rest of this course
- Math background
 - Probability
 - Discrete/continuous distributions, expectation, moments
 - Linear algebra
 - Vector, matrix, dot product
 - Optimization
 - Gradient-based methods

1. Let **a**=(1,2,3) and **b**=(2,3,-2), the inner product between **a** and **b** is (a) 0 (b) 1 (c) 2 (d) 3 2. Let A = $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$, what is A⁻¹, (a) $\begin{pmatrix} -1 & -2 \\ -2 & -1 \end{pmatrix}$ (b) $\begin{pmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$

- 3. What is the expectation of random variables drawn from Gaussian distribution N(0, 1),
 (a) 0 (b) 0.5 (c) 1 (d) 2
- 4. Complexity of merge sort, (a) O(n) (b) $O(n^2)$ (c) $O(\log n)$ (d) $O(n \log n)$

1. Let a = (1,2,3) and b = (2,3,-2), the inner product between **a** and **b** is **(c)** (a) 0 (b) 1 (c) 2 (d) 3 2. Let A = $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$, what is A⁻¹, **(b)** (a) $\begin{pmatrix} -1 & -2 \\ -2 & -1 \end{pmatrix}$ (b) $\begin{pmatrix} -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$

- 3. What is the expectation of random variables drawn from Gaussian distribution N(0, 1), (a)
 (a) 0 (b) 0.5 (c) 1 (d) 2
- 4. Time complexity of merge sort, (d) (a) O(n) (b) $O(n^2)$ (c) $O(\log n)$ (d) $O(n \log n)$

Structure of this course

- Six major topics will be covered by lectures
 - E.g., Search engine architecture, retrieval models, search evaluation, relevance feedback, and link analysis
- Latest development will be covered by paper reading assignments and presentations
 - E.g., mobile search, recommendation, personalization, online learning, you name it!

Grading policy

No curving will be applied!

Reading assignments (10%)

- Peer evaluation, after each chapter

• Homework (35%)

- Machine problems (~3)

- Paper presentation (20%)
 In class, performed in groups
- Course project (35%)
 - In the exam week

fairness will be guaranteed by the instructor

Reading assignments

- Read the instructor selected papers after each chapter
- Open-ended essay questions
- Peer evaluation on course forum

Paper presentation

- Choose to present the most recent works in the area of information retrieval
- Peer evaluation
- Choose from the instructor's selected papers, which are beyond our course content, so as to increase our topic coverage

Course project

- Topics
 - Implement algorithms in assigned research papers
 - Self-selected topics with permission from the instructor
- Team work
 - 3-4 students per group
- Evaluation
 - Two-page proposal (25%)
 - 15-minutes in-class presentation (40%)
 - Written report (35%)

In-class quiz

- After each chapter, the instructor will prepare a quiz to cover the most important concept in that chapter
- Its sole purpose is to help you review the learnt materials, and it is <u>not</u> part of our grading

Late policy

- Homework
 - Submit via Collab (no extension)
 - Late penalty: 15%, two weeks after the due date;
 30%, afterwards
- Course project
 - Final report is due right after presentation (no extension)

Classroom participation

- HIGHLY APPRECIATED!
 - Helps me quickly remember your names
 - Reminds me what is still confusing
 - You can drive the lecture/discussion in this class!

Contact information

- Lecture
 - Instructor: Hongning Wang
 - Time: Tu/Th 2:00pm to 3:15pm
 - All via zoom, and recordings will be uploaded to collab right after
 - Office hours
 - Time: Tu/Th 3:30pm to 4:30pm
 - All via zoom, make appointments beforehand
 - Additional office hour can be requested by email

Contact information

- TA
 - Nan Wang (<u>nw6a@virginia.edu</u>)
 - Office hour
 - Time: Monday/Wednesday 10:30am to 11:30am
 - All via zoom, make appointments beforehand
 - Additional office hour can be request by email

CS4780: Information Retrieval

Thank you!

QUESTIONS?