Implicit User Feedback

Hongning Wang CS@UVa

Explicit relevance feedback

Relevance feedback in real systems

Google used to provide such functions

Cached - Similar pages - 💬

- Vulnerable to spammers

How about using clicks

 Clicked document as relevant, non-clicked as non-relevant

- Cheap, largely available

	Web Images Videos Maps News More	
Г	18,600 RESULTS Any time 👻	
	SIGIR 2015 sigir2015.org We are happy to welcome SIGIR 2015 to Santiago de Chile. SIGIR is the major international forum for the presentation of new research results and for the SIGIR 2015 sigir2015.org/dates Santiago, Chile August 9-13, 2015 The 38th Annual ACM SIGIR Conference	Related search KDD 2015 Ictir 2015 SIGIR 2014 SIGIR Forum ACM SIGIR 2014
	History SIGIR sigir.org/general-information/history ▼ SIGIR 2015. 38th Annual International ACM SIGIR Conference on Research & Development on Information Retrieval Location: Santiago, Chile Chair: Ricardo Baeza	SIGIR Conterence SIGIR 2014 Registra IIIx 2014
	SIGIR 2015 : ACM SIGIR Conference	
	www.guide2research.com/conterence/sigir.2013-acm-sigir-conterence * We are happy to welcome SIGIR 2015 to Santiago de Chile, the second time it happens in South America. SIGIR is the major international forum for the presentation of	
	Sigir 2015 Escabook	

Is click reliable?

- Why do we click on the returned document?
 - Title/snippet looks attractive
 - We haven't read the full text content of the document
 - It was ranked higher
 - Belief bias towards ranking
 - We know it is the answer!

Is click reliable?

- Why do not we click on the returned document?
 - Title/snippet has already provided the answer
 - Instant answers, knowledge graph
 - Extra effort of scrolling down the result page
 - The expected loss is larger than skipping the document
 - We did not see it....

Can we trust click as relevance feedback?

Accurately Interpreting Clickthrough Data as Implicit Feedback [Joachims SIGIR'05]

- Eye tracking, click and manual relevance judgment to answer
 - Do users scan the results from top to bottom?
 - How many abstracts do they read before clicking?
 - How does their behavior change, if search results are artificially manipulated?

Which links do users view and click?

Positional bias

Fixations: a spatially stable gaze lasting for approximately 200-300ms, indicating visual attention

Figure 1: Percentage of times an abstract was viewed/clicked depending on the rank of the result.

Do users scan links from top to bottom?

Figure 2: Mean time of arrival (in number of previous fixations) depending on the rank of the result.

View the top two results within the second or third fixation

Which links do users evaluate before clicking?

• The lower the click in the ranking, the more abstracts are viewed before the click

Table 2: Percentage of times the user viewed an abstract at a particular rank before he clicked on a link at a particular rank.

Viewed	Clicked Rank					
Rank	1	2	3	4	5	6
1	90.6%	76.2%	73.9%	60.0%	54.5%	45.5%
2 .	56.8%	90.5%	82.6%	53.3%	63.6%	54.5%
3	30.2%	47.6%	95.7%	80.0%	81.8%	45.5%
4	17.3%	19.0%	47.8%	93.3%	63.6%	45.5%
5	8.6%	14.3%	21.7%	53.3%	100.0%	72.7%
6	4.3%	4.8%	8.7%	33.3%	18.2%	81.8%

Does relevance influence user decisions?

- Controlled relevance quality
 - Reverse the ranking from search engine
- Users' reactions
 - Scan significantly more abstracts than before
 - Less likely to click on the first result
 - Average clicked rank position drops from 2.66 to 4.03
 - Average clicks per query drops from 0.8 to 0.64

Are clicks absolute relevance judgments?

- Position bias
 - Focus on position one and two, equally likely to be viewed

"normal"	$\mathrm{l}_1^-, \mathrm{l}_2^-$	$ \mathbf{l}_1^+,\!\mathbf{l}_2^- $	$\mathbf{l}_1^-,\!\mathbf{l}_2^+$	l_{1}^{+}, l_{2}^{+}	total
$\operatorname{rel}(l_1) > \operatorname{rel}(l_2)$	15	19	1	1	36
$\operatorname{rel}(l_1) < \operatorname{rel}(l_2)$	11	5	2	2	20
$\operatorname{rel}(l_1) = \operatorname{rel}(l_2)$	19	9	1	0	29
total	45	33	4	3	85

Are clicks relative relevance judgments?

Clicks as <u>pairwise</u> preference statements
 – Given a ranked list and user clicks

- Click > Skip Above
- Last Click > Skip Above
- Click > Earlier Click
- Last Click > Skip Previous
- Click > Skip Next

Clicks as pairwise preference statements

• Accuracy against manual relevance judgment

Explicit Feedback	Abstracts				
Data	Phase I	ase I Phase II			
Strategy	"normal"	"normal"	"swapped"	"reversed"	\mathbf{all}
Inter-Judge Agreement	89.5	N/A	N/A	N/A	82.5
Click > Skip Above	80.8 ± 3.6	88.0 ± 9.5	79.6 ± 8.9	83.0 ± 6.7	83.1 ± 4.4
Last Click $>$ Skip Above	83.1 ± 3.8	89.7 ± 9.8	77.9 ± 9.9	84.6 ± 6.9	83.8 ± 4.6
Click > Earlier Click	67.2 ± 12.3	75.0 ± 25.8	36.8 ± 22.9	28.6 ± 27.5	46.9 ± 13.9
Click > Skip Previous	82.3 ± 7.3	88.9 ± 24.1	80.0 ± 18.0	79.5 ± 15.4	81.6 ± 9.5
- Click->-No Click-Next	-84.1 ± 4.9	-75.6 ± 14.5	-66.7 ± 13.1	70.9 ± 15.7	70.4 ± 8.0

How accurately do clicks correspond to explicit judgment of a document?

• Accuracy against manual relevance judgment

Explicit Feedback	Pages
Data	Phase II
Strategy	all
Inter-Judge Agreement	86.4
Click > Skip Above	78.2 ± 5.6
Last Click $>$ Skip Above	80.9 ± 5.1
Click > Earlier Click	-64.3 ± 15.4
Click > Skip Previous	80.7 ± 9.6
Click ->- No Click -Next	-67.4 ± -8.2

What do we get from this user study?

- Clicks are influenced by the relevance of results
 - Biased by the trust over rank positions
- Clicks as relative preference statement is more accurate
 - Several heuristics to generate the preference pairs

How to utilize such preference pairs?

• Pairwise learning to rank algorithms

- We have covered it in learning to rank discussions

An eye tracking study of the effect of target rank on web search [Guan CHI'07]

• Break down of users' click accuracy

An eye tracking study of the effect of target rank on web search [Guan CHI'07]

• Break down of users' click accuracy

Users failed to recognize the target because they did not read it!

• Navigational search

Users did not click because they did not read the results!

• Informational search

Where do we pay attention to?

Web Scale S

Dealshist - Cheapert computer and basis igital cameras deals Deals List: Canon Pous Road S0110 digital camera + Sanon PMMA P3000 Photo 1992 P. W. Junt Her Cheapert Computer State Point Communication of the Sanon Point State Point Communication of the Sanon Point State Point State

Predicting clicks: estimating the clickthrough rate for new ads [Richardson WWW'07]

• To maximize ad revenue

 $-E_{ad}[Revenue] = \sum_{ad} p(click|ad)CPC(ad)$

Estimated click-through rate

Cost per click: basic business model in search engines

- Position-bias is also true in online ads
 - Observed low CTR is not just because of ads' quality, but also their displayed positions!

Combat position-bias by explicitly modeling it

- Being clicked is related to its quality and position
 - -p(click|ad, pos) = p(click|ad, pos, seen)p(seen|pos)= p(click|ad, seen)p(seen|pos)

Calibrated CTR for ads ranking Discounting factor -p(click = 1|ad, seen = 0) = 0 $-p(click = 1|ad, seen = 1) = \frac{1}{1 + exp(-w^T f_{ad})}$

Logistic regression by features of the ad

Parameter estimation

- Discounting factor
 - Approximation: positions being clicked must be seen already
 - $p(seen|pos) \propto #clicks_at_pos$
- Calibrated CTR
 - Maximum likelihood for *w* with historic clicks

• $\hat{w} = argmax_w \sum_{ad} \log p(click|ad, pos)$

Calibrated CTR is more accurate for new ads

Simple counting of CTR

- Number of Ad Views
- Unfortunately, their evaluation criterion is still based on biased clicks in testing set

Click models

- Decompose relevance-driven skips from position-driven skips
 - Examine: user reads the displayed result
 - Click: user clicks on the displayed result
 - Atomic unit: (query, doc)

Prob.

Cascade Model [Craswell et al. WSDM'08]

- Sequential browsing assumption
 - At each position decides whether to move on
 - $p(C_i = 1) = p(R_i = 1) \prod_{j=1}^{i-1} (1 p(R_j = 1))$
 - Assuming $R_i = 1 \rightarrow C_i = 1$
 - Only one click is allowed on each search result page

Kind of "Click > Skip Above"?

User Browsing Model [Dupret et al. SIGIR'08]

Examination depends on distance to the last

More accurate prediction of clicks

• Perplexity – randomness of prediction

Dynamic Bayesian Model [Chapelle et al. WWW'09]

- A cascade model
 - Relevance quality:

Accuracy in predicting CTR

Revisit User Click Behaviors

Content-Aware Click Modeling [Wang et al. WWW'12]

 Encode dependency within user browsing behaviors via descriptive features

Quality of relevance modeling

Estimated relevance for ranking

(a) P@1 ranking performance under different (b) P@1 ranking performance under different query frequency categories on the random bucket click set

query frequency categories on the normal click set

Understanding user behaviors

• Analyzing factors affecting user clicks

$\begin{array}{c} f^R \\ w^R \end{array}$	age -0.839	authority 0.007	title match 0.098	abs. match 0.167	body match 0.020
$\begin{array}{c} f^C \\ w^C_{R=0} \\ w^C_{R=1} \end{array}$	pos	# click	dis. to last click	query length	bias
	-1.133	-0.351	-0.445	-3.659	-4.654
	0.149	0.335	0.415	3.707	4.405
$ \begin{array}{c} f^E \\ w^E_{R=0} \\ w^E_{R=1} \end{array} $	pos	# click	dis. to last click	avg cont. sim.	bias
	1.807	-0.418	0.684	2.947	5.325
	-1.381	0.665	-3.395	-2.237	3.266

What you should know

- Clicks as implicit relevance feedback
- Positional bias
- Heuristics for generating pairwise preferences
- Assumptions and modeling approaches for click models