## **Retrieval Evaluation**

Hongning Wang CS@UVa







Sell user data (Ryan) •



## Which search engine do you prefer: Bing or Google?

- What are your judging criteria?
  - How fast does it response to your query?

| Google          | obama               | 1               |               |              |             |        |              |   | Ŷ | ۹ |
|-----------------|---------------------|-----------------|---------------|--------------|-------------|--------|--------------|---|---|---|
|                 | Web                 | News            | Images        | Videos       | Books       | More 💌 | Search tools |   |   |   |
|                 | About 1             | 56 000 000      | results (0.43 | seconds)     |             |        |              |   |   |   |
|                 | About 1             |                 |               |              |             |        |              |   |   |   |
| – How           | mai                 | ny da           |               | ents         | can         | it ret | urn?         |   |   |   |
| – How<br>▶ bing | Man<br>WEB<br>obama | ny da<br>IMAGES | DCUM          | ents<br>MAPS | can<br>NEWS | it ret | urn?         | Q | ī |   |

## Which search engine do you prefer: Bing or Google?

- What are your judging criteria?
  - Can it correct my spelling errors?

| Google                                    | obana   | obana                                |         |        |          |        |              | Ŷ | ۹ |
|-------------------------------------------|---------|--------------------------------------|---------|--------|----------|--------|--------------|---|---|
|                                           | Web     | News                                 | Images  | Videos | Shopping | More 🔻 | Search tools |   |   |
|                                           | About 6 | About 647,000 results (0.46 seconds) |         |        |          |        |              |   |   |
|                                           | Did yo  | ou mean                              | : obama |        |          |        |              | _ | _ |
| – Can it suggest me good related queries? |         |                                      |         |        |          |        |              |   |   |

Searches related to obamasue obamaobama biographyimpeach obamaobama speechobama approval ratingmalia obamaobama jokesobama scandal

## **Retrieval evaluation**

- Aforementioned evaluation criteria are all good, but not essential
  - Goal of any IR system
    - Satisfying users' information need
  - Core <u>quality</u> measure
    - "how well a system meets the information needs of its users." – wiki
    - Unfortunately vague and hard to execute

## Quantify the IR quality measure

- Information need
  - "an individual or group's desire to locate and obtain information to satisfy a conscious or unconscious need" – wiki
  - Reflected by user <u>query</u>
  - Categorization of information need
    - Navigational
    - Informational
    - Transactional

## Quantify the IR quality measure

- Satisfaction
  - "the opinion of the user about a specific computer application, which they use" – wiki
  - Reflected by
    - Increased result clicks
    - Repeated/increased visits
    - <u>Result relevance</u>

# **Classical IR evaluation**

Cranfield experiments



- Pioneer work and foundation in IR evaluation
- Basic hypothesis
  - Retrieved documents' relevance is a good proxy of a system's utility in satisfying users' information need
- Procedure
  - 1,398 abstracts of aerodynamics journal articles
  - 225 queries
  - Exhaustive relevance judgments of all (query, document) pairs
  - Compare different indexing system over such collection

## **Classical IR evaluation**

- Three key elements for IR evaluation
  - 1. A document collection
  - 2. A test suite of information needs, expressible as queries
  - 3. A set of relevance judgments, e.g., binary assessment of either *relevant* or *nonrelevant* for each query-document pair

## Search relevance

- Users' information needs are translated into queries
- Relevance is judged with respect to the information need, <u>not</u> the query
  - E.g., Information need: "When should I renew my Virginia driver's license?"

Query: "Virginia driver's license renewal"

Judgment: whether a document contains the right answer, e.g., every 8 years; rather than if it literally contains those four words

# Text REtrieval Conference (TREC)

- Large-scale evaluation of text retrieval methodologies
  - Since 1992, hosted by NIST
  - Standard benchmark for IR studies
  - A wide variety of evaluation collections
    - Web track
    - Question answering track
    - Cross-language track
    - Microblog track
    - And more...

## Public benchmarks

| Collection | NDocs   | NQrys | Size (MB) | Term/Doc | Q-D RelAss |
|------------|---------|-------|-----------|----------|------------|
| ADI        | 82      | 35    |           |          |            |
| AIT        | 2109    | 14    | 2         | 400      | >10,000    |
| CACM       | 3204    | 64    | 2         | 24.5     |            |
| CISI       | 1460    | 112   | 2         | 46.5     |            |
| Cranfield  | 1400    | 225   | 2         | 53.1     |            |
| LISA       | 5872    | 35    | 3         |          |            |
| Medline    | 1033    | 30    | 1         |          |            |
| NPL        | 11,429  | 93    | 3         |          |            |
| OSHMED     | 34,8566 | 106   | 400       | 250      | 16,140     |
| Reuters    | 21,578  | 672   | 28        | 131      |            |
| TREC       | 740,000 | 200   | 2000      | 89-3543  | » 100,000  |

TABLE 4.3 Common Test Corpora

Table from Manning Stanford CS276, Lecture 8

## **Evaluation metric**

- To answer the questions
  - Is Google better than Bing?
  - Which ranking method is the most effective?
  - Shall we perform stemming or stopword removal?
- We need a quantifiable metric, by which we can compare different IR systems
  - As unranked retrieval sets
  - As ranked retrieval results

#### Evaluation of unranked retrieval sets

- In a Boolean retrieval system
  - Precision: fraction of retrieved documents that are relevant, i.e., p(relevant | retrieved)
  - Recall: fraction of relevant documents that are retrieved, i.e., p(retrieved | relevant)

|                                  | relevant            | nonrelevant         | Precision:               |  |  |  |  |
|----------------------------------|---------------------|---------------------|--------------------------|--|--|--|--|
| retrieved                        | true positive (TP)  | false positive (FP) | $P = \frac{TP}{TP + FP}$ |  |  |  |  |
| not retrieved                    | false negative (FN) | true negative (TN)  |                          |  |  |  |  |
| Recall: $R = \frac{TP}{TP + FN}$ |                     |                     |                          |  |  |  |  |

## Evaluation of unranked retrieval sets

- Precision and recall trade off against each other
  - Precision decreases as the number of retrieved documents increases (unless in perfect ranking), while recall keeps increasing
  - These two metrics emphasize different perspectives of an IR system
    - Precision: prefers systems retrieving fewer documents, but highly relevant
    - Recall: prefers systems retrieving more documents

## Evaluation of unranked retrieval sets

- Summarizing precision and recall to a single value
  - In order to compare different systems
  - F-measure: weighted harmonic mean of precision and recall,  $\alpha$  balances the trade-off

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} \quad \left(F_1 = \frac{2}{\frac{1}{P} + \frac{1}{R}}\right)$$

– Why harmonic mean?

- System1: P:0.53, R:0.36
- System2: P:0.01, R:0.99

Equal weight between precision and recall

### Evaluation of ranked retrieval results

- Ranked results are the core feature of an IR system
  - Precision, recall and F-measure are set-based measures, that cannot assess the ranking quality
  - Solution: evaluate precision at every recall point



## Precision-Recall curve

• A sawtooth shape curve



## Evaluation of ranked retrieval results

- Summarize the ranking performance with a single number
  - Binary relevance
    - Eleven-point interpolated average precision
    - Precision@K (P@K)
    - Mean Average Precision (MAP)
    - Mean Reciprocal Rank (MRR)
  - Multiple grades of relevance
    - Normalized Discounted Cumulative Gain (NDCG)

Eleven-point interpolated average precision

• At the 11 recall levels [0,0.1,0.2,...,1.0], compute arithmetic mean of interpolated precision over all the queries



## Precision@K

- Set a ranking position threshold K
- Ignores all documents ranked lower than K
- Compute precision in these top K retrieved documents



• In a similar fashion we have Recall@K

## Mean Average Precision

Consider rank position of each <u>relevant</u> doc

- E.g., K<sub>1</sub>, K<sub>2</sub>, ... K<sub>R</sub>

– E.g.,

- Compute P@K for each K<sub>1</sub>, K<sub>2</sub>, ... K<sub>R</sub>
- Average precision = average of those P@K



 MAP is the mean of Average Precision across multiple queries/rankings

## AvgPrec is about one query



## MAP is about a system



#### Query 1, AvgPrec=(1.0+0.67+0.5+0.44+0.5)/5=0.62 Query 2, AvgPrec=(0.5+0.4+0.43)/3=0.44 MAP = (0.62+0.44)/2=0.53

## MAP metric

- If a relevant document never gets retrieved, we assume the precision corresponding to that relevant document to be zero
- MAP is macro-averaging: each query counts equally
- MAP assumes users are interested in finding many relevant documents for each query
- MAP requires many relevance judgments in a text collection

## Mean Reciprocal Rank

- Measure the effectiveness of the ranked results
  - Suppose users are only looking for one relevant document
    - looking for a fact
    - known-item search
    - navigational queries
    - query auto completion
- Search duration ~ Rank of the answer
  - Measures a user's effort

## Mean Reciprocal Rank

- Consider the rank position, *K*, of the first relevant document
- Reciprocal Rank =  $\frac{1}{K}$
- MRR is the mean RR across multiple queries

## Beyond binary relevance

| Google                  | google daily query volume                                                                                                                                                                                                                                                                                                                       | ψ <mark>α</mark> |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
|                         | Web News Videos Images Shopping More - Search tools                                                                                                                                                                                                                                                                                             |                  |
|                         | About 5,910,000 results (0.42 seconds)                                                                                                                                                                                                                                                                                                          | IV               |
| Same P@6?!              | Google Search Statistics - Internet Live Stats<br>www.internetlivestats.com/google-search-statistics/ ▼<br>Historical search volume, growth rate, and Google's share of global search market<br>launched, Google was already answering 3.5 million search queries daily.                                                                        | Excellent        |
| <b>C C</b>              | Google Annual Search Statistics   Statistic Brain                                                                                                                                                                                                                                                                                               | Good <           |
| Same MAP?!              | The first funding for Google was an August 1998 contribution of US\$100,000 from<br>Year, Annual Number of Google Searches, Average Searches Per Day.                                                                                                                                                                                           |                  |
| Relevant<br>Nonrelevant | Insight into Google Search Query Numbers and What It<br>getstat.com/google-search-queries-the-numbers/<br>Jul 27, 2012 - Insights into the true meaning of Google Search Queries and the<br>numbers behind it Google has had an immense impact on how we operate in<br>everyday Each month, the sheer volume of queries it answers continues to | Fair             |
|                         | How many search queries does Google serve worldwide<br>www.quora.com/How-many-search-queries-does-Google-serve-w < Quora <<br>Answer 1 of 8: This is latest data that Matt Cutts update yesterday - Google has seen<br>more than 30 trillion URLs and crawls 20 billion pages a day. 3 billion                                                  | Fair <           |
|                         | Google Trends<br>www.google.com/trends/ ▼ Google ▼<br>50,000+ searches. Image Source - New York Daily News · David Wilson. 50,000+<br>searches. Image Source - NBCSports.com · Marilyn Burns. 20,000+ searches.                                                                                                                                 | Bad              |
| CS@UVa                  | Google Trends - Wikipedia, the free encyclopedia<br>en.wikipedia.org/wiki/Google_Trends ▼ Wikipedia ▼<br>Google Trends also allows the user to compare the volume of searches between the<br>information provided by Google Trends daily; Hot Plends in Date Houry 2. Because                                                                   | Bad 🧹            |

the relative frequency of certain queries is highly correlated with the ...

## Beyond binary relevance

- The level of documents' relevance quality with respect to a given query varies
  - Highly relevant documents are more useful than marginally relevant documents
  - The lower the ranked position of a relevant document is, the less useful it is for the user, since it is less likely to be examined
  - Discounted Cumulative Gain

## **Discounted Cumulative Gain**

- Uses graded relevance as a measure of usefulness, or gain, from examining a document
- Gain is accumulated starting at the top of the ranking and discounted at lower ranks
- Typical discount is 1/log (rank)
  - With base 2, the discount at rank 4 is 1/2, and at rank 8 it is 1/3

## **Discounted Cumulative Gain**

DCG is the total gain accumulated at a particular rank position p:
 Relevance label at position i

$$DCG_p = rel_1 + \sum_{i=2}^{P} \frac{rel_i^2}{\log_2 i}$$

• Alternative formulation  $\int_{i=2}^{2}$ 

$$DCG_p = \sum_{i=1}^{p} \frac{2^{rel_i} - 1}{\log_2(1+i)}$$

- Standard metric in some web search companies
- Emphasize on retrieving highly relevant documents

#### Normalized Discounted Cumulative Gain

- Normalization is useful for contrasting queries with varying numbers of relevant results
- Normalize DCG at rank n by the DCG value at rank n of the ideal ranking
  - The ideal ranking is achieved via ranking documents with their relevance labels

#### How about P@4, P@5, MAP and MRR? NDCG - Example

#### 5 documents: $d_1$ , $d_2$ , $d_3$ , $d_4$ , $d_5$

|   | Ground Truth      |                  | Ranking Function <sub>1</sub> |                  | Ranking Function <sub>2</sub> |                  |
|---|-------------------|------------------|-------------------------------|------------------|-------------------------------|------------------|
| i | Document<br>Order | rel <sub>i</sub> | Document<br>Order             | rel <sub>i</sub> | Document<br>Order             | rel <sub>i</sub> |
| 1 | d5                | 4                | d3                            | 2                | d5                            | 4                |
| 2 | d4                | 3                | d4                            | 3                | d3                            | 2                |
| 3 | d3                | 2                | d2                            | 1                | d4                            | 3                |
| 4 | d2                | 1                | d5                            | 4                | d1                            | 0                |
| 5 | d1                | 0                | d1                            | 0                | d2                            | 1                |

$$DCG_{GT} = \frac{2^{4}-1}{\log_{2} 2} + \frac{2^{3}-1}{\log_{2} 3} + \frac{2^{2}-1}{\log_{2} 4} + \frac{2^{1}-1}{\log_{2} 5} + \frac{2^{0}-1}{\log_{2} 6} = 21.35$$
$$DCG_{RF1} = \frac{2^{2}-1}{\log_{2} 2} + \frac{2^{3}-1}{\log_{2} 3} + \frac{2^{1}-1}{\log_{2} 4} + \frac{2^{4}-1}{\log_{2} 5} + \frac{2^{0}-1}{\log_{2} 6} = 14.38$$
$$DCG_{RF2} = \frac{2^{4}-1}{\log_{2} 2} + \frac{2^{2}-1}{\log_{2} 3} + \frac{2^{3}-1}{\log_{2} 4} + \frac{2^{0}-1}{\log_{2} 5} + \frac{2^{1}-1}{\log_{2} 6} = 20.78$$

CS@UVa

CS 4780: Information Retrieval

## Pop-up Quiz

#### Relevant documents: {A, B, C, D} Result ranking:

A D E G F C H

P@5, AP, RR, NDCG?

## What does query averaging hide?



Figure from Doug Oard's presentation, originally from Ellen Voorhees' presentation CS 4780: Information Retrieval

## Statistical significance tests

 How confident you are that an observed difference doesn't simply result from the particular queries you chose?

|              | Experime        | nt 1                  |              | Experime        | nt 2            |
|--------------|-----------------|-----------------------|--------------|-----------------|-----------------|
| <u>Query</u> | <u>System A</u> | <u>System B</u>       | <u>Query</u> | <u>System A</u> | <u>System B</u> |
| 1            | 0.20            | 0.40                  | 11           | 0.02            | 0.76            |
| 2            | 0.21            | 0.41                  | 12           | 0.39            | 0.07            |
| 3            | 0.22            | 0.42                  | 13           | 0.26            | 0.17            |
| 4            | 0.19            | 0.39                  | 14           | 0.38            | 0.31            |
| 5            | 0.17            | 0.37                  | 15           | 0.14            | 0.02            |
| 6            | 0.20            | 0.40                  | 16           | 0.09            | 0.91            |
| 7            | 0.21            | 0.41                  | 17           | 0.12            | 0.56            |
| Average      | 0.20            | 0.40<br>CS 4780: Info | Average      | 0.20            | 0.40            |

## Background knowledge

- *p*-value in statistic test is the probability of obtaining data as extreme as was observed, if the null hypothesis was true (e.g., if observation is totally random)
- If *p*-value is smaller than the chosen significance level (α), we reject the null hypothesis (e.g., observation is not random)
- We seek to reject the null hypothesis (we seek to show that the observation is a random result), and so small *p*-values are good

## Tests usually used in IR evaluations

- Sign test
  - Hypothesis: the difference median is zero between samples from two continuous distributions
- Wilcoxon signed rank test
  - Hypothesis: data are paired and come from the same population
- Paired *t*-test
  - Hypothesis: difference between two responses measured on the same statistical unit has a zero mean value
- One-tail v.s. two-tail?
  - If you aren't sure, use two-tail

## Statistical significance testing

| Query S                           | System A | <u>System B</u> | <u>Sign Test</u> | paired t-test |  |  |
|-----------------------------------|----------|-----------------|------------------|---------------|--|--|
| 11                                | 0.02     | 0.76            | +                | +0.74         |  |  |
| 12                                | 0.39     | 0.07            | -                | -0.32         |  |  |
| 13                                | 0.26     | 0.17            | -                | -0.09         |  |  |
| 14                                | 0.38     | 0.31            | -                | -0.07         |  |  |
| 15                                | 0.14     | 0.02            | -                | -0.12         |  |  |
| 16                                | 0.09     | 0.91            | +                | +0.82         |  |  |
| 17                                | 0.12     | 0.56            | +                | +0.44         |  |  |
| Average                           | 0.20     | 0.40            | <i>p</i> =0.7054 | p=0.2927      |  |  |
|                                   |          |                 | 95%              | 6 of outcomes |  |  |
|                                   |          |                 |                  |               |  |  |
|                                   |          |                 |                  |               |  |  |
| $\square$                         |          | •               |                  | /             |  |  |
| /a CS 4780: Information Retrieval |          |                 |                  |               |  |  |

## Where do we get the relevance labels?

- Human annotation
  - Domain experts, who have better understanding of retrieval tasks
    - Scenario 1: annotator lists the information needs, formalizes into queries, and judges the returned documents
    - Scenario 2: given query and associated documents, annotator judges the relevance by inferring the underlying information need

## Assessor consistency

- Is inconsistency of assessors a concern?
  - Human annotators are idiosyncratic and variable
  - Relevance judgments are subjective
- Studies mostly concluded that the inconsistency didn't affect <u>relative</u> comparison of systems
  - Success of an IR system depends on how good it is at satisfying the needs of these idiosyncratic humans
  - Lesk & Salton (1968): assessors mostly disagree on documents at lower ranks, but measures are more affected by top-ranked documents

## Measuring assessor consistency

• *kappa* statistic

A measure of agreement between judges

$$\kappa = \frac{P(A) - P(E)}{1 - P(E)}$$

- P(A) is the proportion of the times judges agreed
- *P*(*E*) is the proportion of times they would be expected to agree by chance
- $-\kappa = 1$  if two judges always agree
- $-\kappa = 0$  if two judges agree by chance
- $-\kappa < 0$  if two judges always disagree

## Example of kappa statistic

judge 2 relevance

|                      |       | Yes | No | Total |
|----------------------|-------|-----|----|-------|
| judge 1<br>relevance | Yes   | 300 | 20 | 320   |
|                      | No    | 10  | 70 | 80    |
|                      | Total | 310 | 90 | 400   |

$$P(A) = \frac{300 + 70}{400} = 0.925$$

$$P(E) = \left(\frac{80 + 90}{400 + 400}\right)^2 + \left(\frac{320 + 310}{400 + 400}\right)^2 = 0.2125^2 + 0.7878^2 = 0.665$$

$$\kappa = \frac{P(A) - P(E)}{1 - P(E)} = \frac{0.925 - 0.665}{1 - 0.665} = 0.776$$

## Prepare annotation collection

- Human annotation is expensive and time consuming
  - Cannot afford exhaustive annotation of large corpus
  - Solution: pooling
    - Relevance is assessed over a subset of the collection that is formed from the top k documents returned by a number of different IR systems

# Does pooling work?

- Judgments cannot possibly be exhaustive?
  - Relative rankings among the systems remain the same
- What about documents beyond top k?
  - Relative rankings among the systems remain the same
- A lot of research work can be done here
  - Effective pool construction
  - Depth v.s., diversity

## Details about sign test

| Query S | ystem A | <u>System B</u> | <u>Sign Test</u> |                                                              |
|---------|---------|-----------------|------------------|--------------------------------------------------------------|
| 11      | 0.02    | 0.76            | +                | Assumptions:                                                 |
| 12      | 0.39    | 0.07            | -                | 1) Comparisons are iid;                                      |
| 13      | 0.26    | 0.17            | -                | 2) Comparisons are ordinal.                                  |
| 14      | 0.38    | 0.31            | -                | $U \cdot W = D(m \cap \Gamma)$ where                         |
| 15      | 0.14    | 0.02            | -                | $H_0: W \sim B(m, 0.5)$ , where $W$ is the number of + sign. |
| 16      | 0.09    | 0.91            | +                | $H_1$ : A tends to be better or                              |
| 17      | 0.12    | 0.56            | +                | B tends to be better.                                        |
| Average | 0.20    | 0.40            | <i>p</i> =0.7054 |                                                              |
|         |         |                 |                  |                                                              |

## **Details about Wilcoxon Signed Test**

| <u>Query</u> | <u>System A</u> | <u>System B</u> |
|--------------|-----------------|-----------------|
| 11           | 0.02            | 0.76            |
| 12           | 0.39            | 0.07            |
| 13           | 0.26            | 0.17            |
| 14           | 0.38            | 0.31            |
| 15           | 0.14            | 0.02            |
| 16           | 0.09            | 0.91            |
| 17           | 0.12            | 0.56            |
| Average      | e 0.20          | 0.40            |

| <u>Wilcoxon Test</u> |                                                        |  |  |  |  |
|----------------------|--------------------------------------------------------|--|--|--|--|
| + 6<br>- 4           | Assumptions:<br>1) Comparisons are iid;                |  |  |  |  |
| - 2                  | 2) Comparisons are ordinal.                            |  |  |  |  |
| - 1<br>- 3           | $H_0$ : medians of the two samples are identical.      |  |  |  |  |
| + 7                  |                                                        |  |  |  |  |
| + 5                  | Sum of positive ranks: 18<br>Sum of negative ranks: 10 |  |  |  |  |

Critical value at N=7 is 3

## Details about paired t-test

| Ouerv   | System A | System B | Paired t-te      |
|---------|----------|----------|------------------|
|         |          |          |                  |
| 11      | 0.02     | 0.76     | +0.74            |
| 12      | 0.39     | 0.07     | -0.32            |
| 13      | 0.26     | 0.17     | -0.09            |
| 14      | 0.38     | 0.31     | -0.07            |
| 15      | 0.14     | 0.02     | -0.12            |
| 16      | 0.09     | 0.91     | +0.82            |
| 17      | 0.12     | 0.56     | +0.44            |
| Average | e 0.20   | 0.40     | <i>p</i> =0.2927 |
|         |          |          |                  |

#### ired t-test

Assumptions: 1) equal sample size and variance; or 2) equal sample size but different variances.

 $H_0$ : no difference in mean of the two sets.

## Rethink retrieval evaluation

• Goal of any IR system

- Satisfying users' information need

- Core <u>quality</u> measure criterion
  - "how well a system meets the information needs of its users." – wiki

## What we have considered

- The ability of the system to present all relevant documents
  - Recall-driven measures
- The ability of the system to withhold nonrelevant documents
  - Precision-driven measures

# Challenge the assumptions in classical IR evaluations

- Assumption 1
  - Satisfaction = Result Relevance
- Assumption 2
  - Relevance = independent topical relevance
    - Documents are independently judged, and then ranked (that is how we get the ideal ranking)
- Assumption 3

– Sequential browsing from top to bottom

## What we have not considered

• The physical form of the output

User interface

• The effort, intellectual or physical, demanded on the user

– User effort when using the system

• Bias IR research towards optimizing relevancecentric metrics

## What you should know

- Core criterion for IR evaluation
- Basic components in IR evaluation
- Classical IR metrics
- Statistical test
- Annotator agreement

# Today's reading

• Introduction to information retrieval

- Chapter 8: Evaluation in information retrieval