
Inverted Index

Hongning Wang
CS@UVa

Abstraction of search engine architecture

User

RankerIndexer

Doc Analyzer

Index results

Crawler

Doc Representation
Query Rep

(Query)

EvaluationFeedback

CS4780: Information Retrieval

Indexed corpus

Ranking procedure

CS@UVa 2

What we have now

• Documents have been
– Crawled from Web
– Tokenized/normalized
– Represented as Bag-of-Words

• Let’s do search!
– Query: “information retrieval”

information retrieval retrieved is helpful for you everyone

Doc1 1 1 0 1 1 1 0 1

Doc2 1 0 1 1 1 1 1 0

CS4780: Information RetrievalCS@UVa 3

Complexity analysis

• Space complexity analysis
– 𝑂(𝐷 ∗ 𝑉)
• D is total number of documents and V is vocabulary size

– Zipf’s law: each document only has about 10% of
vocabulary observed in it
• 90% of space is wasted!

– Space efficiency can be greatly improved by only
storing the occurred words

CS4780: Information Retrieval

Solution: linked list for each document

CS@UVa 4

Complexity analysis

• Time complexity analysis
– 𝑂(𝑞 ∗ 𝐷 ∗ |𝐷|)
• 𝑞 is the length of query, |𝐷| is the length of a document

doclist = []
for (wi in q) {

for (d in D) {
for (wj in d) {

if (wi == wj) {
doclist += [d];
break;

}
}

}
}
return doclist;

Bottleneck, since most
of them won’t match!

CS4780: Information RetrievalCS@UVa 5

Solution: inverted index

• Build a look-up table for each word in
vocabulary
– From word to documents!

information

retrieval

retrieved

is

helpful

for

you

everyone

Doc1 Doc2

Doc1

Doc2

Doc1 Doc2

Doc1 Doc2

Doc1 Doc2
Doc2

Doc1

Query:
information
retrieval

Time complexity:
• 𝑂(𝑞 ∗ |𝐿|), |𝐿| is the

average length of
posting list

• By Zipf’s law, 𝐿 ≪ 𝐷

Dictionary Postings

CS4780: Information RetrievalCS@UVa 6

Structures for inverted index

• Dictionary: modest size
– Needs fast random access
– Stay in memory
• Hash table, B-tree, trie, …

• Postings: huge
– Stay on disk
– Sequential access is expected
– Contain docID, term freq, term position, …
– Compression is needed

“Key data structure underlying
modern IR”

- Christopher D. Manning

CS4780: Information RetrievalCS@UVa 7

Sorting-based inverted index construction

Term
Lexicon:
1 the
2 cold
3 days
4 a
...

DocID
Lexicon:
1 doc1
2 doc2
3 doc3
...

...

doc1

doc2

doc300

<1,1,3>
<2,1,2>
<3,1,1>
...
<1,2,2>
<3,2,3>
<4,2,5>
…

<1,300,3>
<3,300,1>
...

Sort by docId

Parse & Count

<1,1,3>
<1,2,2>
<2,1,2>
<2,4,3>
...
<1,5,3>
<1,6,2>
…

<1,299,3>
<1,300,1>
...

Sort by termId

“Local” sort

<1,1,3>
<1,2,2>
<1,5,2>
<1,6,3>
...
<1,300,3>
<2,1,2>
…

<5000,299,1>
<5000,300,1>
...

Merge sort

All info about term 1
<Tuple>: <termID, docID, count>

CS4780: Information RetrievalCS@UVa 8

Sorting-based inverted index

• Challenges
– Document size exceeds memory limit

• Key steps
– Local sort: sort by termID
• For later global merge sort

– Global merge sort
• Preserve docID order: for later posting list join

Can index large corpus
with a single machine!
Also suitable for
MapReduce!

CS4780: Information RetrievalCS@UVa 9

A close look at inverted index

information

retrieval

retrieved

is

helpful

for

you

everyone

Doc1 Doc2

Doc1

Doc2

Doc1 Doc2

Doc1 Doc2

Doc1 Doc2
Doc2

Doc1

Dictionary Postings

Approximate search:
e.g., misspelled queries,
wildcard queries

Proximity search:
e.g., phrase queries

Index compression

Dynamic index update

CS4780: Information RetrievalCS@UVa 10

Dynamic index update

• Periodically rebuild the index
– Acceptable if change is small over time and

penalty of missing new documents is negligible

• Auxiliary index
– Keep index for new documents in memory
– Merge to index when size exceeds threshold
• Increase I/O operation
• Solution: multiple auxiliary indices on disk,

logarithmically merging

CS4780: Information RetrievalCS@UVa 11

Index compression

• Benefits
– Save storage space
– Increase cache efficiency
– Improve disk-memory transfer rate

• Target
– Postings file

CS4780: Information RetrievalCS@UVa 12

Basics in coding theory

• Expected code length
–

CS4780: Information Retrieval

Event P(X) Code

a 0.25 00

b 0.25 01

c 0.25 10

d 0.25 11

𝑬 𝑳 =$
𝒊

𝒑 𝒙𝒊 ×𝒍𝒊

𝑬 𝑳 = 𝟐

Event P(X) Code

a 0.75 00

b 0.10 01

c 0.10 10

d 0.05 11

𝑬 𝑳 = 𝟐

Event P(X) Code

a 0.75 0

b 0.10 10

c 0.10 111

d 0.05 110

𝑬 𝑳 = 𝟏. 𝟒

CS@UVa 13

Index compression

• Observation of posting files
– Instead of storing docID in posting, we store gap

between docIDs, since they are ordered
– Zipf’s law again:
• The more frequent a word is, the smaller the gaps are
• The less frequent a word is, the shorter the posting list

is

– Heavily biased distribution gives us great
opportunity of compression!

Information theory: entropy measures compression difficulty.

CS4780: Information RetrievalCS@UVa 14

Index compression

• Solution
– Fewer bits to encode small (high frequency)

integers
– Variable-length coding
• Unary: x³1 is coded as x-1 bits of 1 followed by 0, e.g.,

3=> 110; 5=>11110
• g-code: x=> unary code for 1+ëlog xû followed by

uniform code for x-2 ëlog xû in ëlog xû bits, e.g., 3=>101,
5=>11001
• d-code: same as g-code ,but replace the unary prefix

with g-code. E.g., 3=>1001, 5=>10101

CS4780: Information RetrievalCS@UVa 15

Index compression

• Example

CS4780: Information Retrieval

Data structure Size (MB)

Text collection 960.0

dictionary 11.2

Postings, uncompressed 400.0

Postings g-coded 101.0

Compression rate: (101+11.2)/960 = 11.7%

Table 1: Index and dictionary compression for Reuters-RCV1.
(Manning et al. Introduction to Information Retrieval)

CS@UVa 16

Search within in inverted index

• Query processing
– Parse query syntax
• E.g., Barack AND Obama, orange OR apple

– Perform the same processing procedures as on
documents to the input query
• Tokenization->normalization->stemming->stopwords

removal

CS4780: Information RetrievalCS@UVa 17

Search within inverted index

• Procedures
– Lookup query terms in the dictionary
– Retrieve the posting lists
– Operation
• AND: intersect the posting lists
• OR: union the posting list
• NOT: diff the posting list

CS4780: Information RetrievalCS@UVa 18

Search within inverted index

• Example: AND operation

Term1

Term2

!"#" $ # !% &" %$
&$! " & ' # !& "!

scan the postings

Time complexity: 𝑂(𝐿! + |𝐿"|)

Trick for speed-up: when performing multi-way
join, starts from lowest frequency term to highest
frequency ones

CS4780: Information RetrievalCS@UVa 19

Phrase query

• “computer science”
– “He uses his computer to study science problems”

is not a match!
– We need the phase to be exactly matched in

documents
– N-grams generally does not work for this
• Large dictionary size, how to break long phrase into N-

grams?
– We need term positions in documents
• We can store them in the inverted index

CS4780: Information RetrievalCS@UVa 20

Phrase query

• Generalized postings matching
– Equality condition check with requirement of

position pattern between two query terms
• e.g., T2.pos-T1.pos = 1 (T1 must be immediately before

T2 in any matched document)

– Proximity query: |T2.pos-T1.pos| ≤ k

!"#
&$

" $ # !% &" %$
! " & ' # !& "!

Term1

Term2

scan the postings

CS4780: Information RetrievalCS@UVa 21

More and more things are put into index

• Document structure
– Title, abstract, body, bullets, anchor

• Entity annotation
– Being part of a person’s name, location’s name

CS4780: Information RetrievalCS@UVa 22

Spelling correction

• Tolerate the misspelled queries
– “barck obama” -> “barack obama”

• Principles
– Of various alternative correct spellings of a

misspelled query, choose the nearest one
– Of various alternative correct spellings of a

misspelled query, choose the most common one

CS4780: Information RetrievalCS@UVa 23

Spelling correction

• Proximity between query terms
– Edit distance
• Minimum number of edit operations required to

transform one string to another
• Insert, delete, replace
• Tricks for speed-up

– Fix prefix length (error does not happen on the first letter)
– Build character-level inverted index, e.g., for length 3

characters
– Consider the layout of a keyboard

» E.g., ‘u’ is more likely to be typed as ‘y’ instead of ‘z’

CS4780: Information RetrievalCS@UVa 24

Spelling correction

• Proximity between query terms
– Query context
• “flew form IAD” -> “flew from IAD”

– Solution
• Enumerate alternatives for all the query terms
• Heuristics must be applied to reduce the search space

CS4780: Information RetrievalCS@UVa 25

Spelling correction

• Proximity between query terms
– Phonetic similarity
• “herman” -> “Hermann”

– Solution
• Phonetic hashing – similar-sounding terms hash to the

same value

CS4780: Information RetrievalCS@UVa 26

What you should know

• Inverted index for modern information
retrieval
– Sorting-based index construction
– Index compression

• Search in inverted index
– Phrase query
– Query spelling correction

CS4780: Information RetrievalCS@UVa 27

Today’s reading

• Introduction to Information Retrieval
– Chapter 2: The term vocabulary and postings lists
• Section 2.3, Faster postings list intersection via skip

pointers
• Section 2.4, Positional postings and phrase queries

– Chapter 4: Index construction
– Chapter 5: Index compression
• Section 5.2, Dictionary compression
• Section 5.3, Postings file compression

CS4780: Information RetrievalCS@UVa 28

