Language Models

Hongning Wang CS@UVa

Notion of Relevance

What is a statistical LM?

- A model specifying a probability distribution over word <u>sequences</u>
 - $-p("Today is Wednesday") \approx 0.001$

 - $-p("The eigenvalue is positive") \approx 0.00001$
- It can be regarded as a probabilistic mechanism for "generating" text, thus also called a "generative" model

Why is a LM useful?

- Provides a principled way to quantify the uncertainties associated with natural language
- Allows us to answer questions like:
 - Given that we see "John" and "feels", how likely will we see "happy" as opposed to "habit" as the next word?
 (speech recognition)
 - Given that we observe "baseball" three times and "game" once in a news article, how likely is it about "sports"?
 (text categorization, information retrieval)

 Given that a user is interested in sports news, how likely would the user use "baseball" in a query? (information retrieval)

Language model for text

We need independence assumptions!

- Probability distribution over word sequences
 - $-p(w_1 w_2 \dots w_n) =$ $p(w_1)p(w_2|w_1)p(w_3|w_1,w_2) \dots p(w_n|w_1,w_2,\dots,w_{n-1})$

- Complexity -
$$O(V^{n^*})$$

n^{*} - maximum document length sentence

Chain rule: from conditional probability to joint probability

- 475,000 main headwords in Webster's Third New International Dictionary
- Average English sentence length is 14.3 words
- A rough estimate: *0*(475000¹⁴)

How large is this? $\frac{475000^{14}}{8bytes \times (1024)^4} \approx 3.38e^{66}TB$

Unigram language model

 Generate a piece of text by generating each word <u>independently</u>

 $-p(w_1 w_2 \dots w_n) = p(w_1)p(w_2) \dots p(w_n)$

$$-s.t.\{p(w_i)\}_{i=1}^N$$
, $\sum_i p(w_i) = 1$, $p(w_i) \ge 0$

• Essentially a multinomial distribution over the vocabulary A Unigram Language Model

The simplest and most popular choice!

More sophisticated LMs

- N-gram language models
 - In general, $p(w_1 w_2 ... w_n) = p(w_1)p(w_2|w_1) ... p(w_n|w_1 ... w_{n-1})$
 - N-gram: conditioned only on the past N-1 words
 - E.g., bigram: $p(w_1 \dots w_n) = p(w_1)p(w_2|w_1) p(w_3|w_2) \dots p(w_n|w_{n-1})$
- Remote-dependence language models (e.g., Maximum Entropy model)
- Structured language models (e.g., probabilistic context-free grammar)

Why just unigram models?

- Difficulty in moving toward more complex models
 - They involve more parameters, so need more data to estimate
 - They increase the computational complexity significantly, both in time and space
- Capturing word order or structure may not add so much value for "topical inference"
- But, using more sophisticated models can still be expected to improve performance ...

Language models for IR [Ponte & Croft SIGIR'98]

Ranking docs by query likelihood

Retrieval as language model estimation

• Document ranking based on *query likelihood*

$$\log p(q \mid d) = \sum_{i} \log p(w_i \mid d)$$

where, $q = w_1 w_2 \dots w_n$ Document language model

- Retrieval problem \approx Estimation of $p(w_i|d)$
- Common approach
 - Maximum likelihood estimation (MLE)

Problem with MLE

Problem with MLE

- What probability should we give a word that has not been observed in the document?
 – log0?
- If we want to assign non-zero probabilities to such words, we'll have to discount the probabilities of observed words
- This is so-called "smoothing"

Illustration of language model smoothing

General idea of smoothing

- All smoothing methods try to
 - 1. Discount the probability of words seen in a document
 - 2. Re-allocate the extra counts such that unseen words will have a non-zero count

• Method 1: Additive smoothing

– Add a constant δ to the counts of each word

- Problems?
 - Hint: all words are equally important?

Add one smoothing for bigrams

Original:

Smoothed:

	1	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0
	i	want	to	eat	chinese	food	lunch	spend
i	i 6	want 828	to 1	eat 10	chinese 1	food 1	lunch 1	spend 3
i want	i 6 3	want 828 1	to 1 609	eat 10 2	chinese 1 7	food 1 7	lunch 1 6	spend 3 2
i want to	i 6 3 3	want 828 1 1	to 1 609 5	eat 10 2 687	chinese 1 7 3	food 1 7 1	lunch 1 6 7	spend 3 2 212
i want to eat	i 6 3 3 1	want 828 1 1 1	to 1 609 5 3	eat 10 2 687 1	chinese 1 7 3 17	food 1 7 1 3	lunch 1 6 7 43	spend 3 2 212 1
i want to eat chinese	i 6 3 3 1 2	want 828 1 1 1 1 1	to 1 609 5 3 1	eat 10 2 687 1 1	chinese 1 7 3 17 1	food 1 7 1 3 83	lunch 1 6 7 43 2	spend 3 2 212 1 1
i want to eat chinese food	i 6 3 1 2 16	want 828 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	to 1 609 5 3 1 16	eat 10 2 687 1 1 1	chinese 1 7 3 17 1 2	food 1 7 1 3 83 5	lunch 1 6 7 43 2 1	spend 3 212 1 1 1
i want to eat chinese food lunch	i 6 3 1 2 16 3	want 828 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	to 1 609 5 3 1 16 1	eat 10 2 687 1 1 1 1 1	chinese 1 7 3 17 1 2 1	food 1 7 1 3 83 5 2	lunch 1 6 7 43 2 1 1 1	spend 3 2 212 1 1 1 1 1

After smoothing

Giving too much to the unseen events without discrimination

Original:

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

Smoothed:

	1	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Refine the idea of smoothing

- Should all unseen words get equal probabilities?
- We can use a reference model to discriminate unseen words Discounted ML estimate

$$p(w|d) = \begin{cases} p_{seen}(w|d) & \text{if } w \text{ is seen in } d \\ \alpha_d p(w|REF) & \text{otherwise} \end{cases}$$

Reference language model
$$\alpha_d = \frac{1 - \sum_{w \text{ is seen}} p_{seen}(w|d)}{\sum_{w \text{ is unseen}} p(w|REF)}$$

- Method 2: Absolute discounting
 - Subtract a constant δ from the counts of each word

$$p(w|d) = \frac{\max(c(w;d) - \delta, 0) + \delta|d|_u p(w|REF)}{|d|}$$

- Problems?
 - Hint: varied document length?

- Method 3: Linear interpolation, Jelinek-Mercer
 - "Shrink" uniformly toward p(w|REF)

• Method 4: Dirichlet Prior/Bayesian

- Assume pseudo counts μp(w|REF)

$$p(w|d) = \frac{c(w;d) + \mu p(w|REF)}{|d| + \mu} = \frac{|d|}{|d| + \mu} \frac{c(w,d)}{|d|} + \frac{\mu}{|d| + \mu} p(w|REF)$$

$$parameter$$

$$- Problems?$$

Estimating μ using leave-one-out [Zhai & Lafferty 02]

So we should make p("the") and p("for") less different for all docs, 2.35×10^{-13} and smoothing helps to achieve this goal... 4.53×10^{-13}

After smoothing with $p(w|d) = 0.1p_{DML}(w|d) + 0.9p(w|REF)$, p(q|d1) < p(q|d2)!

Query	= "the	algorithms	for	data	mining"
P(w REF)	0.2	0.00001	0.2	0.00001	0.00001
Smoothed p(w d1)	0.184	0.000109	0.182	0.000209	0.000309
Smoothed p(w d2)	. 0.182	0.000109	0.181	0.000309	0.000409

Two-stage smoothing [Zhai & Lafferty 02]

Stage-1

Explain unseen wordsDirichlet prior (Bayesian)

Stage-2

-Explain noise in query -2-component mixture

Smoothing & TF-IDF weighting

Smoothed ML estimate

Similar rewritings are very common when using probabilistic models for IR...

Understanding smoo $\alpha_d = \frac{1 - \sum_{w \text{ is seen}} p_{seen}(w|d)}{\sum_{w \text{ is seen}} p(w|REF)}$

 Plug in the general smoothing scheme to the query likelihood retrieval formula, we obtain

Smoothing with p(w|C) ≈ TF-IDF + doclength normalization

What you should know

- How to estimate a language model
- General idea and different ways of smoothing
- Effect of smoothing

Today's reading

- Introduction to information retrieval
 - Chapter 12: Language models for information retrieval

Source-Channel framework [Shannon 48]

 $\hat{X} = \underset{X}{\operatorname{argmax}} p(X | Y) = \underset{X}{\operatorname{argmax}} p(Y | X) p(X)$ (Bayes Rule)

When X is text, p(X) is a language model

Many Examples:

Speech recognition:	X=Word sequence	Y=Speech signal
Machine translation:	X=English sentence	Y=Chinese sentence
OCR Error Correction:	X=Correct word	Y= Erroneous word
Information Retrieval:	X=Document	Y=Query
Summarization:	X=Summary	Y=Document

Some background knowledge

- Conjugate prior
 - Posterior dist in the same family as prior
- Dirichlet distribution
 - Continuous
 - Samples from it will be the parameters in a multinomial distribution

Gaussian -> Gaussian Beta -> Binomial Dirichlet -> Multinomial

Dirichlet prior smoothing

likelihood of doc given the model

• Bayesian estimator

prior over models

- Posterior of LM: $p(\theta|d) \propto p(d|\theta)p(\theta)$
- Conjugate prior
 - Posterior will be in the same form as prior
 - Prior can be interpreted as "extra"/"pseudo" data
- Dirichlet distribution is a conjugate prior for multinomial distribution

$$Dir(\theta \mid \alpha_1, \dots, \alpha_N) = \frac{\Gamma(\alpha_1 + \dots + \alpha_N)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_N)} \prod_{i=1}^N \theta_i^{\alpha_i - 1}$$

"extra"/"pseudo" word counts, we set $\alpha_i = \mu p(w_i | REF)$

Dirichlet prior smoothing (cont)

Posterior distribution of parameters:

$$p(\theta \mid d) = Dir(\theta \mid c(w_1) + \alpha_1, \dots, c(w_N) + \alpha_N)$$

Property: If $\theta \sim Dir(\theta \mid \alpha)$, then $E(\theta) = \{\frac{\alpha_i}{\sum \alpha_i}\}$

The predictive distribution is the same as the mean:

