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Notion of relevance
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Relevance
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Basic concepts in probability 

• Random experiment 
– An experiment with uncertain outcome (e.g., tossing a coin, picking a 

word from text)

• Sample space (S)
– All possible outcomes of an experiment, e.g., tossing 2 fair 

coins, S={HH, HT, TH, TT}
• Event (E)
– EÍS, E happens iff outcome is in S, e.g., E={HH} (all heads), 

E={HH,TT} (same face)
– Impossible event ({}), certain event (S)

• Probability of event
– 0 ≤ P(E) ≤ 1
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Essential probability concepts

• Probability of events
– Mutually exclusive events
• 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃(𝐵)

– General events
• 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃(𝐴 ∩ 𝐵)

– Independent events
• 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑃 𝐵
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Joint probability, or 
simply as 𝑃(𝐴, 𝐵)
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Essential probability concepts
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• Conditional probability
– 𝑃 𝐵 𝐴 = 𝑃(𝐴, 𝐵)/𝑃 𝐴
– Bayes’ Rule: 𝑃 𝐵 𝐴 = 𝑃 𝐴 𝐵 𝑃(𝐵)/𝑃 𝐴

– For independent events, 𝑃 𝐵 𝐴 = 𝑃(𝐵)

• Total probability
– If 𝐴1, … , 𝐴) form a non-overlapping partition of S

• 𝑃(𝐵Ç𝑆) = 𝑃(𝐵Ç𝐴1) + ⋯+ 𝑃(𝐵Ç𝐴!)

• 𝑃 𝐴𝑖 𝐵 = ! 𝐵 𝐴𝑖 ! "!
! 𝐵 𝐴1 ! "" #⋯#! 𝐵 𝐴𝑛 ! "#

∝ 𝑃 𝐵 𝐴% 𝑃(𝐴%)

• This allows us to compute 𝑃(𝐴𝑖|𝐵) based on 𝑃(𝐵|𝐴%)
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Interpretation of Bayes’ rule

)()|()|( iii HPHEPEHP µ
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Hypothesis space: 𝐻 = {𝐻1 , … , 𝐻𝑛},     Evidence: 𝐸

If we want to pick the most likely hypothesis H*,  we can drop 𝑃(𝐸)

Posterior probability of 𝑯𝒊 Prior probability of 𝑯𝒊

Likelihood of data/evidence given 𝑯𝒊

𝑃 𝐻" 𝐸 =
𝑃 𝐸 𝐻" 𝑃(𝐻")

𝑃(𝐸)
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Theoretical justification of ranking

• As stated by William Cooper

– Rank by probability of relevance leads to the 
optimal retrieval effectiveness
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“If a reference retrieval system’s response to each request is a ranking of the 
documents in the collections in order of decreasing probability of 
usefulness to the user who submitted the request, where the probabilities are 
estimated as accurately as possible on the basis of whatever data made 
available to the system for this purpose, then the overall effectiveness of the 
system to its users will be the best that is obtainable on the basis of that 
data.”
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Justification

• From decision theory
– Two types of loss
• Loss(retrieved|non-relevant)=𝑎#
• Loss(not retrieved|relevant)=𝑎$

– 𝜙(𝑑, , 𝑞): probability of 𝑑, being relevant to 𝑞
– Expected loss regarding to the decision of 

including 𝑑, in the final results
• Retrieve: 1 − 𝜙 𝑑", 𝑞 𝑎#
• Not retrieve: 𝜙 𝑑", 𝑞 𝑎$
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Your decision criterion?
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Justification

• From decision theory
– We make decision by
• If 1 − 𝜙 𝑑", 𝑞 𝑎#<𝜙 𝑑", 𝑞 𝑎$, retrieve 𝑑"
• Otherwise, not retrieve 𝑑"

– Check if 𝜙 𝑑, , 𝑞 > -!
-!.-"

– Rank documents by descending order of 𝜙 𝑑, , 𝑞
would minimize the loss
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According to PRP, what we need is

• A relevance measure function F(q,d) 
– For all q, d1, d2,  

F(q,d1) > F(q,d2) iff. p(Rel|q,d1) >p(Rel|q,d2)
– Assumptions
• Independent relevance 
• Independent loss
• Sequential browsing
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Most existing research on IR models so far has fallen into 
this line of thinking… (Limitations?) 

CS@UVa 10



Probability of relevance

• Three random variables
– Query Q
– Document D
– Relevance R Î {0,1}

• Goal: rank D based on P(R=1|Q,D)
– Compute P(R=1|Q,D)
– Actually, one only needs to compare P(R=1|Q,D1) 

with P(R=1|Q,D2), i.e., rank documents
• Several different ways to define P(R=1|Q,D) 
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Conditional models for P(R=1|Q,D) 

• Basic idea: relevance depends on how well a 
query matches a document
– P(R=1|Q,D)=g(Rep(Q,D),q)
• Rep(Q,D): feature representation of query-doc pair

– E.g., #matched terms, highest IDF of a matched term, docLen

– Using training data (with known relevance 
judgments) to estimate parameter q

– Apply the model to rank new documents

• Special case: logistic regression

CS 4780: Information Retrieval

a functional form
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Regression for ranking?

• Linear regression
– 𝑦 ← 𝑤/𝑋
– Relationship between a scalar dependent variable 
𝑦 and one or more explanatory variables

CS 4780: Information Retrieval

In a ranking problem:
𝑋 features about query-document pair
𝑦 relevance label of document for the given query
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Features/Attributes for ranking

• Typical features considered in ranking 
problems
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Regression for ranking

• Linear regression
– 𝑦 ← 𝑤/𝑋
– Relationship between a scalar dependent variable 
𝑦 and one or more explanatory variables
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Optimal 
regression model

x

y

Y is discrete in a ranking 
problem!

What if we have 
an outlier? 

1.00

0.50

0.25

0.00

0.75
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Regression for ranking

• Logistic regression

– P(R=1|Q,D) = 𝜎 𝑤/𝑋 = 0
0.123(45#6)

– Directly modeling posterior of document 
relevance
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x

P(y|x)

1.00

0.50

0.25

0.00

0.75

What if we have 
an outlier? 

Sigmoid function
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Conditional models for P(R=1|Q,D)
Pros & Cons

• Advantages
– Absolute probability of relevance available
– May re-use all the past relevance judgments

• Problems
– Performance heavily depends on the selection of 

features
– Little guidance on feature selection

• Will be covered with more details in later 
learning-to-rank discussions
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Recap: TF-IDF weighting

• Combining TF and IDF 
– Common in doc à high tf à high weight
– Rare in collectionà high idfà high weight
– 𝑤 𝑡, 𝑑 = 𝑇𝐹 𝑡, 𝑑 ×𝐼𝐷𝐹(𝑡)

• Most well-known document representation 
schema in IR! (G Salton et al. 1983)

“Salton was perhaps the 
leading computer scientist 
working in the field of 
information retrieval during his 
time.” - wikipedia

Gerard Salton Award
– highest achievement award in IR

CS@UVa CS 4780: Information Retrieval 18
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Recap: probabilistic ranking principle

• From decision theory
– We make decision by
• If 1 − 𝜙 𝑑", 𝑞 𝑎#<𝜙 𝑑", 𝑞 𝑎$, retrieve 𝑑"
• Otherwise, not retrieve 𝑑"

– Check if 𝜙 𝑑, , 𝑞 > -!
-!.-"

– Rank documents by descending order of 𝜙 𝑑, , 𝑞
would minimize the loss
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Recap: conditional models for 
P(R=1|Q,D) 

• Basic idea: relevance depends on how well a 
query matches a document
– P(R=1|Q,D)=g(Rep(Q,D),q)
• Rep(Q,D): feature representation of query-doc pair

– E.g., #matched terms, highest IDF of a matched term, docLen

– Using training data (with known relevance 
judgments) to estimate parameter q

– Apply the model to rank new documents

• Special case: logistic regression

CS 4780: Information Retrieval

a functional form
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Generative models for P(R=1|Q,D)

• Basic idea
– Compute Odd(R=1|Q,D) using Bayes’ rule

• Assumption
– Relevance is a binary variable

• Variants
– Document “generation”

• P(Q,D|R)=P(D|Q,R)P(Q|R)
– Query “generation”

• P(Q,D|R)=P(Q|D,R)P(D|R)

CS 4780: Information Retrieval
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Document generation model

CS 4780: Information Retrieval

)0,|(
)1,|(

)0|()0,|(
)1|()1,|(

)0|,(
)1|,(),|1(

=
=

µ

==
==

=

=
=

µ=

RQDP
RQDP

RQPRQDP
RQPRQDP

RDQP
RDQPDQROdd

Model of relevant docs for Q
Model of non-relevant docs for Q

Assume independent attributes of A1…Ak ….(why?)
Let D=d1…dk, where dk Î{0,1} is the value of attribute Ak (Similarly Q=q1…qk )

ÕÕ

Õ

====

=

==
==

==
==

=

==
==

µ=

k

di i

i
k

di i

i

k

i ii

ii

ii
RQAP
RQAP

RQAP
RQAP
RQdAP
RQdAPDQROdd

0,11,1

1

)0,|0(
)1,|0(

)0,|1(
)1,|1(
)0,|(
)1,|(),|1(

Terms occur in doc
Terms do not occur in doc

document relevant(R=1) nonrelevant(R=0)

term present Ai=1 pi ui

term absent  Ai=0 1-pi 1-ui

Ignored for rankinginformation retrieval retrieved is helpful for you everyone

Doc1 1 1 0 1 1 1 0 1
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Document generation model

CS 4780: Information Retrieval

ÕÕ

ÕÕ

ÕÕ

Õ

=====

======

====

=

-
-

-
-

=

-
-

»

==
==

==
==

=

==
==

µ=

k

qi i

i
k

qdi ii

ii

k

qdi i

i
k

qdi i

i

k

di i

i
k

di i

i

k

i ii

ii

iii

iiii

ii

u
p

pu
up

u
p

u
p

RQAP
RQAP

RQAP
RQAP
RQdAP
RQdAPDQROdd

1,11,1

1,0,11,1

0,11,1

1

1
1

)1(
)1(

1
1

)0,|0(
)1,|0(

)0,|1(
)1,|1(
)0,|(
)1,|(),|1(

Terms occur in doc
Terms do not occur in doc

document relevant(R=1) nonrelevant(R=0)

term present Ai=1 pi ui

term absent  Ai=0 1-pi 1-ui

Assumption: terms not occurring in 
the query are equally likely to 
occur in relevant and nonrelevant
documents, i.e., pt=ut

Important tricks
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Robertson-Sparck Jones Model
(Robertson & Sparck Jones 76)
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Two parameters for each term Ai: 
pi = P(Ai=1|Q,R=1): prob. that term Ai occurs in a relevant doc   
ui = P(Ai=1|Q,R=0): prob. that term Ai occurs in a non-relevant doc  
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How to estimate these parameters?
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• “+0.5” and “+1” can be justified by Bayesian estimation as priors 
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Parameter estimation

• General setting:
– Given a (hypothesized & probabilistic) model that 

governs the random experiment
– The model gives probability of any data 𝑝(𝐷|𝜃) that 

depends on the parameter 𝜃
– Now, given actual sample data X={x1,…,xn},  what can 

we say about the value of 𝜃?
• Intuitively, take our best guess of 𝜃 -- “best” 

means “best explaining/fitting the data”
• Generally an optimization problem
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Maximum likelihood vs. Bayesian
• Maximum likelihood estimation
– “Best” means “data likelihood reaches maximum”

– Issue: small sample size
• Bayesian estimation 
– “Best” means being consistent with our “prior” 

knowledge and explaining data well

– A.k.a, Maximum a Posterior estimation
– Issue: how to define prior?

CS 4780: Information Retrieval

7𝜽 = 𝐚𝐫𝐠𝐦𝐚𝐱𝜽𝐏(𝐗|𝜽)

7𝜽 = 𝐚𝐫𝐠𝐦𝐚𝐱𝜽𝑷 𝜽 𝑿 = 𝐚𝐫𝐠𝐦𝐚𝐱𝜽𝐏 𝐗 𝜽 𝐏(𝜽)

ML: Frequentist’s point of view

MAP: Bayesian’s point of view
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Illustration of Bayesian estimation
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Prior: p(q)

Likelihood:
p(X|q) X=(x1,…,xN)

Posterior:
p(q|X)µ p(X|q)p(q)

q

qa: prior mode 
qml: ML estimateq: posterior mode 
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Maximum likelihood estimation

• Data: a document d with counts c(w1), …, c(wN)
• Model: multinomial distribution p(𝑊|𝜃) with parameters 
𝜃" = 𝑝(𝑤")

• Maximum likelihood estimator: H𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝(𝑊|𝜃)

CS 4780: Information Retrieval

Using Lagrange multiplier approach, 
we’ll tune 𝜽𝒊 to maximize 𝑳(𝑾, 𝜽)

Set partial derivatives to zero

ML estimate
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Requirement from probability

information
20%

retrieval
10%

computer
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science
31%

relevant
1%

literature
8%

information retrieval computer science relevant literature
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Robertson-Sparck Jones Model
(Robertson & Sparck Jones 76)

CS 4780: Information Retrieval

Two parameters for each term Ai: 
pi = P(Ai=1|Q,R=1): prob. that term Ai occurs in a relevant doc   
ui = P(Ai=1|Q,R=0): prob. that term Ai occurs in a non-relevant doc  
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How to estimate these parameters?
Suppose we have relevance judgments,

1).(#
5.0).(#ˆ

1).(#
5.0).(#ˆ

+
+

=
+

+
=

docnonrel
Awithdocnonrelu

docrel
Awithdocrelp i

i
i

i

• “+0.5” and “+1” can be justified by Bayesian estimation as priors 

Per-query estimation!
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RSJ Model without relevance info
(Croft & Harper 79)
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Suppose we do not have relevance judgments,
- We will assume pi to be a constant 
- Estimate ui by assuming all documents to be non-relevant
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IDF weighted Boolean model?
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Reminder:

information retrieval retrieved is helpful for you everyone

Doc1 1 1 0 1 1 1 0 1

Doc2 1 0 1 1 1 1 1 0

CS@UVa 30



RSJ Model: summary

• The most important classical probabilistic IR 
model

• Use only term presence/absence, thus also 
referred to as Binary Independence Model
– Essentially Naïve Bayes for doc ranking
– Designed for short catalog records

• When without relevance judgments, the model 
parameters must be estimated in an ad-hoc way

• Performance isn’t as good as tuned VS models
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Improving RSJ: adding TF 
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Let D=d1…dk, where dk is the frequency count of term  Ak
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2-Poisson mixture model for TF

Many more parameters to estimate! 
Compound with document length!

Eliteness: if the term is about 
the concept asked in the query
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BM25/Okapi approximation
(Robertson et al. 94)

• Idea: model p(D|Q,R) with a simpler function 
that approximates 2-Possion mixture model

• Observations:
– log O(R=1|Q,D) is a sum of term weights occurring 

in both query and document
– Term weight Wi= 0, if TFi=0
– Wi increases monotonically with TFi

– Wi has an asymptotic limit
• The simple function is 
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Adding doc. length

• Incorporating doc length
– Motivation: the 2-Poisson model assumes equal 

document length
– Implementation: penalize long doc
•

CS 4780: Information Retrieval
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Adding query TF

• Incorporating query TF
– Motivation
• Natural symmetry between document and query

– Implementation: a similar TF transformation as in 
document TF

• The final formula is called BM25, achieving top 
TREC performance
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The BM25 formula 
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“Okapi TF/BM25 TF”

becomes IDF when no 
relevance info is available
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The BM25 formula 

• A closer look

– 𝑏 is usually set to [0.75, 1.2]
– 𝑘0is usually set to [1.2, 2.0]
– 𝑘7 is usually set to (0, 1000]
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Vector space model 
with TF-IDF schema!
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Extensions of “Doc Generation” models

• Capture term dependence [Rijsbergen & Harper 78]

• Alternative ways to incorporate TF [Croft 83, Kalt96]

• Feature/term selection for feedback [Okapi’s TREC 
reports]

• Estimate of the relevance model based on 
pseudo feedback [Lavrenko & Croft 01]
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to be covered later  
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Query generation models
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Assuming uniform document prior, we have
)1,|(),|1( =µ= RDQPDQRO

Now, the question is how to compute                            ?)1,|( =RDQP

Generally involves two steps:
(1) estimate a language model based on D
(2) compute the query likelihood according to the estimated model

Language models, we will cover it in the next lecture!

Query likelihood p(q| qd) Document prior
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What you should know

• Essential concepts in probability
• Justification of ranking by relevance
• Derivation of RSJ model
• Maximum likelihood estimation
• BM25 formula
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Today’s reading

• Chapter 11. Probabilistic information retrieval
– 11.2 The Probability Ranking Principle
– 11.3 The Binary Independence Model
– 11.4.3 Okapi BM25: a non-binary model
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