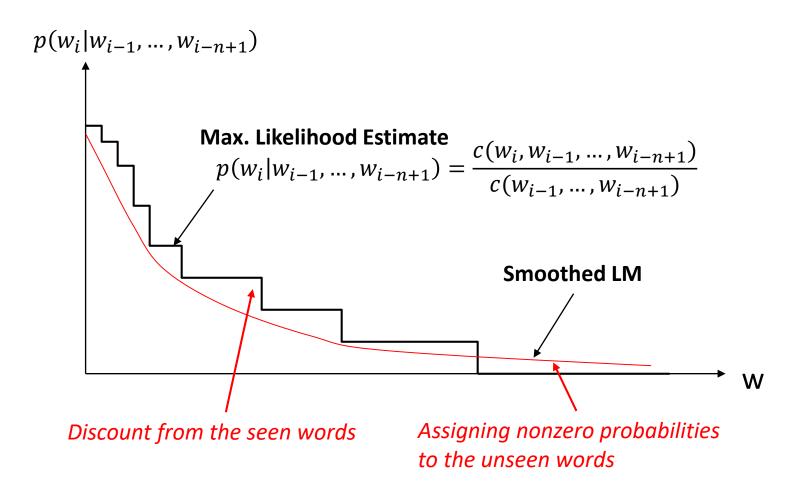
Recap: maximum likelihood estimation

- Data: a collection of words, w_1, w_2, \dots, w_n
- Model: multinomial distribution p(W) with parameters $\theta_i = p(w_i)$, i.e., unigram language model
- Maximum likelihood estimator: $\hat{\theta} = argmax_{\theta}p(W|\theta)$ $p(W|\theta) = \binom{N}{c(w_1), \dots, c(w_N)} \prod_{i=1}^{N} \theta_i^{c(w_i)} \propto \prod_{i=1}^{N} \theta_i^{c(w_i)} \Longrightarrow \log p(W|\theta) = \sum_{i=1}^{N} c(w_i) \log \theta_i$ $\Rightarrow L(W,\theta) = \sum_{i=1}^{N} c(w_i) \log \theta_i + \lambda \left(\sum_{i=1}^{N} \theta_i - 1 \right)$ Using Lagrange multiplier approach, we'll tune θ_i to maximize $L(W,\theta)$ $\Rightarrow \quad \frac{\partial L}{\partial \theta_i} = \frac{c(w_i)}{\theta_i} + \lambda \quad \rightarrow \quad \theta_i = -\frac{c(w_i)}{\lambda}$ Set partial derivatives to zero Since $\sum_{i=1}^{N} \theta_i = 1$ we have $\lambda = -\sum_{i=1}^{N} c(w_i)$ **Requirement from probability** $\mathbf{P}_{S@UV_{i}} = \frac{c(w_{i})}{\sum_{i=1}^{N} c(w_{i})}$ **ML** estimate CS 6501: Text Mining 1

Recap: illustration of N-gram language model smoothing



Recap: perplexity

 The inverse of the likelihood of the test set as assigned by the language model, normalized by the number of words

$$PP(w_1, \dots, w_N) = \sqrt[N]{\frac{1}{\prod_{i=1}^N p(w_i | w_{i-1}, \dots, w_{i-n+1})}}$$

N-gram language model

Latent Semantic Analysis

Hongning Wang CS@UVa

VS model in practice

- Document and query are represented by <u>term</u> vectors
 - Terms are not necessarily <u>orthogonal</u> to each other
 - Synonymy: car v.s. automobile
 - Polysemy: fly (action v.s. insect)

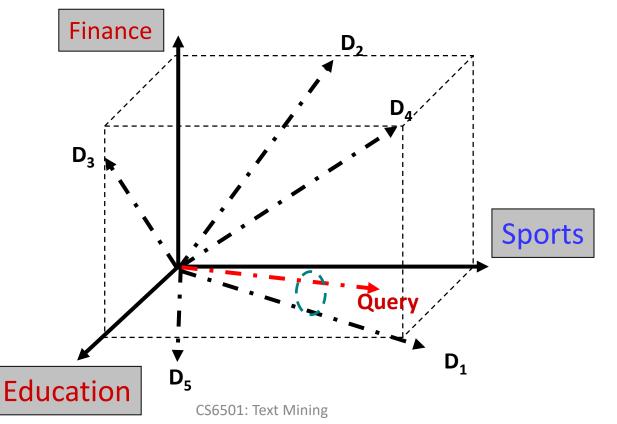
Access	Document	Retrieval	Information	Theory	Database	Indexing	Computer	REL	MATCH
x	x	x			x	x		R	
			x*	x			x*		М
		x	x *				x*	R	м
	Access x	x x	x x x x	x x x x* x x*	x x x x* x x x* x	x x x x x x x* x x x*	x x x x x x x x x x x x x x x x x x x	x x x x x x x x* x x x* x x* x x*	x x

TABLE 1. Sample term by document matrix.*

"Query: "IDF in computer-based information look-up"

Choosing basis for VS model

- A concept space is preferred
 - Semantic gap will be bridged



How to build such a space

- Automatic term expansion
 - Construction of thesaurus
 - WordNet
 - Clustering of words
- Word sense disambiguation
 - Dictionary-based
 - Relation between a pair of words should be similar as in text and dictionary's description
 - Explore word usage context

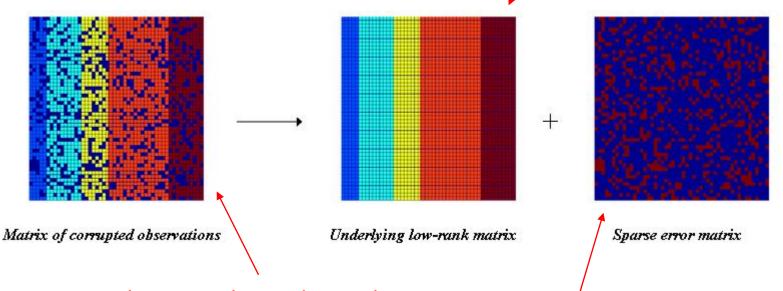
How to build such a space

- Latent Semantic Analysis
 - Assumption: there is some underlying latent semantic structure in the data that is partially obscured by the randomness of word choice with respect to text generation
 - It means: the observed term-document association data is contaminated by random noise

How to build such a space

Solution

– Low rank matrix approximation



Imagine this is our observed term-document matrix

Random noise over the word selection in each document

Imagine this is **true*^{*} concept-document matrix

Latent Semantic Analysis (LSA)

- Low rank approximation of term-document matrix $C_{M \times N}$
 - Goal: remove noise in the observed termdocument association data
 - Solution: find a matrix with rank k which is closest to the original matrix in terms of Frobenius norm

$$\hat{Z} = \underset{Z|rank(Z)=k}{\operatorname{argmin}} \|C - Z\|_{F}$$
$$= \underset{Z|rank(Z)=k}{\operatorname{argmin}} \sqrt{\sum_{i=1}^{M} \sum_{j=1}^{N} (C_{ij} - Z_{ij})^{2}}$$

Basic concepts in linear algebra

• Symmetric matrix

 $-C = C^T$

- Rank of a matrix
 - The number of linearly independent rows (columns) in a matrix $C_{M \times N}$

 $-rank(C_{M \times N}) \le \min(M, N)$

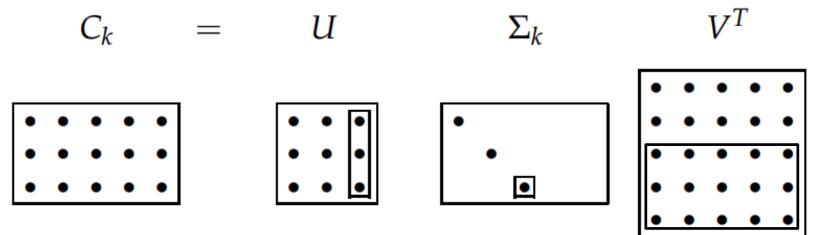
Basic concepts in linear algebra

• Eigen system

- For a square matrix $C_{M \times M}$
- If $Cx = \lambda x$, x is called the right eigenvector of C and λ is the corresponding eigenvalue
- For a symmetric full-rank matrix $C_{M \times M}$
 - We have its eigen-decomposition as
 - $C = Q\Lambda Q^T$
 - where the columns of Q are the orthogonal and normalized eigenvectors of C and Λ is a diagonal matrix whose entries are the eigenvalues of C

Basic concepts in linear algebra

• Singular value decomposition (SVD)



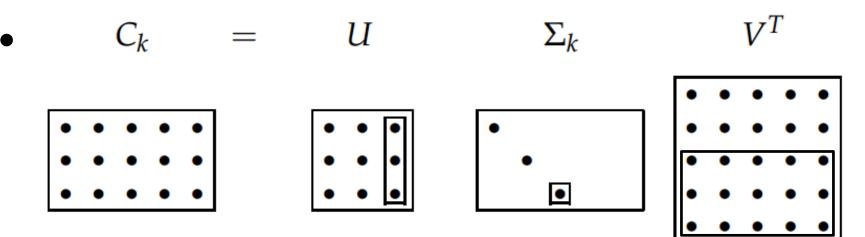
- We define $C_{M \times N}^k = U_{M \times k} \Sigma_{k \times k} V_{N \times k}^T$

• where we place Σ_{ii} in a descending order and set $\Sigma_{ii} = \sqrt{\lambda_i}$ for $i \le k$, and $\Sigma_{ii} = 0$ for i > k

Latent Semantic Analysis (LSA)

- Solve LSA by SVD $\begin{aligned}
 \hat{Z} &= \underset{Z|r \neq i}{\operatorname{arganismin}} - \| \mathcal{D}_{F} - Z \|_{F} \\
 &= \underset{Z|r \neq i}{\operatorname{arganismin}} \sum_{i=1}^{M} \sum_{j=1}^{NM} \left(\mathcal{D}_{ij}^{2} - Z_{ij} \right)^{2} \\
 &= \underbrace{C}_{M \in M}^{k} \times N
 \end{aligned}$
 - Procedure of LSA
 - 1. Perform SVD on document-term adjacency matrix
 - 2. Construct $C_{M \times N}^k$ by only keeping the largest k singular values in Σ non-zero

Latent Semantic Analysis (LSA)



•
$$D = (U\Sigma V^T) \times (U\Sigma V^T)^T = U\Sigma^2 U^T$$

- Eigen-decomposition of document-document similarity matrix
- d'_i s new representation is then $(U\Sigma)_i$ in this system(space)
- In the lower dimensional space, we will only use the first k elements in $(U\Sigma)_i$ to represent d_i

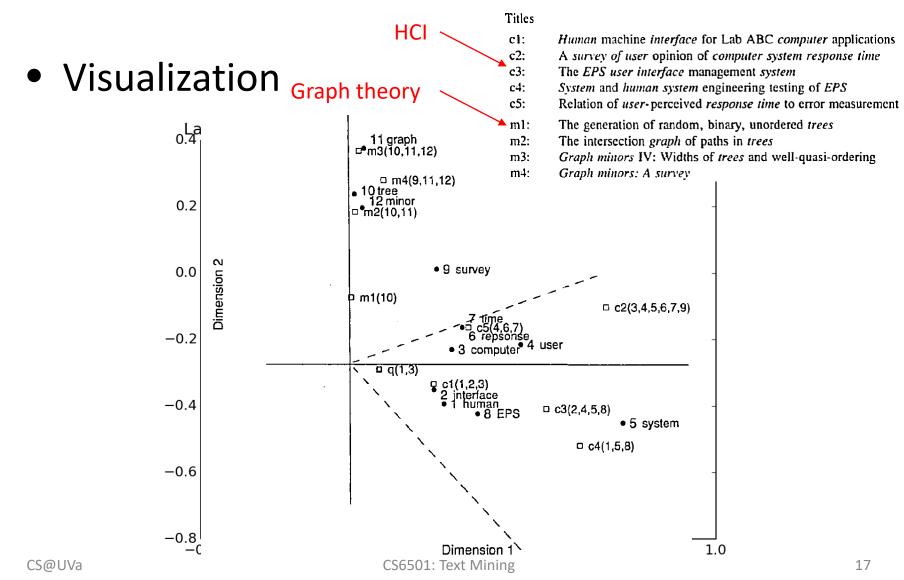
- The same analysis applies to $T_{N \times N} = C_{M \times N}^T \times C_{M \times N}$

Geometric interpretation of LSA

- $C_{M \times N}^{k}(i, j)$ measures the relatedness between d_i and w_j in the k-dimensional space
- Therefore

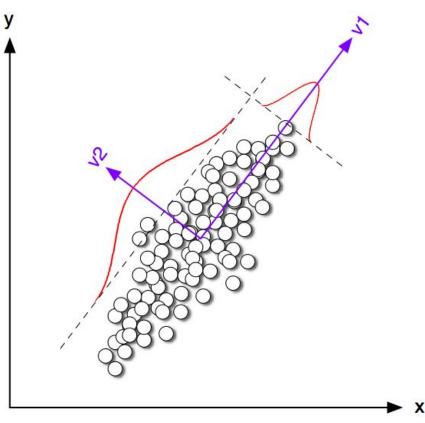
$$- \operatorname{As} C_{M \times N}^{k} = U_{M \times k} \Sigma_{k \times k} V_{N \times k}^{T}$$
$$- d_{i} \text{ is represented as } \left(U_{M \times k} \Sigma_{k \times k}^{\frac{1}{2}} \right)_{i}$$
$$- w_{j} \text{ is represented as } \left(V_{N \times k} \Sigma_{k \times k}^{\frac{1}{2}} \right)_{j}$$

Latent Semantic Analysis (LSA)



What are those dimensions in LSA

• Principle component analysis



Latent Semantic Analysis (LSA)

- What we have achieved via LSA
 - Terms/documents that are closely associated are placed near one another in this new space
 - Terms that do not occur in a document may still close to it, if that is consistent with the major patterns of association in the data
 - A good choice of concept space for VS model!

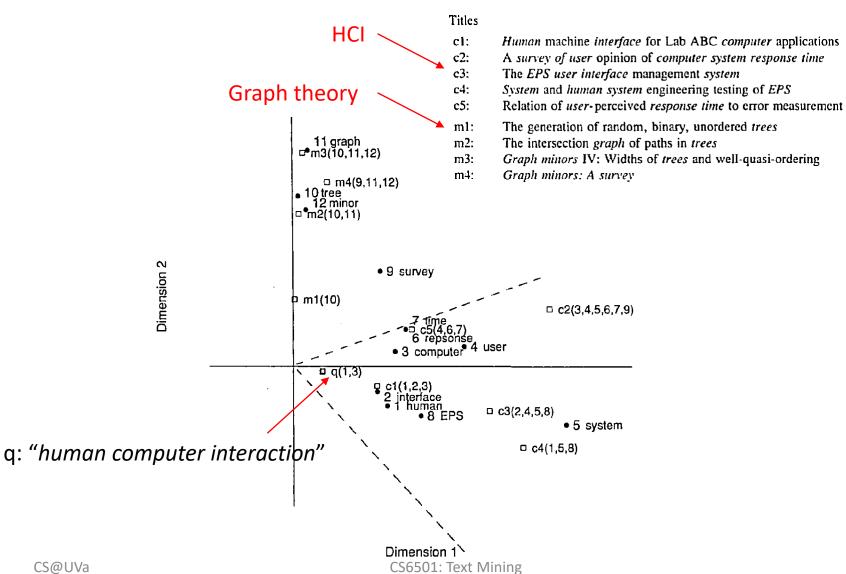
LSA for retrieval

• Project queries into the new document space

$$-\tilde{q} = qV_{N\times k}\Sigma_{k\times k}^{-1}$$

- Treat query as a pseudo document of term vector
- Cosine similarity between query and documents in this lower-dimensional space

LSA for retrieval



Discussions

• Computationally expensive

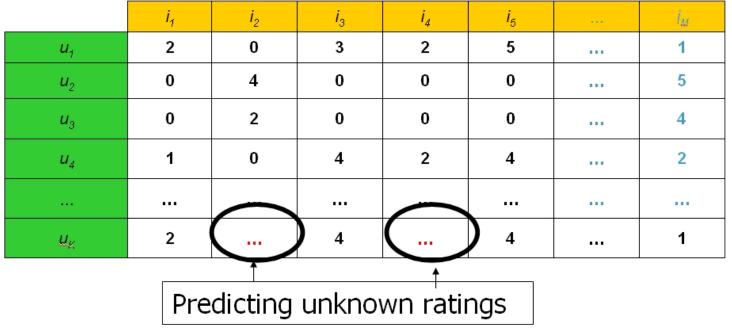
- Time complexity $O(MN^2)$

- Optimal choice of k
- Difficult to handle dynamic corpus
- Difficult to interpret the decomposition results

We will come back to this later!

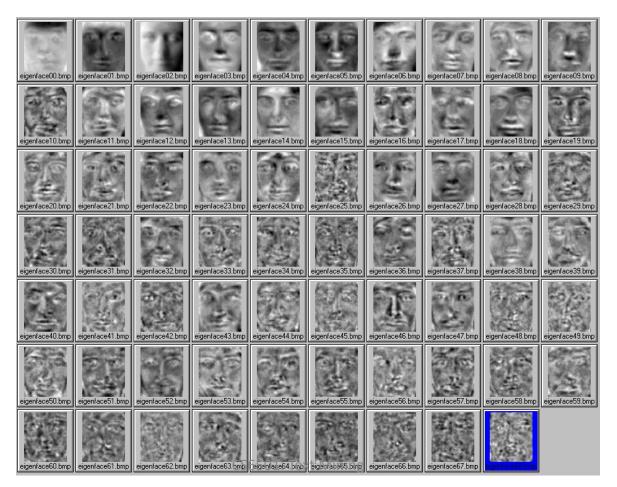
LSA beyond text

- Collaborative filtering
 - User item matrix stores for each user the rating for the items



LSA beyond text

• Eigen face



CS@UVa

LSA beyond text

• Cat from deep neuron network

One of the neurons in the artificial neural network, trained from still frames from unlabeled YouTube videos, learned to detect cats.

What you should know

- Assumptions in LSA
- Interpretation of LSA
 - Low rank matrix approximation
 - Eigen-decomposition of co-occurrence matrix for documents and terms

Today's reading

- Introduction to information retrieval
 - Chapter 13: Matrix decompositions and latent semantic indexing
- Deerwester, Scott C., et al. "Indexing by latent semantic analysis." JAsIs 41.6 (1990): 391-407.

Happy Lunar New Year!

