
Recap: maximum likelihood estimation

• Data: a collection of words, 𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛
• Model: multinomial distribution p(𝑊𝑊) with parameters 𝜃𝜃𝑖𝑖 =
𝑝𝑝 𝑤𝑤𝑖𝑖 , i.e., unigram language model 

• Maximum likelihood estimator: �𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝜃𝜃𝑝𝑝(𝑊𝑊|𝜃𝜃)
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Using Lagrange multiplier approach, 
we’ll tune 𝜽𝜽𝒊𝒊 to maximize 𝑳𝑳(𝑾𝑾,𝜽𝜽)

Set partial derivatives to zero

ML estimate
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𝑐𝑐 𝑤𝑤𝑖𝑖
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∑𝑖𝑖=1𝑁𝑁 𝜃𝜃𝑖𝑖=1 𝜆𝜆 = −�
𝑖𝑖=1

𝑁𝑁

𝑐𝑐 𝑤𝑤𝑖𝑖Since we have 

𝜃𝜃𝑖𝑖 =
𝑐𝑐 𝑤𝑤𝑖𝑖

∑𝑖𝑖=1𝑁𝑁 𝑐𝑐 𝑤𝑤𝑖𝑖

Requirement from probability
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Recap: illustration of N-gram language 
model smoothing

w

Max. Likelihood Estimate 

Smoothed LM 

Assigning nonzero probabilities 
to the unseen words
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Discount from the seen words

𝑝𝑝 𝑤𝑤𝑖𝑖 𝑤𝑤𝑖𝑖−1, … ,𝑤𝑤𝑖𝑖−𝑛𝑛+1

𝑝𝑝 𝑤𝑤𝑖𝑖 𝑤𝑤𝑖𝑖−1, … ,𝑤𝑤𝑖𝑖−𝑛𝑛+1 =
𝑐𝑐(𝑤𝑤𝑖𝑖 ,𝑤𝑤𝑖𝑖−1, … ,𝑤𝑤𝑖𝑖−𝑛𝑛+1)
𝑐𝑐(𝑤𝑤𝑖𝑖−1, … ,𝑤𝑤𝑖𝑖−𝑛𝑛+1)



Recap: perplexity

• The inverse of the likelihood of the test set as 
assigned by the language model, normalized 
by the number of words
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𝑃𝑃𝑃𝑃 𝑤𝑤1, … ,𝑤𝑤𝑁𝑁 =
𝑁𝑁 1
∏𝑖𝑖=1
𝑁𝑁 𝑝𝑝(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−1, … ,𝑤𝑤𝑖𝑖−𝑛𝑛+1)

N-gram language model



Latent Semantic Analysis

Hongning Wang
CS@UVa



VS model in practice

• Document and query are represented by term
vectors
– Terms are not necessarily orthogonal to each 

other 
• Synonymy: car v.s. automobile
• Polysemy: fly (action v.s. insect)
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Choosing basis for VS model

• A concept space is preferred
– Semantic gap will be bridged

Sports

Education

Finance

D4

D2

D1D5

D3

Query
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How to build such a space

• Automatic term expansion 
– Construction of thesaurus

• WordNet

– Clustering of words

• Word sense disambiguation
– Dictionary-based

• Relation between a pair of words should be similar as in 
text and dictionary’s description

– Explore word usage context
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How to build such a space

• Latent Semantic Analysis
– Assumption: there is some underlying latent 

semantic structure in the data that is partially 
obscured by the randomness of word choice with 
respect to text generation

– It means: the observed term-document 
association data is contaminated by random noise
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How to build such a space

• Solution
– Low rank matrix approximation

Imagine this is our observed term-document matrix

Imagine this is *true* concept-document matrix

Random noise over the word selection in each document
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Latent Semantic Analysis (LSA)

• Low rank approximation of term-document 
matrix 𝐶𝐶𝑀𝑀×𝑁𝑁
– Goal: remove noise in the observed term-

document association data
– Solution: find a matrix with rank 𝑘𝑘 which is closest 

to the original matrix in terms of Frobenius norm

�̂�𝑍 = argmin
𝑍𝑍|𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 𝑍𝑍 =𝑟𝑟

𝐶𝐶 − 𝑍𝑍 𝐹𝐹

= argmin
𝑍𝑍|𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 𝑍𝑍 =𝑟𝑟

∑𝑖𝑖=1𝑀𝑀 ∑𝑗𝑗=1𝑁𝑁 𝐶𝐶𝑖𝑖𝑗𝑗 − 𝑍𝑍𝑖𝑖𝑗𝑗
2
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Basic concepts in linear algebra

• Symmetric matrix
– 𝐶𝐶 = 𝐶𝐶𝑇𝑇

• Rank of a matrix
– The number of linearly independent rows 

(columns) in a matrix 𝐶𝐶𝑀𝑀×𝑁𝑁

– 𝑎𝑎𝑎𝑎𝑟𝑟𝑘𝑘 𝐶𝐶𝑀𝑀×𝑁𝑁 ≤ min(𝑀𝑀,𝑁𝑁)
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Basic concepts in linear algebra

• Eigen system
– For a square matrix 𝐶𝐶𝑀𝑀×𝑀𝑀

– If 𝐶𝐶𝑥𝑥 = 𝜆𝜆𝑥𝑥, 𝑥𝑥 is called the right eigenvector of 𝐶𝐶
and 𝜆𝜆 is the corresponding eigenvalue

• For a symmetric full-rank matrix 𝐶𝐶𝑀𝑀×𝑀𝑀
– We have its eigen-decomposition as

• 𝐶𝐶 = 𝑄𝑄Λ𝑄𝑄𝑇𝑇

• where the columns of 𝑄𝑄 are the orthogonal and 
normalized eigenvectors of 𝐶𝐶 and Λ is a diagonal matrix 
whose entries are the eigenvalues of 𝐶𝐶
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Basic concepts in linear algebra

• Singular value decomposition (SVD)
– For matrix 𝐶𝐶𝑀𝑀×𝑁𝑁 with rank 𝑎𝑎, we have

• 𝐶𝐶 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇

• where 𝑈𝑈𝑀𝑀×𝑟𝑟 and 𝑉𝑉𝑁𝑁×𝑟𝑟 are orthogonal matrices, and Σ
is a 𝑎𝑎 × 𝑎𝑎 diagonal matrix, with Σ𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑖𝑖 and 𝜆𝜆1 … 𝜆𝜆𝑟𝑟
are the eigenvalues of 𝐶𝐶𝐶𝐶𝑇𝑇

– We define 𝐶𝐶𝑀𝑀×𝑁𝑁
𝑟𝑟 = 𝑈𝑈𝑀𝑀×𝑟𝑟Σ𝑟𝑟×𝑟𝑟𝑉𝑉𝑁𝑁×𝑟𝑟

𝑇𝑇

• where we place Σ𝑖𝑖𝑖𝑖 in a descending order and set Σ𝑖𝑖𝑖𝑖 =
𝜆𝜆𝑖𝑖 for 𝑖𝑖 ≤ 𝑘𝑘, and Σ𝑖𝑖𝑖𝑖 = 0 for 𝑖𝑖 > 𝑘𝑘
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Latent Semantic Analysis (LSA)

• Solve LSA by SVD

– Procedure of LSA
1. Perform SVD on document-term adjacency matrix
2. Construct 𝐶𝐶𝑀𝑀×𝑁𝑁

𝑟𝑟 by only keeping the largest 𝑘𝑘 singular 
values in Σ non-zero

�̂�𝑍 = argmin
𝑍𝑍|𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 𝑍𝑍 =𝑟𝑟

𝐶𝐶 − 𝑍𝑍 𝐹𝐹

= argmin
𝑍𝑍|𝑟𝑟𝑟𝑟𝑛𝑛𝑟𝑟 𝑍𝑍 =𝑟𝑟

∑𝑖𝑖=1𝑀𝑀 ∑𝑗𝑗=1𝑁𝑁 𝐶𝐶𝑖𝑖𝑗𝑗 − 𝑍𝑍𝑖𝑖𝑗𝑗
2

= 𝐶𝐶𝑀𝑀×𝑁𝑁
𝑟𝑟

Map to a lower dimensional space
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Latent Semantic Analysis (LSA)

• Another interpretation
– 𝐶𝐶𝑀𝑀×𝑁𝑁 is the document-term adjacency matrix
– 𝐷𝐷𝑀𝑀×𝑀𝑀 = 𝐶𝐶𝑀𝑀×𝑁𝑁 × 𝐶𝐶𝑀𝑀×𝑁𝑁

𝑇𝑇

• 𝐷𝐷𝑖𝑖𝑗𝑗: document-document similarity by counting how many 
terms co-occur in 𝑑𝑑𝑖𝑖 and 𝑑𝑑𝑗𝑗

• 𝐷𝐷 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇 × 𝑈𝑈Σ𝑉𝑉𝑇𝑇 𝑇𝑇 = 𝑈𝑈Σ2𝑈𝑈𝑇𝑇
– Eigen-decomposition of document-document similarity matrix
– 𝑑𝑑𝑖𝑖′s new representation is then 𝑈𝑈Σ 𝑖𝑖 in this system(space)
– In the lower dimensional space, we will only use the first 𝑘𝑘

elements in 𝑈𝑈Σ 𝑖𝑖 to represent 𝑑𝑑𝑖𝑖
– The same analysis applies to 𝑇𝑇𝑁𝑁×𝑁𝑁 = 𝐶𝐶𝑀𝑀×𝑁𝑁

𝑇𝑇 × 𝐶𝐶𝑀𝑀×𝑁𝑁
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Geometric interpretation of LSA

• 𝐶𝐶𝑀𝑀×𝑁𝑁
𝑟𝑟 (i, j) measures the relatedness between 

𝑑𝑑𝑖𝑖 and 𝑤𝑤𝑗𝑗 in the 𝑘𝑘-dimensional space
• Therefore

– As 𝐶𝐶𝑀𝑀×𝑁𝑁
𝑟𝑟 = 𝑈𝑈𝑀𝑀×𝑟𝑟Σ𝑟𝑟×𝑟𝑟𝑉𝑉𝑁𝑁×𝑟𝑟

𝑇𝑇

– 𝑑𝑑𝑖𝑖 is represented as 𝑈𝑈𝑀𝑀×𝑟𝑟Σ𝑟𝑟×𝑟𝑟

1
2

𝑖𝑖

– 𝑤𝑤𝑗𝑗 is represented as 𝑉𝑉𝑁𝑁×𝑟𝑟Σ𝑟𝑟×𝑟𝑟

1
2

𝑗𝑗
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Latent Semantic Analysis (LSA)

• Visualization
HCI

Graph theory
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What are those dimensions in LSA

• Principle component analysis
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Latent Semantic Analysis (LSA)

• What we have achieved via LSA
– Terms/documents that are closely associated are 

placed near one another in this new space
– Terms that do not occur in a document may still 

close to it, if that is consistent with the major 
patterns of association in the data

– A good choice of concept space for VS model!
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LSA for retrieval

• Project queries into the new document space
– �𝑞𝑞 = 𝑞𝑞𝑉𝑉𝑁𝑁×𝑟𝑟Σ𝑟𝑟×𝑟𝑟

−1

• Treat query as a pseudo document of term vector
• Cosine similarity between query and documents in this 

lower-dimensional space
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LSA for retrieval

q: “human computer interaction”

HCI

Graph theory
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Discussions

• Computationally expensive
– Time complexity 𝑂𝑂(𝑀𝑀𝑁𝑁2)

• Optimal choice of 𝑘𝑘
• Difficult to handle dynamic corpus
• Difficult to interpret the decomposition results

We will come back to this later!
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LSA beyond text

• Collaborative filtering
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LSA beyond text

• Eigen face
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LSA beyond text

• Cat from deep neuron network

One of the neurons in the artificial neural network, 
trained from still frames from unlabeled YouTube 

videos, learned to detect cats.
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What you should know

• Assumptions in LSA
• Interpretation of LSA

– Low rank matrix approximation
– Eigen-decomposition of co-occurrence matrix for 

documents and terms
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Today’s reading

• Introduction to information retrieval
– Chapter 13: Matrix decompositions and latent 

semantic indexing

• Deerwester, Scott C., et al. "Indexing by latent 
semantic analysis." JAsIs 41.6 (1990): 391-407.
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http://www.cob.unt.edu/itds/faculty/evangelopoulos/dsci5910/LSA_Deerwester1990.pdf


Happy Lunar New Year!
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