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Today’s lecture

e Clustering of text documents

— Problem overview
e Applications

— Distance metrics
— Two basic categories of clustering algorithms

— Evaluation metrics



Clustering v.s. Classification

e Assigning documents to its corresponding
categories

How to label it? \
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Clustering problem in general

e Discover “natural structure” of data
— What is the criterion?
— How to identify them?
— How to evaluate the results?
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Clustering problem in general

e Clustering - the process of grouping a set of
objects into clusters of similar objects
— Basic criteria

e high intra-cluster similarity
e low inter-cluster similarity

— No (little) supervision signal about the underlying
clustering structure

— Need similarity/distance as guidance to form
clusters



What is the “natural groupmg

UK EX

Captain America Supergirl Superman Spiderman Ironman Woman

Clustering is very subjective!
Distance metric is important!

group by gender group by source of ability group by costume
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Clustering in text mining

Access

Serve for IR Sub-area of Mining
applications DM research

Filter
information

Acover knowledge

T / Text C|u5ter|ng

Based on NLP/ML
techniques

Organization

Add
Structure/Annotations
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Applications of text clustering

 Organize document
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— Automatically identify :
hierarchical/topical
relation among
documents
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Applications of text clustering

 Grouping search results
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Applications of text clustering

Will be discussed later separately

* Topic modeling

— Grouping words into topics
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Distance metric

e Basic properties

— Positive separation
e D(x,y) >0,Vx #y
e D(x,y)=0,iff,x =y

— Symmetry
* D(x,y) =D(y,x)

— Triangle inequality
* D(x,y) <D(x,z) + D(z,y)



Typical distance metric

e Minkowski metric

_d(xy) = \/zl G — y)P

* When p = 2, itis Euclidean distance

* Cosine metric
—d(x,y) =1 — cosine(x,y)

« when [x|? = |y|? = 1,1 — cosine(x,y) =




Typical distance metric

e Edit distance

— Count the minimum number of operations
required to transform one string into the other

e Possible operations: insertion, deletion and
replacement & & & v £ v

ins

P2 2 2 2 xa 4
E o3 3 03 03 3 i 5 \Canbeeff:c:ently

del solved by dynamic
R4 4 4 3 4 3\3 programming

¥ 2 3 9 4 4 4 3

Figure 1.d(i,j) Matrix with Minimal Path Identified



Typical distance metric

e Edit distance

— Count the minimum number of operations
required to transform one string into the other

e Possible operations: insertion, deletion and
replacement

— Extent to distance between sentences

e Word similarity as cost of replacement

— “terrible” -> “bad”: low cost , o _
_ N _ __» Lexiconor distributional semantics
— “terrible” -> “terrific”: high cost

e Preserving word order in distance computation



Clustering algorithms

e Partitional clustering algorithms
— Partition the instances into different groups
— Flat structure

 Need to specify the number of classes in advance

Khel
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Clustering algorithms

e Typical partitional clustering algorithms

— k-means clustering

e Partition data by its closest mean

Original unclustered data

Clustered data

-3 -2 -1 0 1 2 3 4 5 & 23 -2 -1 0 1 2 3 4 5 6
Ty Ty
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Clustering algorithms

e Typical partitional clustering algorithms

— k-means clustering

e Partition data by its closest mean

o
1

— Gaussian Mixture Model

-
T

* Consider variance within
the cluster as well




Clustering algorithms

e Hierarchical clustering algorithms
— Create a hierarchical decomposition of objects

— Rich internal structure
* No need to specify the number of clusters
e Can be used to organize objects

e
Supergil  Invisible = Elektra
WWWWW
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Clustering algorithms

e Typical hierarchical clustering algorithms

— Bottom-up agglomerative clustering
e Start with individual objects as separated clusters
e Repeatedly merge closest pair of clusters

Relative TRFLP Peak Area
o A © ]

e 8 &

:
M%g III
A
1 v ™~
z- e ’ l
FG2A
: 3 | !
3 = e A
Most typical usage: =qls®
. flh——=0 | . "
gene sequence analysis ° AL |
Fnize ; | |
oA M | | -
FL
7 - 5L
= FL. -
=

s
3A

— A
FLIB

L—i2

4B

A

Aeromonas
0

CS@UVa CS 6501: Text Mining 19



Clustering algorithms

e Typical hierarchical clustering algorithms

— Top-down divisive clustering
e Start with all data as one cluster
e Repeatedly splitting the remaining clusters into two
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Desirable properties of clustering
algorithms

e Scalability

— Both in time and space

e Ability to deal with various types of data
— No/less assumption about input data

— Minimal requirement about domain knowledge

e Interpretability and usability



Cluster validation

e Criteria to determine whether the clusters are
meaningful
— Internal validation
e Stability and coherence

— External validation

 Match with known categories



Internal validation

e Coherence

— Inter-cluster similarity v.s. intra-cluster similarity

— Davies—Bouldin index Evaluate every pair of clusters
1 oito
e« DB ==Y% max|—
k j=i \d(cicj)

— where k is total number of clusters, g; is average distance of
all elements in cluster i, d(c;, ¢j) is the distance between

cluster centroid c; and c;.

We prefer smaller DB-index!



Internal validation

 Coherence
— Inter-cluster similarity v.s. intra-cluster similarity
— Dunn index

min d(cy,cj)
e D = 1<i<j<k

We prefer larger D-index!

max oj
1<i<k

— Worst situation analysis
* Limitation
— No indication of actual application’s performance

— Bias towards a specific type of clustering algorithm if
that algorithm is designed to optimize similar metric



External validation

Required, might need extra cost

e Given class label {2 on each instance

— Purity: correctly clustered documents in each
cluster Not a good metric if we assign each

/ document into a single cluster

. 1
* purity(Q,€) = SXi max |c; N wjl

— where ¢; is a set of documents in cluster i, and w; is a set of

documents in class j
cluster 1 cluster 2 cluster 3

purity(,C) =

1
ﬁ(5+4+3)
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External validation

e Given class label {2 on each instance

— Normalized mutual information (NMI)

. _ 1(Q,C) Normalization by entropy will
NMI ('Q’ C) o [H(Q)+H(C)]/2 — penalize too many clusters
— where I(Q,C) = ZiZjP(wi N cj) log P(winc) H(Q) =

PwiP(c;)’
— i P(w;)logP(w;) and H(C) = — Zj P(cj) log P(cj)
* |Indicate the increase of knowledge about classes when
we know the clustering results



External validation

e Given class label {2 on each instance

— Rand index

e |dea: we want to assign two documents to the same
cluster if and only if they are from the same class

« R] = TP+TN - Esser'1t'iaIIY it is like
TP+FP+FN+TN classification accuracy
Wi = Wj wW; # Wj
Ci = Cj TP FP
C; # Cj FN N Over every pair

of documents in
the collection



External validation

e Given class label {2 on each instance

— Rand index
W; = W] Wi * W]
Ci = Cj 20\ 20
Ci * Cj 24 \ 72

= (3)+ ()

cluster 2

6
TP+FP=<2>+

(

)+ (o)

cluster 1

cluster 3

)=



External validation

e Given class label {2 on each instance

— Precision/Recall/F-measure

e Based on the contingency table, we can also define
precision/recall/F-measure of clustering quality

Wi=Wj Wl'?‘—'Wj

Ci = Cj TP FP
Ci * Cj FN TN




What you should know

* Unsupervised natural of clustering problem

— Distance metric is essential to determine the
clustering results

 Two basic categories of clustering algorithms
— Partitional clustering
— Hierarchical clustering

e Clustering evaluation

— Internal v.s. external



Today’s reading

 Introduction to Information Retrieval
— Chapter 16: Flat clustering

e 16.2 Problem statement
e 16.3 Evaluation of clustering
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