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Today’s lecture

• Clustering of text documents
– Problem overview

• Applications

– Distance metrics
– Two basic categories of clustering algorithms
– Evaluation metrics
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Clustering v.s. Classification

• Assigning documents to its corresponding 
categories 
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How to label it?



Clustering problem in general

• Discover “natural structure” of data
– What is the criterion? 
– How to identify them?
– How to evaluate the results?
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Clustering problem in general

• Clustering - the process of grouping a set of 
objects into clusters of similar objects
– Basic criteria

• high intra-cluster similarity
• low inter-cluster similarity

– No (little) supervision signal about the underlying 
clustering structure

– Need similarity/distance as guidance to form 
clusters
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What is the “natural grouping”?
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Clustering is very subjective!
Distance metric is important!

group by gender group by source of ability group by costume



Clustering in text mining
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Access Mining

Organization

Filter
information

Discover knowledge

Add
Structure/Annotations

Serve for IR 
applications

Based on NLP/ML 
techniques

Sub-area of 
DM research

Text clustering



Applications of text clustering

• Organize document 
collections
– Automatically identify 

hierarchical/topical 
relation among 
documents
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Applications of text clustering

• Grouping search results
– Organize documents by 

topics
– Facilitate user browsing
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http://search.carrot2.org/stable/search



Applications of text clustering

• Topic modeling
– Grouping words into topics
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Will be discussed later separately 



Distance metric

• Basic properties
– Positive separation

• 𝐷𝐷 𝑥𝑥,𝑦𝑦 > 0,∀𝑥𝑥 ≠ 𝑦𝑦
• 𝐷𝐷 𝑥𝑥,𝑦𝑦 = 0, i.f.f., 𝑥𝑥 = 𝑦𝑦

– Symmetry 
• 𝐷𝐷 𝑥𝑥,𝑦𝑦 = 𝐷𝐷(𝑦𝑦, 𝑥𝑥)

– Triangle inequality
• 𝐷𝐷 𝑥𝑥,𝑦𝑦 ≤ 𝐷𝐷 𝑥𝑥, 𝑧𝑧 + 𝐷𝐷(𝑧𝑧,𝑦𝑦)
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Typical distance metric

• Minkowski metric

– 𝑑𝑑 𝑥𝑥,𝑦𝑦 =
𝑝𝑝
∑𝑖𝑖=1𝑉𝑉 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 𝑝𝑝

• When 𝑝𝑝 = 2, it is Euclidean distance

• Cosine metric
– 𝑑𝑑 𝑥𝑥,𝑦𝑦 = 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦)

• when 𝑥𝑥 2 = 𝑦𝑦 2 = 1, 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥,𝑦𝑦 = 𝑟𝑟2

2
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Typical distance metric

• Edit distance
– Count the minimum number of operations 

required to transform one string into the other
• Possible operations: insertion, deletion and 

replacement
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Can be efficiently 
solved by dynamic 
programming



Typical distance metric

• Edit distance
– Count the minimum number of operations 

required to transform one string into the other
• Possible operations: insertion, deletion and 

replacement

– Extent to distance between sentences
• Word similarity as cost of replacement

– “terrible” -> “bad”: low cost
– “terrible” -> “terrific”: high cost

• Preserving word order in distance computation
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Lexicon or distributional semantics



Clustering algorithms

• Partitional clustering algorithms
– Partition the instances into different groups
– Flat structure

• Need to specify the number of classes in advance
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Clustering algorithms

• Typical partitional clustering algorithms
– k-means clustering

• Partition data by its closest mean
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Clustering algorithms

• Typical partitional clustering algorithms
– k-means clustering

• Partition data by its closest mean

– Gaussian Mixture Model
• Consider variance within

the cluster as well

CS@UVa CS 6501: Text Mining 17



Clustering algorithms

• Hierarchical clustering algorithms
– Create a hierarchical decomposition of objects
– Rich internal structure

• No need to specify the number of clusters
• Can be used to organize objects
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Clustering algorithms

• Typical hierarchical clustering algorithms
– Bottom-up agglomerative clustering

• Start with individual objects as separated clusters
• Repeatedly merge closest pair of clusters
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Most typical usage: 
gene sequence analysis



Clustering algorithms

• Typical hierarchical clustering algorithms
– Top-down divisive clustering

• Start with all data as one cluster
• Repeatedly splitting the remaining clusters into two
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Desirable properties of clustering 
algorithms 

• Scalability
– Both in time and space

• Ability to deal with various types of data
– No/less assumption about input data
– Minimal requirement about domain knowledge

• Interpretability and usability
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Cluster validation

• Criteria to determine whether the clusters are 
meaningful
– Internal validation

• Stability and coherence

– External validation
• Match with known categories
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Internal validation

• Coherence
– Inter-cluster similarity v.s. intra-cluster similarity
– Davies–Bouldin index

• 𝐷𝐷𝐷𝐷 = 1
𝑘𝑘
∑𝑖𝑖=1𝑘𝑘 max

𝑗𝑗≠𝑖𝑖

𝜎𝜎𝑖𝑖+𝜎𝜎𝑗𝑗
𝑑𝑑(𝑐𝑐𝑖𝑖,𝑐𝑐𝑗𝑗)

– where 𝑘𝑘 is total number of clusters, 𝜎𝜎𝑖𝑖 is average distance of 
all elements in cluster 𝑐𝑐, 𝑑𝑑(𝑐𝑐𝑖𝑖 , 𝑐𝑐𝑗𝑗) is the distance between 
cluster centroid c𝑖𝑖 and c𝑗𝑗.
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We prefer smaller DB-index!

Evaluate every pair of clusters



Internal validation

• Coherence
– Inter-cluster similarity v.s. intra-cluster similarity
– Dunn index

• 𝐷𝐷 =
min

1≤𝑖𝑖<𝑗𝑗≤𝑘𝑘
𝑑𝑑(𝑐𝑐𝑖𝑖,𝑐𝑐𝑗𝑗)

max
1≤𝑖𝑖≤𝑘𝑘

𝜎𝜎𝑖𝑖

– Worst situation analysis

• Limitation
– No indication of actual application’s performance
– Bias towards a specific type of clustering algorithm if 

that algorithm is designed to optimize similar metric
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We prefer larger D-index!



External validation

• Given class label Ω on each instance
– Purity: correctly clustered documents in each 

cluster

• 𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑦𝑦(Ω,𝐶𝐶) = 1
𝑁𝑁
∑𝑖𝑖=1𝑘𝑘 max

𝑗𝑗
|𝑐𝑐𝑖𝑖 ∩ 𝑤𝑤𝑗𝑗|

– where 𝑐𝑐𝑖𝑖 is a set of documents in cluster 𝑐𝑐, and 𝑤𝑤𝑗𝑗 is a set of 
documents in class 𝑗𝑗
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𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑝𝑝𝑦𝑦(Ω,𝐶𝐶) =
1

17 5 + 4 + 3

Not a good metric if we assign each 
document into a single cluster

Required, might need extra cost



External validation

• Given class label Ω on each instance
– Normalized mutual information (NMI)

• 𝑁𝑁𝑁𝑁𝑁𝑁(Ω,𝐶𝐶) = 𝐼𝐼(Ω,𝐶𝐶)
𝐻𝐻 Ω +𝐻𝐻(𝐶𝐶) /2

– where 𝑁𝑁 Ω,𝐶𝐶 = ∑𝑖𝑖 ∑𝑗𝑗 𝑃𝑃 𝑤𝑤𝑖𝑖 ∩ 𝑐𝑐𝑗𝑗 log 𝑃𝑃 𝑤𝑤𝑖𝑖∩𝑐𝑐𝑗𝑗
𝑃𝑃 𝑤𝑤𝑖𝑖 𝑃𝑃 𝑐𝑐𝑗𝑗

, 𝐻𝐻 Ω =

− ∑𝑖𝑖 𝑃𝑃 𝑤𝑤𝑖𝑖 log𝑃𝑃(𝑤𝑤𝑖𝑖) and 𝐻𝐻 C = −∑𝑗𝑗 𝑃𝑃 𝑐𝑐𝑗𝑗 log𝑃𝑃(𝑐𝑐𝑗𝑗)

• Indicate the increase of knowledge about classes when 
we know the clustering results
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Normalization by entropy will 
penalize too many clusters



External validation

• Given class label Ω on each instance
– Rand index

• Idea: we want to assign two documents to the same 
cluster if and only if they are from the same class

• 𝑅𝑅𝑁𝑁 = 𝑇𝑇𝑃𝑃+𝑇𝑇𝑁𝑁
𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃+𝐹𝐹𝑁𝑁+𝑇𝑇𝑁𝑁
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𝑤𝑤𝑖𝑖 = wj 𝑤𝑤𝑖𝑖 ≠ wj

𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑗𝑗 TP FP

𝑐𝑐𝑖𝑖 ≠ 𝑐𝑐𝑗𝑗 FN TN Over every pair 
of documents in 
the collection

Essentially it is like 
classification accuracy



External validation

• Given class label Ω on each instance
– Rand index
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𝑤𝑤𝑖𝑖 = wj 𝑤𝑤𝑖𝑖 ≠ wj

𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑗𝑗 20 20

𝑐𝑐𝑖𝑖 ≠ 𝑐𝑐𝑗𝑗 24 72

𝑇𝑇𝑃𝑃 =
5
2 +

4
2 +

3
2 +

2
2 = 20𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 =

6
2 +

6
2 +

5
2 = 40



External validation

• Given class label Ω on each instance
– Precision/Recall/F-measure

• Based on the contingency table, we can also define 
precision/recall/F-measure of clustering quality
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𝑤𝑤𝑖𝑖 = wj 𝑤𝑤𝑖𝑖 ≠ wj

𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑗𝑗 TP FP

𝑐𝑐𝑖𝑖 ≠ 𝑐𝑐𝑗𝑗 FN TN



What you should know

• Unsupervised natural of clustering problem
– Distance metric is essential to determine the 

clustering results

• Two basic categories of clustering algorithms
– Partitional clustering
– Hierarchical clustering 

• Clustering evaluation
– Internal v.s. external
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Today’s reading

• Introduction to Information Retrieval
– Chapter 16: Flat clustering

• 16.2 Problem statement
• 16.3 Evaluation of clustering
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