
Probabilistic Topic Models

Hongning Wang
CS@UVa



Outline 

1. General idea of topic models
2. Basic topic models

- Probabilistic Latent Semantic Analysis (pLSA)
- Latent Dirichlet Allocation (LDA)  

3. Variants of topic models 
4. Summary 

CS@UVa 2CS6501: Text Mining



What is a “topic”?

3

Topic: A broad concept/theme, 
semantically coherent, which is 
hidden in documents

Representation: a probabilistic 
distribution over words.

retrieval       0.2
information  0.15
model          0.08
query           0.07
language      0.06
feedback      0.03
……

e.g., politics; sports; technology; 
entertainment; education etc.
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Document as a mixture of topics

• How can we discover these topic-word 
distributions? 

• Many applications would be enabled 
by discovering such topics
– Summarize themes/aspects
– Facilitate navigation/browsing
– Retrieve documents
– Segment documents
– Many other text mining tasks

Topic  θ1

Topic θk

Topic θ2

…

Background θk

government 0.3 
response  0.2
...

donate  0.1
relief 0.05
help 0.02 
...

city 0.2
new   0.1
orleans 0.05 
...

is 0.05
the  0.04
a 0.03 
...

[ Criticism of government response to the hurricane 
primarily consisted of criticism of its response to the 
approach of the storm and its aftermath, specifically in the 
delayed response ] to the [ flooding of New Orleans. … 
80% of the 1.3 million residents of the greater New Orleans 
metropolitan area evacuated ] …[ Over seventy countries 
pledged monetary donations or other assistance]. …
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General idea of probabilistic topic models

• Topic: a multinomial distribution over words
• Document: a mixture of topics

– A document is “generated” by first sampling topics from 
some prior distribution

– Each time, sample a word from a corresponding topic 
– Many variations of how these topics are mixed

• Topic modeling
– Fitting the probabilistic model to text
– Answer topic-related questions by computing various kinds 

of posterior distributions 
• e.g., p(topic|time), p(sentiment|topic)
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Simplest Case: 1 topic + 1 “background”

the 0.031
a 0.018
…
text  0.04
mining 0.035
association 0.03
clustering 0.005
computer 0.0009
…
food 0.000001
…

Text mining
paper

the 0.03
a 0.02
is 0.015
we 0.01
...
food 0.003
computer 0.00001
…
text  0.000006
…

General Background
English Text

B

Background Topic: p(w|θB) Document Topic: p(w|θd)

d

How can we “get rid of” the 
common words from the topic 
to make it more discriminative?  

θd

Assume words in d are from 
two topics:
1 topic + 1 background

θB

CS@UVa 6CS6501: Text Mining



The Simplest Case: 
One Topic + One Background Model

w

w

Document d

)|(logmaxargˆ θθ
θ

dp=Expectation Maximization

P(w|θ )

P(w|θB)λ

1-λ

P(Topic)

Background words

Topic words

Assume p(w|θB) and λ are known
λ = mixing proportion of background topic in d

Topic choice
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How to Estimate θ?
the  0.2
a 0.1
we 0.01
to 0.02
…
text 0.0001
mining 0.00005
…

Known
Background 
p(w|θB)

…
text =? 
mining =? 
association =?
word =? 
…

Unknown
topic p(w|θ) 
for “Text 
mining”

λ=0.7

λ=0.3

Observed
words

Suppose we know
the identity/label of each word ...

ML
Estimator

But we don’t!
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We guess the topic assignments
Assignment (“hidden”) variable: zi ∈{1 (background), 0(topic)}

the
paper
presents
a
text
mining
algorithm
the
paper
...

zi

1
1
1
1
0
0
0
1
0
...

Suppose the parameters are all known, 
what’s a reasonable guess of zi?

- depends on λ
- depends on p(w|θB) and p(w|θ) 

Initially, set p(w| θ) to some random values, then iterate … 

E-step

M-step

)|()1()|(
)|(

)0|()0()1|()1(
)1|()1()|1(

θλθλ
θλ

wpwp
wp

zwpzpzwpzp
zwpzpwzp

current
B

B

iiii

ii
ii

−+
=

==+==
==

==

θB and θ are competing for explaining words in document d! 
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An example of EM computation
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Word # P(w|θB) Iteration 1 Iteration 2 Iteration 3 
P(w|θ) P(z=1) P(w|θ) P(z=1) P(w|θ) P(z=1) 

The 4 0.5 0.25 0.67 0.20 0.71 0.18 0.74 
Paper 2 0.3 0.25 0.55 0.14 0.68 0.10 0.75 
Text 4 0.1 0.25 0.29 0.44 0.19 0.50 0.17 
Mining 2 0.1 0.25 0.29 0.22 0.31 0.22 0.31 

Log-Likelihood -16.96 -16.13 -16.02 
 

Assume λ=0.5

Expectation-Step:
Augmenting data by guessing hidden variables

Maximization-Step
With the “augmented data”, estimate parameters

using maximum likelihood

CS@UVa 10CS6501: Text Mining


		Word

		#

		P(w|(B)

		Iteration 1
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1. General idea of topic models  
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- Probabilistic Latent Semantic Analysis (pLSA)
- Latent Dirichlet Allocation (LDA)  

3. Variants of topic models 
4. Summary 
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Discover multiple topics in a collection 

• Generalize the two topic mixture to k topics

Topic θ1

Topic θk

Topic θ2

…

Topic coverage 
in document d

Background θB

warning 0.3 
system  0.2..

aid  0.1
donation 0.05
support 0.02 ..

statistics 0.2
loss   0.1
dead 0.05 ..

is  0.05
the   0.04
a  0.03 ..

θk

θ1

θ2

λB

W

πd,1

πd, k

1 - λBπd,2

“Generating” word w 
in doc d in the collection

?
?

?
?

?

?
?
?

?
?

?

θB

Parameters: 
Global: {𝜃𝜃𝑘𝑘}𝑘𝑘=1𝐾𝐾

Local:
Manual: 𝜆𝜆𝐵𝐵

{𝜋𝜋𝑑𝑑,𝑘𝑘}𝑑𝑑,𝑘𝑘=1
𝐾𝐾
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Probabilistic Latent Semantic Analysis 
[Hofmann 99a, 99b]

• Topic: a multinomial distribution over words
• Document

– Mixture of k topics
– Mixing weights reflect the topic coverage

• Topic modeling
– Word distribution under topic: p(w|θ)
– Topic coverage: p(π|d)
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EM for estimating multiple topics 

the  0.2
a 0.1
we 0.01
to 0.02
…

Known
Background 
p(w | θB)

…
text =? 
mining =? 
association =?
word =? 
…

Unknown
topic model
p(w|θ1)=?

“Text mining”

Observed Words

…

…
information =? 
retrieval =? 
query =?
document =? 
…

Unknown
topic model
p(w|θ2)=?

“information
retrieval”

M-Step: 
ML Estimator
based on
“fractional

counts”

E-Step:
Predict topic labels 
using Bayes Rule
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Parameter estimation
E-Step: 
Word w in doc d is generated
- from topic j
- from background

Posterior: application of Bayes rule

M-Step:
Re-estimate 
- mixing weights
- word-topic distribution

Fractional counts contributing to
- using topic j in generating d
- generating w from topic j

Sum over all docs
in the collection
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How the algorithm works

aid
price
oil

πd1,1
( P(θ1|d1) )

πd1,2
( P(θ2|d1) )

πd2,1
( P(θ1|d2) )

πd2,2
( P(θ2|d2) )aid

price
oil

Topic 1 Topic 2

aid
price
oil

P(w| θ)

Initial value

Initial value

Initial value

Initializing πd, j and P(w| θj) with 
random values
Iteration 1: E Step: split word counts 
with different topics (by computing z’ s) 
Iteration 1:  M Step: re-estimate πd, j
and P(w| θj) by adding and normalizing 
the splitted word counts 

Iteration 2: E Step: split word counts 
with different topics (by computing z’ s) 
Iteration 2:  M Step: re-estimate πd, j
and P(w| θj) by adding and normalizing 
the splitted word counts 

Iteration 3, 4, 5, …
Until converging

7
5
6

8
7
5

d1

d2

c(w, d)
c(w,d)p(zd,w = B)
c(w,d)(1 - p(zd,w = B))p(zd,w=j)

Topic coverage
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Sample pLSA topics from TDT Corpus [Hofmann 99b]
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pLSA with prior knowledge

• What if we have some domain knowledge in 
mind
– We want to see topics such as “battery” and 

“memory” for opinions about a laptop
– We want words like “apple” and “orange” co-

occur in a topic
– One topic should be fixed to model background 

words (infinitely strong prior!) 
• We can easily incorporate such knowledge as 

priors of pLSA model
CS@UVa 18CS6501: Text Mining



Maximum a Posteriori (MAP) estimation
)|()(maxarg* ΛΛ=Λ

Λ
Datapp

Topic θ1

Topic θk

Topic θ2

…

Background θB

warning 0.3 
system  0.2..

aid  0.1
donation 0.05
support 0.02 ..

statistics 0.2
loss   0.1
dead 0.05 ..

is 0.05
the  0.04
a 0.03 ..

θk

θ1

θ2

θB

λB

W

πd,1

πd, k

1 - λBπd,2

“Generating” word w 
in doc d in the collection

Parameters: 
λB=noise-level (manually set)
θ’s and  π’s are estimated with Maximum A Posteriori (MAP)

Topic coverage 
in document d

Prior can be placed on π as 
well (more about this later)
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MAP estimation

• Choosing conjugate priors
– Dirichlet prior for multinomial distribution

– What if µ=0? What if µ=+∞?
– A consequence of using conjugate prior is that the 

prior can be converted into “pseudo data” which 
can then be “merged” with the actual data for 
parameter estimation

+µp(w|θ’j)
+µ

Pseudo counts of w from prior θ’

Sum of all pseudo counts

∑ ∑
∑
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Some background knowledge

• Conjugate prior
– Posterior distribution in 

the same family as prior

• Dirichlet distribution
– Continuous
– Samples from it will be the 

parameters in a 
multinomial distribution

Gaussian -> Gaussian
Beta -> Binomial
Dirichlet -> Multinomial
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Prior as pseudo counts
the  0.2
a 0.1
we 0.01
to 0.02
…

Known
Background 
p(w | B)

…
text =? 
mining =? 
association =?
word =? 
…

Unknown
topic model
p(w|θ1)=?

“Text mining”

…
information =? 
retrieval =? 
query =?
document =? 
…

…

Unknown
topic model
p(w|θ2)=?

“information
retrieval”

Suppose, 
we know
the identity 
of each 
word ...

Observed Doc(s)

MAP
Estimator

Pseudo Doc

Size = μtext

mining
CS@UVa 22CS6501: Text Mining



Deficiency of pLSA

• Not a fully generative model
– Can’t compute probability of a new document

• Topic coverage p(π|d) is per-document estimated

– Heuristic workaround is possible

• Many parameters  high complexity of 
models
– Many local maxima  
– Prone to overfitting
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Latent Dirichlet Allocation [Blei et al. 02] 

• Make pLSA a fully generative model by 
imposing Dirichlet priors 
– Dirichlet priors over p(π|d)
– Dirichlet priors over p(w|θ)
– A Bayesian version of pLSA

• Provide mechanism to deal with new 
documents
– Flexible to model many other observations in a 

document
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LDA = Imposing Prior on PLSA 

Topic coverage 
in document d

θk

θ1

θ2 W

πd,1

πd, k

πd,2

“Generating” word w 
in doc d in the collection

pLSA: 
Topic coverage πd,j  is specific to each 
“training document”, thus can’t be 
used to generate a new document

)()( βθ
vv

Dirichletp i =

In addition, the topic word distributions 
{θj } are also drawn from another  
Dirichlet prior  

)()( απ vv Dirichletp d =

LDA: 
Topic coverage distribution {πd,j } for 
any document is sampled from a 
Dirichlet distribution, allowing for 
generating a new doc

{πd,j } are regularized 

{πd,j } are free for tuning 

Magnitudes of α and β
determine the variances of the prior,
thus also the concentration of prior
(larger α and β  stronger prior)
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Core assumption 
in all topic models

pLSA component

Regularization 
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LDA as a graphical model [Blei et al. 03a]

Nd D

zi

wi

θ (d)

φ (j)

α

β
θ (d) ∼ Dirichlet(α)

zi ∼ Discrete(θ (d) )

φ (j) ∼ Dirichlet(β)

wi ∼ Discrete(φ (zi) )

T

distribution over topics
for each document
(same as πd on the previous slides)

topic assignment 
for each word

distribution over words for 
each topic

(same as θ j on the previous slides)
word generated from 
assigned topic

Dirichlet priors

Most approximate inference algorithms aim to infer  
from which other interesting variables can be easily computed 

),,|( βα
vvvwzp i
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Approximate inferences for LDA

• Deterministic approximation
– Variational inference
– Expectation propagation 

• Markov chain Monte Carlo
– Full Gibbs sampler 
– Collapsed Gibbs sampler

Most efficient, and quite popular, but can only work with conjugate prior 
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• Using conjugacy between Dirichlet and multinomial 
distributions, integrate out continuous random 
variables

• Define a distribution on topic assignment z

Collapsed Gibbs sampling [Griffiths & Steyvers 04]
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• Sample each zi conditioned on z-i

– Implementation: counts can be cached in two sparse 
matrices; no special functions, simple arithmetic

– Distributions on Φ and Θ can be analytic computed 
given z and w

α
α

β
β

Tn
n

Wn
n

zP
i

i

i

i

i

d

d
j

z

z
w

ii +
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+
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••
− )(
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),|( zw

Collapsed Gibbs sampling [Griffiths & Steyvers 04]

All the other words 
beside zi
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Gibbs sampling in LDA
i wi di zi
1
2
3
4
5
6
7
8
9

10
11
12
.
.
.

50

MATHEMATICS
KNOWLEDGE

RESEARCH
WORK

MATHEMATICS
RESEARCH

WORK
SCIENTIFIC

MATHEMATICS
WORK

SCIENTIFIC
KNOWLEDGE

.

.

.
JOY

1
1
1
1
1
1
1
1
1
1
2
2
.
.
.
5

2
2
1
2
1
2
2
1
2
1
1
1
.
.
.
2

iteration
1
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Gibbs sampling in LDA
i wi di zi zi
1
2
3
4
5
6
7
8
9

10
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.
.
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1             2

CS@UVa 32CS6501: Text Mining


		i

		wi

		di

		zi

		zi

		

		



		1


2


3


4


5


6


7


8


9


10


11


12


.


.


.


50

		MATHEMATICS


KNOWLEDGE


RESEARCH


WORK


MATHEMATICS


RESEARCH


WORK


SCIENTIFIC


MATHEMATICS


WORK


SCIENTIFIC


KNOWLEDGE


.


.


.


JOY

		1


1


1


1


1


1


1


1


1


1


2


2


.


.


.


5

		2


2


1


2


1


2


2


1


2


1


1


1


.


.


.


2

		?

		

		







Gibbs sampling in LDA
i wi di zi zi
1
2
3
4
5
6
7
8
9
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.
.
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?

iteration
1             2

Count of instances where wi is
assigned with topic j

Count of all words
assigned with topic j

words in di assigned with topic j

words in di assigned with any topicCS@UVa 33CS6501: Text Mining


		i

		wi

		di

		zi

		zi

		

		



		1


2


3


4


5


6


7


8


9


10


11


12


.


.


.


50

		MATHEMATICS


KNOWLEDGE


RESEARCH


WORK


MATHEMATICS


RESEARCH


WORK


SCIENTIFIC


MATHEMATICS


WORK


SCIENTIFIC


KNOWLEDGE


.


.


.


JOY

		1


1


1


1


1


1


1


1


1


1


2


2


.


.


.


5

		2


2


1


2


1


2


2


1


2


1


1


1


.


.


.


2

		?

		

		







i wi di zi zi
1
2
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4
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7
8
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iteration
1             2

Gibbs sampling in LDA

How likely would di choose topic j?

What’s the most likely topic for wi in di? 

How likely would topic j  
generate word wi ?
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Topics learned by LDA

CS@UVa 40CS6501: Text Mining



Topic assignments in document

• Based on the topics shown in last slide
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Application of learned topics

• Document classification
– A new type of feature representation
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Application of learned topics

• Collaborative filtering
– A new type of user profile
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Outline 

1. General idea of topic models  
2. Basic topic models

- Probabilistic Latent Semantic Analysis (pLSA)
- Latent Dirichlet Allocation (LDA)  

3. Variants of topic models 
4. Summary 
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Supervised Topic Model [Blei & McAuliffe, NIPS’02]

• A generative model for classification
– Topic generates both words and labels
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Sentiment polarity of topics

Sentiment polarity learned 
from classification model
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Author Topic Model [Rosen-Zvi UAI’04]

• Authorship determines the topic mixture

Each author chooses 
his/her topic to 
contribute in the 
document
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Learned association between words 
and authors
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Collaborative Topic Model [Wang & Blei,KDD’11]

• Collaborative filtering in topic space
– User’s preference over topics determines his/her 

rating for the item

Topics for the item, shifted 
with random noise

User profile over topical space
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Topic-based recommendation
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Correspondence Topic Model [Blei SIGIR’03]

• Simultaneously modeling the generation of 
multiple types of observations
– E.g., image and corresponding text annotations

Correspondence part (can be 
described with different distributions)

LDA part
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Annotation results

CS@UVa 52CS6501: Text Mining



Annotation results
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Dynamic Topic Model [Blei ICML’06]

• Capture the evolving topics over time

Markov 
assumption 
about the 
topic 
dynamics
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Evolution of topics
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Polylingual Topic Models [Mimmo et al., EMNLP’09]

• Assumption: topics are universal over 
languages
– Correspondence between documents are known

• E.g., news report about the same event in different 
languages
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Topics learned in different languages
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Correlated Topic Model [Blei & Lafferty, Annals 
of Applied Stat’07]

• Non-conjugate priors to capture correlation 
between topics

Gaussian as the prior for topic proportion 
(increase the computational complexity)
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Learned structure of topics
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Hierarchical Topic Models [Blei et al. NIPS’04]

• Nested Chinese restaurant process as a prior 
for topic assignment
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Hierarchical structure of topics
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Outline 

1. General idea of topic models  
2. Basic topic models

- Probabilistic Latent Semantic Analysis (pLSA)
- Latent Dirichlet Allocation (LDA)  

3. Variants of topic models 
4. Summary 

CS@UVa 62CS6501: Text Mining



Summary
• Probabilistic Topic Models are a new family of document 

modeling approaches, especially useful for
– Discovering latent topics in text 
– Analyzing latent structures and patterns of topics 
– Extensible for joint modeling and analysis of text and associated non-

textual data
• pLSA & LDA are two basic topic models that tend to function 

similarly, with LDA better as a generative model
• Many different models have been proposed with probably 

many more to come
• Many demonstrated applications in multiple domains and 

many more to come
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Summary
• However, all topic models suffer from the problem of multiple local 

maxima
– Make it hard/impossible to reproduce research results
– Make it hard/impossible to interpret results in real applications

• Complex models can’t scale up to handle large amounts of text data
– Collapsed Gibbs sampling is efficient, but only working for conjugate priors
– Variational EM needs to be derived in a model-specific way
– Parallel algorithms are promising 

• Many challenges remain…. 
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