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A Tree-Structured Neural Network Model for Household Energy
Breakdown

Anonymous Author(s)

ABSTRACT
Residential buildings constitute roughly one-third of the total en-
ergy usage across the globe. Numerous studies have shown that
providing an energy breakdown, i.e., per-appliance energy consump-
tion, increases residents’ awareness of energy use and can help save
up to 15% energy. A significant amount of prior work has looked
into source-separation techniques collectively called non-intrusive
load monitoring (NILM), and most prior NILM research has lever-
aged high-frequency household aggregate data (1 minute or less
sampling interval) for energy breakdown. However, in practice
most smart meters only sample hourly or once every 15 minutes,
and existing NILM techniques show poor performance at such a
low sampling rate.

In this paper, we propose a tree-structured convolutional neural
network (CNN) for energy breakdown on low frequency data. There
are three key insights behind the design of our model: i) households
consume energy with regular temporal patterns (e.g. time of day,
day of week, etc.), which can be well captured by filters learned
in CNNs; ii) tree structure isolates the pattern learning of each
appliance that helps avoid the magnitude variance problem, while
preserves the relationship among appliances; iii) tree structure
enables the separation of known appliance from unknown ones,
which de-noises the input time series for better appliance-level
reconstruction. Our TreeCNN model outperforms seven existing
baselines on a publicly available dataset with lower estimation error
and higher accuracy on detecting the active states of appliances.

KEYWORDS
Non-intrusive load monitoring, time series analysis, convolutional
neural networks
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1 INTRODUCTION
Residential buildings constitute roughly one-third of the total en-
ergy usage across the global [23]. Studies have shown that providing
an energy breakdown: per-appliance energy consumption statistics,
can motivate behavioral changes, potentially reducing energy con-
sumption by 15% [2].
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Various approaches have been proposed for providing an energy
breakdown in the past. A straightforward solution involves in-
stalling a sensor on each appliance [9, 13]. But this approach scales
poorly owing to the high number of sensors required per home,
and the associated high cost of hardware and labor. In contrast, a
set of techniques, collectively named as non-intrusive load moni-
toring (NILM) [11], require only a single sensor per home. NILM
techniques are source separation techniques, which breakdown the
household aggregate power time series (typically measured using
a smart meter) into constituent appliances. NILM algorithms are
designed for high-frequency data (sampling frequencies > 1/60 Hz),
and do not apply when dealing with low sampling rates, like hourly
samples, since at lower frequencies the time series do not provide
such algorithms signals for accurate energy breakdown. However,
high-frequency sensors are of high prices; and prior literature [25]
and statistics about smart meter specifications [24] across the world
suggest that the largest proportion of smart meters sample only
at an hourly rate. This urges the need to develop new algorithms
suited for time series data with lower sampling rates.

On the other end of the spectrum, there are approaches providing
energy breakdown at a monthly level, e.g., using monthly bills as
aggregate monthly energy consumption [4, 6, 7]. The key idea
explored in such approaches is that common design patterns create
a shared and repeating structure in residential buildings giving
rise to a sparse set of features contributing to energy variations
across homes. Matrix factorization [7] and kernel density estimation
[6] techniques are introduced to exploit the sparsity. Nevertheless,
such techniques cannot be directly applied to higher sampling rates,
which rapidly increase the dimension of observations and model
complexity. Moreover, such solutions only provide residents with
limited resolution of energy breakdown, i.e., at a monthly level,
which is less informative in helping them save energy.

In this paper, we study household energy breakdown at an hourly
rate. Our extensive data analysis on a large public U.S. residential
household energy consumption data repository suggests that spar-
sity and temporal regularity also exist in hourly appliance energy
usage patterns, such as the time of a day, day of a week, which
motivates us to view such time series data as a high dimensional
compound, rather than just a one-dimensional sequence. For exam-
ple, time of a day might differentiate the use pattern of microwave
(typically used around meal times) from other appliances in the
aggregate power readings, while the day of a week might indicate
usage pattern of dryer and washing machine. Each of such temporal
patterns creates a unique dimension to recognize a particular type
of appliance’s energy usage in the aggregate energy readings.

But it is clearly impossible to manually exhaust such temporal
patterns for each type of appliance beforehand. We appeal to a
learning-based solution to automatically extract such patterns from
data. We view each temporal pattern as a latent basis of the high
dimensional compound of aggregate energy time series, and assume
each appliance can be uniquely characterized by a subset of them.

https://doi.org/10.475/123_4
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We isolate an appliance’s energy use from the aggregate readings by
applying its corresponding set of bases as filters over the aggregate.
For example, at mealtime, the observed energy consumption should
more likely come from microwave than dryer.

Learning the latent temporal bases from aggregate energy time
series data is challenging - the model complexity increases expo-
nentially with the number of sources that constitute the aggregate
energy. First, the magnitude of energy consumption in different
appliances varies significantly, which leads to a poor estimation of
low-energy consuming appliances in traditional solutions [7, 11],
as such appliances get overshadowed by high-energy consuming
appliances. For example, microwave typically takes less than 5% en-
ergy consumed by dryer when they are on. Therefore, when both of
them are on, the aggregated reading will be dominated by the dryer
and it becomes very hard to recognize whether the microwave is
on. Second, different homes consist of different appliances, and of-
tentimes they might include new appliances that are not previously
modeled in an energy breakdown solution. For example, a small
number of homes might have electric vehicles, which consume a
large amount of energy for charging, while most of other homes in
the same region do not have electric vehicles. Because an energy
breakdown solution only takes aggregate energy as input, the exis-
tence of such unknown energy sources introduces a considerable
source of error in the decomposed appliance energy, as the model
tries to fit the aggregate energy with only those known appliances.

To address the aforementioned challenges, we extract the tem-
poral bases and predict per-appliance energy consumption from
aggregate energy readings via a set of convolutional neural net-
works (CNN) [18], which are organized in a tree structure. Thus,
we name the solution TreeCNN. At each node of the tree, a CNN
model is placed to reconstruct a particular type of appliance en-
ergy time series by the latent temporal bases. The root node of
the tree takes aggregate energy readings as input and reconstructs
its designated appliance’s reading as output. The residual, i.e., the
difference between its input and output, is passed to the child node
as the subsequent input. The reconstruction is thus performed by
recursively traversing the tree. Such an iterative procedure isolates
the appliance model learning in each step while preserving all ap-
pliances as a whole, since the prediction residual is updated and
passed through the tree. Thus, each appliance’s usage pattern is
modeled with a “purer” aggregate energy consumption to avoid the
overshadowmagnitude problem. Further, with such a tree structure,
the unknown consumption can be modeled as a pseudo appliance
to further de-noise the aggregate readings. It is known that finding
the optimal tree structure is NP-complete, and thus we introduce
a greedy approach to find the tree structure. It is worth to men-
tion that our proposed solution is applicable to energy data with
both higher or lower frequencies, such as minute and monthly data.
The CNN nodes in the tree structure is expected to capture the
temporal patterns across minutes (e.g., ON/OFF states) and across
months and years (e.g., seasonal pattern). But in our evaluation,
we focus on hourly data because: 1) the availability of homes with
minute data is much less than those with hourly data [24, 25]; 2)
the consumption of some appliances may not change much across
minutes, which is somehow redundant. For monthly data, we can
only capture seasonal patterns, whose granularity might not be as
informative hourly breakdown results.

We use the public Dataport [20] dataset for evaluation. We com-
pare our proposed TreeCNN solution against nine state-of-the-art
baselines for energy breakdown and find TreeCNN provides the
most promising performance in decomposing the hourly energy
data. We also verify that the energy breakdown performance can be
further improved by modeling the unknown energy source, which
is only properly handled in our solution. Our empirical evaluation
shows that the tree structure suggested by our greedy approach
performs only 4% worse compared to the optimal order found via
an exhaustive search.

2 RELATEDWORK
The field of energy breakdown study was invented by George Hart
in the early 80s [11]. Since then, a large number of learning-based
solutions have been proposed, which can be broadly classified as:
event-based and total-load models.

Event-based methods find step changes in the power signal and
assign them to different appliances. Appliances turning “ON” would
produce a positive step change in power and appliances turning
“OFF” would produce a negative step change accordingly. Event-
based methods [8] are generally used only when high sampling
frequency (1 Hz or higher) is available, as the events cannot be
recognized at low frequencies. They are thus ill-suited for hourly
or even lower sampling rate. Event-based methods also have other
shortcomings - they do not work well when appliances change
state simultaneously, nor are they suited to appliances which have
a highly variable power draw like electronics. Furthermore, errors
(missed events and wrongly detected events) propagate forward
in event-based methods, leading to generally poor energy break-
down performance. These factors generally limit such solutions’
application in practice.

In contrast, total-load based methods model the aggregate con-
sumption as a sum of constituent loads, while estimating these
constituent loads at all sample points (unlike event-based methods).
Our solution fails into this category. In particular, Factorial Hidden
Markov Model (FHMM) has been successfully applied to this prob-
lem [17], where each appliance is modelled as a Gaussian HMM.
While such total-load approaches are better suited for lower sam-
pling rates compared to event-based approaches, one shortcoming
of such approaches is that they only incorporate Markovian-type
relationships in power draw (i.e., between states at adjacent time
stamps) and are not suited for capturing patterns like repeated
or similar energy consumption based on the hour-of-day or day-
of-week. Another shortcoming is that they assume the aggregate
consumption is the sum of the considered appliances, rather than all
appliances in a home. This is limited by the availability of training
data, as in practice it is very expensive to instrument all appliances.
Often, when is high consumption resulted from unknown energy
sources, such solutions give very poor performance. Our solution
addresses this issue by modeling the unknown energy source as a
pseudo appliance in the tree structure so as to model its temporal
pattern for energy breakdown as well.

There is a line of work for energy breakdown at a monthly
level. The key insight of such approaches is that common design in
residential buildings creates a sparse set of features contributing to
energy variation across homes. Matrix factorization [7] and kernel
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density estimation [6] methods have been used to exploit such
sparsity. But such solutions cannot be directly applied to higher
sampling rate, as their model complexity increases exponentially
with the sampling frequency. Sparse coding based approaches [16]
have been proposed to address these techniques’ limitations on
hourly data. But all such solutions assume the aggregate equals to
the sum of the appliances and thus suffer under practical settings
when the unknown energy consumption is high.

With the fast development in deep learning, there also exists
some recent solutions that explore the capability of neural network
applied in NILM. [14, 15] applied recursive neural networks (RNN)
to capture the time-series dependency of the energy signals sampled
at a high frequency. However, a RNN-type model mostly captures
the one-dimensional Markovian relationships in power draw, but
is incompetent to capture other types of temporal dependencies.
For example, as we mentioned before in the hourly sampled energy
data appliances like microwave can be well recognized by the time-
of-day pattern, while others like dryer is easier to be modelled by
day-of-week pattern. A RNN model will possibly fail to learn such
periodical patterns with multiple dimension. Our solution considers
time-series energy data as a high dimension compound of various
temporal bases, and learns the bases from data to recognize different
types of appliances from the aggregate readings.

3 DATA ANALYSIS
The goal of this section is to explore the temporal energy consump-
tion patterns residential buildings towards the development of our
proposed energy breakdown methods.

3.1 Dataset
In this work, we use the public Dataport [20] dataset. Dataport
is the largest public residential home energy dataset. It contains
power readings logged at minute intervals from hundreds of homes
in the U.S. We use 112 days worth data from 68 homes from mid-
June on-wards for the year 2015, as this period has the least amount
of data issues (missing or incorrectly collected data). Besides house-
hold total consumption, we use data of five major appliances: i) air
conditioning system (HVAC); ii) fridge; iii) dryer; iv) dishwasher; v)
microwave. These appliances contribute significantly to the total
energy consumption. Besides, they also represent a diverse class
of appliances: fridge and HVAC being constantly ON appliances;
HVAC being a high energy consuming appliance, dependent on ex-
ternal weather and thermostat settings; dishwasher and microwave
being kitchen appliances; dryer and dishwasher being high power
appliances typically used for a short duration. In this dataset, all
appliances are monitored at a 1/60 Hz sampling rate (e.g., every
minute).

3.2 Appliance usage patterns
Appliances can generally be classified into two categories [3]: i)
appliances that are constantly ON - which usually run without ac-
tive human intervention, such as fridge and HVAC; and ii) ON/OFF
appliances - which require active human intervention and are typi-
cally run for short durations, such as washing machine and oven.
When dealing with low sampling rates (like hourly), ON/OFF ap-
pliances introduce additional challenge - many of these appliances

Table 1: Energy statistics from Dataport dataset.

HVAC Fridge Dryer Dishwasher Microwave

α (min) 5 5 5 5 2
δa 230 20 250 55 10
Active 73.9% 97.8% 4.9% 4.1% 11.3%
Max 5099.7 428.6 4364.1 1021.7 980.6
Mean 1162.7 88.6 1303.6 369.5 59.5
Std 800.2 40.2 756.2 206.5 53.1

would only be used partially within an hour. This is also the main
reason that existing NILM algorithms fail at this low sampling rate.
To understand how significant this phenomenon is in our dataset,
we studied the shortest active time interval of those five appliances
in minutes across different homes (denoted as α ). We found that
all appliances have much shorter active time intervals than one
hour: except microwave has minimum 2 minutes active interval,
the others are all 5 minutes (detailed results can be found in Table
1).

As we are performing hourly energy breakdown, the existence
of short active intervals begs the question - how much energy
should an appliance consume within an hour to be considered
“actively used”. On consultation with domain experts, we set the
active threshold δa for each appliance a as:

δa =
αa
60

×
1
H

H∑
h

max
d,t

Eh,a,d,t (1)

where H represents the number of homes, Eh,d,a,t is the energy
consumption reading of appliance a on day d at hour t for home
h, and αa is the minimum active time interval for appliance a. As
we know, for appliance occasionally used, it’s easy to get a good
overall performance by giving all zero-predictions (e.g., microwave
is OFF over 88% of time). However, such false negative prediction
violates the original intention of energy breakdown, i.e., provide
the opportunity of energy saving by informing users of how much
energy each appliance consumes. With such an active threshold,
we can recognize different states of each appliance and evaluate a
model’s prediction in two classes, i.e., error in ON/OFF states.

Basic statistics about this dataset with the active threshold are
reported in Table 1. As we can notice, the constantly ON appliances,
i.e., HVAC and fridge, are almost always on (active percentage:
73.9% and 97.8%); but their energy consumption patterns are quite
different: fridge nearly consumes constant energy over time, while
HVAC’s consumption varies significantly over time (std = 800.2).
For the ON/OFF appliances, such as dryer, while their use is seldom;
but once used, it consumes almost the highest energy. This macro-
level analysis suggests the need of different temporal bases for
energy breakdown prediction across appliances.

Now we move onto the detailed micro-level analysis about dif-
ferent appliances’ temporal energy consumption. Previous works
[4, 7], which studied monthly aggregated data, show that the energy
consumption pattern across homes and appliances is sparse owing
to the common design of residential buildings. Our data analysis
suggests that such sparsity pattern also exists at an hourly and daily
level, largely due to temporal human behavior patterns, such as
using the microwave during the mealtime.
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(a) Heatmap of aggregate and appliance-level energy consumptions from two randomly selected homes.
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(d) Average energy consumption over 24 hours.
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Figure 1: Data analysis for residential home temporal energy consumption patterns.

Figure 1a shows the heatmap of aggregate and five appliances’
energy consumption from two randomly sampled homes over 24
hours across 56 days. We can easily recognize strong hourly energy
patterns within a day across these 56 days. For example, i) both
homes tend to consume more energy by HVAC in the afternoon
and less in the early morning; ii) fridge constantly runs with reg-
ular working peaks; and iii) dishwasher and microwave are more
likely to be working at the mealtime. Figure 1b, which presents the
probability of being in active state over five appliances during 24
hours across all homes, further indicates the hourly patterns, espe-
cially that sparsity also exists at a daily basis. In Figure 1a, Home 2
consumes much less HVAC energy in the morning and this pattern
only appears on the weekdays. Further, different from dishwasher

and microwave, people tend to use dryer periodically across days.
Figure 1c shows the aggregated active hours among 68 homes in
each day for the three ON/OFF appliances. It clearly shows that
the total number of active hours of dryer has a peak every week
while dishwasher and microwave are used on an everyday basis.
These identified sparsity and temporal regularity motive us to view
such time series data as a high dimensional compound instead of a
one-dimension sequence.

Besides, energy consumption is also highly unbalanced among
appliances (as indicated in Table 1). “Minor” appliances such as
microwave are often a problem for many existing NILM algorithms
owing to their small magnitude of energy consumption. A more
detailed comparison is shown in Figure 1d. As we can notice that
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throughout a day, most energy is consumed by HVAC, which peaks
in the late afternoons. For those ON/OFF appliances, such as mi-
crowave and dryer, when both them are on, the one with smaller en-
ergy consumption (e.g., microwave) is overshadowed by the larger
one (e.g., dryer). And therefore it becomes even harder to differen-
tiate their uses. Comparing to the major appliances such as HVAC,
“minor” appliances like microwave are easily to be treated as noise.
It should be noted that despite low contribution, simply predicting
zero use is still misleading. In addition, it has been shown that
detecting the energy use of these appliances, such as microwave,
has been shown to help detect activities of daily living, especially
useful for applications such as elderly monitoring [1].

In addition to the patterns of known appliances, it is impor-
tant to note that the aggregate consumption is often not equal
to the sum of the considered individual appliances’ consumption.
For example, in the aggregate consumption of Home 1 in Figure
1a, there is some regular high consumption in the early morning,
which is not observed in the known appliances. Such unknown
consumption comes from various sources, such as the living room
usage, appliances like furnace, or special equipment like electric
cars. Figure 1e shows the energy consumption proportion of each
known appliance and unknown consumption. It is easy to recog-
nize that in average the unknown consumption oftentimes can
take up as much as 51.86% total energy in a home. However, this
consumption is impossible to exhaust beforehand; and the failure
to model them leads an energy breakdown algorithm to classify
them to known appliances, such as misclassifying furnace’s usage
as HVAC’s. To improve the accuracy of energy breakdown, such
unknown consumption has to be carefully handled.

As a side note, this data analysis is to show the regularity and
sparsity do exist in the hourly data of household energy consump-
tion. We only perform the analysis on energy data collected in U.S.,
but we believe even consumption behavior varies among different
cultures and geo-regions, the energy data generated should also
has the sparse property, such as periodical patterns, as it is largely
affected by human behavior pattern and diurnal/seasonal patterns.

4 METHODOLOGY
We study the problem of disaggregating the aggregate energy from
a single home to its constituent appliances at hourly intervals.
Based on previous discussions, the hourly sampled energy time
series data has several important properties, i) the existence of
sparsity and regularity in multiple temporal dimensions, ii) energy
consumption magnitude varies significantly across appliances, and
iii) the existence of unknown consumption sources. We will discuss
our solutions to each of them in the following sections.

4.1 TreeCNN Model
The key intuition of TreeCNN lies in two aspects: i) the distinct
and multi-dimensional temporal patterns of appliance energy con-
stitute the sparsity and regularity in appliance-level energy use;
ii) the aggregate energy is a composition of various and compli-
cated appliance energy consumption, such that the decomposition
should be performed in a joint and recursive manner to avoid the er-
rors introduced by the magnitude problem and potential unknown

Figure 2: Our Tree-structured iterative energy breakdown
approach shown for two appliances (HVAC and Dryer).

consumption. We now discuss each component of our proposed
TreeCNN model in detail.
• Convolutional Neural Network (CNN). In Section 3, our anal-
ysis results clearly show that different appliances have distinct
temporal usage patterns. Such patterns differentiate the appliance
energy readings from each other and thus make energy disaggrega-
tion possible. But, simply modeling the hourly time-series energy
usage data as a one-dimension sequence cannot fully describe the
appliances. For example, microwave is more frequently used during
the meal time (a hourly pattern), while the dryer is easier to model
across days for its periodical usage (a daily pattern). Thus, this
time-series of appliance energy usage should be viewed as a high
dimensional compound of various temporal patterns, i.e., a set of
latent bases that construct the unique characteristics.

Besides the patterns observed in the appliance usage data, there
might also exist other higher order temporal patterns that cannot
be simply exhausted manually. Thus, we turn to learning-based so-
lutions to automatically extract the latent bases from data. Inspired
by the successful applications of convolutional neural networks
(CNN) in image analysis [18], which can be considered as a high-
order matrix analysis, we appeal to CNN models to extract the
temporal bases for energy time series data. The key component of
CNN model is the filters that are learned in its convolutional layers
to capture the spatial features of an image. In an analogy, the hourly
energy readings can also be viewed as a 2-D matrix (Figure 1a) and
thus can be well described by the spatial filters learned from CNNs.
It’s worth mentioning that Recurrent Neural Nework (RNN) is also
capable to capture the patterns across time. However, it only models
the one-dimensional time-series data (e.g., a Markovian relation
among observations in a sequence), and easily fails to capture the
periodical patterns across days in the hourly energy data.

With a CNN model, the filters learned with the energy data
represent the temporal bases for energy breakdown. Thus, distin-
guishable filters can be learned for appliances with distinct temporal
patterns. For example, filters learned on microwave may emphasize
more on the hour dimension, filters for dryer will emphasize on
the day dimension, and the filters for HVAC may be a compound
of patterns on both dimensions. With such patterns represented
as filters, the aggregate readings can be projected into its corre-
sponding appliance usage. In Figure 2, we give an example of a
CNN model which learns the mapping from aggregate readings to
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HVAC consumption. The CNN model consists of two major parts,
convolution and deconvolution, which correspond to feature extrac-
tion and reconstruction phrases. In the convolution phrase, CNN
model takes the aggregate as input and tries to reduce it with a
series of encoders into a much denser representation. In this phrase,
due to the sparsity and granularity, the periodical patterns will be
extracted and the input will be represented as a denser matrix with
a smaller dimensionality. And then in the deconvolution phrase,
the decoder performs the opposite operations that reverse the ac-
tion of encoders: map the learned representations to the target and
reconstruct the appliance readings, e.g., HVAC in this example.
• Tree Structure. Another challenge in energy breakdown is the
model complexity increases exponentially with the number of
sources constituting the aggregate energy. As discussed before, the
aggregate reading is constituted by various energy sources, such as
the constantly ON appliance (e.g., fridge), ON/OFF appliances with
significant temporal patterns (e.g., microwave), and the unknowns.
One consequence of the various constituent components is the
magnitude issue, where some appliances can get overshadowed by
others. As shown in Figure 1e, HVAC consumption is almost 100
times the consumption of microwave, which makes the microwave
signal easily being overshadowed as noise.

Different from conventional energy breakdown techniques, which
either estimate energy usage for each appliance independently or
disaggregate the energy altogether at once, we propose a tree-
structured model to extract the appliance patterns in a stage-wise
manner. with respect to a recursively learned tree structure. With
the tree structured model, our approach revolves around the idea
of performing an iterative energy breakdown: at each iteration,
we subtract out a source from the aggregate and use it as input to
recognize the designated appliance. Figure 2 depicts an example
of our tree-structured iterative energy breakdown approach with
two appliances, HVAC and dryer. The root node of the tree takes
the aggregate energy readings as input and reconstructs the HVAC
consumption as its output. The difference between the input and
the output will be passed to its child node as refined aggregate read-
ing input for the next appliance, e.g., dryer in the figure. With such
“purer” aggregate consumption, the magnitude problem is highly
eased for the minor appliances, such as microwave, if we place them
at the lower end of the tree. In the contrast, if we jointly decom-
pose the aggregate readings into appliances’ readings, the minor
appliances will be easily overshadowed as they are competing with
the major appliances at the same time, and given zero predictions,
which violates the original intention of energy breakdown.

In our TreeCNN model, as we are reducing one appliance at
each iteration, we are effectively simplifying the energy breakdown
problem step by step. In each node, the CNN model performs an
end-to-end learning process for the target appliance, which isolates
pattern learning across appliances to avoid the overshadow problem
while preserving all appliances as a whole.
• Modeling Unknown Consumption. In addition to the magni-
tude problem caused by the various constitutes of aggregate, the
unknown consumption also introduces tremendous errors in en-
ergy breakdown. From the previous analysis, the unknown energy
consumption comes from various sources and therefore is hard to
specify beforehand. To the best of our knowledge, prior work has
not yet looked at modeling the unknown energy consumption. In

our tree-structured model, the unknown consumption can be sim-
ply viewed as a special appliance which consists of multi-dimension
temporal patterns and therefore can be treated as a dummy appli-
ance in all homes. Modeling the unknown consumption makes it
possible to remove such dominant energy from the true aggregate
consumption, which leads to a more accurate estimation of the
observed appliances.

4.2 Tree Order
In this section, we discuss the order to process appliances in our
tree structured model.

Given N appliances to disaggregate in each residential home,
we would have N ! possible tree structures. For a typical residential
home at the U.S., one can usually expect 7-10 major appliances of
interest in monitoring, such as fridge, air conditioning, and washing
machine. For any larger values of N , exhaustively finding the “opti-
mal” order can be computationally expensive, where “optimality” is
defined as per given energy breakdown metricM . And the error of
one decomposition will be propagated through the tree structure.
Thus the order of processing appliance disaggregation is essential
to our model. We thus propose a greedy algorithm to find a suitable
tree order to mitigate the error, and reduce the search space. The
key operation in such a greedy approach is to estimate the overall
performance of a tree order while having only partial/local infor-
mation, i.e., at each node in the tree, we wish to estimate the final
energy breakdown performance over all appliances via the perfor-
mance of a single appliance at a given level of the tree. And the
key idea lies in the inverse propensity weighting scheme [19, 26],
which is extensively explored in importance sampling techniques
[10].

Let us assume that we have N appliances in total and we use a
metricM(E(ai ), Ê(ai )) to compute the error for appliance ai where
Ê(ai ) and E(ai ) denote the estimated energy usage and the ground
truth in appliance ai . In the first iteration, we will create N candi-
date splits, e.g., HVAC v.s., the rest. Among these N models, we se-
lect k with the smallest estimated energy breakdown error (EEBEGR )
on the validation set. In the next iteration, we will create (N −1) sub-
trees for each of the selected k parent trees. The selection repeats
until we have constructed the whole tree.

Our local metric EEBEGR is used to estimate the overall energy
breakdown error, before the whole tree has been constructed. This
metric is calculated as the ratio between a chosen energy breakdown
metric calculated for an appliance and the proportion of energy
consumed by this appliance:

EEBEGR (ai ) =
M(E(ai ), Ê(ai ))∑
h
∑
d
∑
t E(h,ai ,d,t )∑

h
∑
a
∑
d
∑
t E(h,a,d,t )

(2)

The rationale behind EEBEGR is that it assumes if an appliance
has an error e and contributes x proportion of aggregate, then the
aggregate would have an expected error of e

x from this appliance.
Thus, we are able to estimate the error over the complete tree
structure by such an estimation over the prediction error of each
individual appliance during the construction of the tree. In such
way, we get the error of the entire tree before it is constructed,
which makes the sequential decisions of tree order possible.
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5 EMPIRICAL EVALUATIONS
In this section, we evaluate the proposed TreeCNN model on the
hourly data collected from 68 homes over 112 days in the Dataport
dataset. We perform a series of NILM evaluations to validate the
performance of our TreeCNN model against several state-of-the-
art models in energy breakdown in energy breakdown estimation
accuracy.

5.1 Baselines
We first describe the baselines included for comparisons.
• Mean Energy: Previous research [16] indicates that a simple
baseline like mean energy is effective. This baseline computes the
predicted energy of an appliance as the mean energy of that appli-
ance in the train set.
• FactorialHiddenMarkovModel (FHMM): FHMMs [17]model
each appliance as a Gaussian hidden Markov model and couple the
individual appliance HMM in a factorial structure.
•Tensor Factorization:Canonical polyadic (CP) decomposition [4]
is used to factorize the energy tensor into latent matrices. The au-
thors mentioned that CP decomposition tends to concentrate on
high energy appliances, while ignoring learning components for
low energy appliances. And they proposed a modification to CP
called Modified CP (MCP) to mitigate the shortcoming.
• Sparse Coding: Sparse coding [16] model approximates the bases
and activations for each appliance with sparse constraint. And then
estimate the activations with aggregate signal and the concatenated
bases. The authors also proposed a structured prediction based
method called discriminative sparse coding (DSC) to optimizing
the energy breakdown performance.
• Recurrent Neural Networks (RNN): Several neural based ap-
proaches [14] have been proposed for energy breakdown problem,
which captures the time-series dependency of the energy signals.
For comparison, we performed the decomposition with individual
RNN model and TreeRNN model to verify the effectiveness of CNN
model and tree structure in our TreeCNN model.
• Convolutional Neural Networks (CNN): We use individual
CNNs and Joint CNN model, which decompose the aggregate read-
ings into appliances’ readings altogether at once, as baseline meth-
ods, given that our approach uses a tree-structure over the CNN
nodes. Individual CNNs create one CNN model to estimate each
individual appliance energy consumption separately, while Joint
CNN estimates them all together at once.

5.2 Experimental settings
5.2.1 Dataset related settings. We use a 5-fold cross-validation

strategy in the experiments. The final 20% of the train set in each
run is set for validation purpose.

5.2.2 Approach settings. For each baseline and our method, the
optimal parameters are learned via an exhaustive grid search. The
optimal parameters that give the best performance on the validation
set are used for testing. For FHMM model, we vary the number of
states per appliance from 2 to 5 according to [5, 28]. CP and MCP
are optimized with Adagrad [4], and we vary the rank of latent
factors from 1 to 12. For sparse coding models, we vary the number
of latent factors from 1 to 50.

We implemented all neural network models with PyTorch [22].
For RNN-based models, we have the following parameters: cell type:
{GRU, LSTM, RNN} number of hidden units: {20, 50, 100}; number
of layers: {1, 2, 3}; bidirectional: {True, False}, number of iterations:
{1000, 2000, 3000}. For CNN-based models, as we only have limited
training data, complex network design will easily cause overfitting.
In this model, we have the encoders consist of two convolutional
layers and two deconvolutional layers with normalization [12] to
accelerate the training process, and ReLU to accelerate the training
process and introduce non-linearity. For individual CNN model,
we choose the learning rate from {1e-2, 1e-1, 1} and the number
of iterations from {1000, 2000, 3000}. For TreeRNN and TreeCNN
model, one important aspect is the appliance order. We perform
both exhausted search and greedy search described before. Since
we have five appliances, we use top-k = 3 results at each stage of
greedy search.

For all baselines barring the neural network model, we clamp
the estimated appliance energy to a maximum of the observed
aggregate energy. Such a post-processing step reduces the error
for high energy consuming appliance such as HVAC. For neural
network based methods, we perform such a clamping within the
model estimation stage.

5.2.3 Metric. Based on prior literature, we evaluate the perfor-
mance with mean absolute error (MAE) [5]. If the ground-truth
and estimated energy for home h, appliance a, day d and hour t
are given by E(h,a,d, t) and Ê(h,a,d, t), for appliance a, the MAE
is given as:

MAE(a) =

∑
h
∑
d
∑
t |E(h,a,d, t) − Ê(h,a,d, t)|

H × D ×T
(3)

where H , D, T indicate the total number of homes and days, and
hours in a day. We use the average MAE across appliances to mea-
sure accuracy. For the model comparison, we use the mean MAE to
represent the accuracy.

meanMAE =

∑
a MAE(a)

A
(4)

where A represent the number of appliances. Lower mean MAE in-
dicates better energy breakdown performance. As shown before, in
some ON/OFF appliances, such as dryer, the active time is generally
low (< 5%). The MAE alone cannot fully reflect the performance, as
zero predictions can also give a good MAE for them. Thus, we also
separate MAE into two parts, corresponding to the active and inac-
tive states based on the ground-truth, and the threshold is reported
in Table 1.

5.3 Experiment Results
In almost all the publicly available datasets, it is seldom the case that
the aggregate energy consumption equals the sum of the appliances
that is collected. Moreover, there is always some extra energy ex-
pended in the internal household wiring. In the following sections,
we first test the energy breakdown capabilities of different algo-
rithms in an ideal case, where we set the aggregate energy as the
sum of selected appliances, and then perform the same experiments
on the true aggregate dataset where the unknown consumption
is included. Further, we compare the baselines and our TreeCNN
model with and without modeling the unknown consumption to
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Figure 3: Comparison of a few baseline algorithms for a sample day, where DW stands for dishwasher and MW stands for
microwave.

show the effectiveness of unknown consumption modeling. Last,
we report the results of greedy algorithm on tree order estimation.

5.3.1 Filter size in CNN models. In CNN-based models, size of
the filters plays an important role in capturing the temporal pat-
terns. A large filter might overlook the detailed temporal feature
and miss the essential details in the input data, while a small filter
might provide too much redundant information and unnecessarily
increase the number of parameters. Thus, determining the most
suitable size of a filter is a must-do step in CNN models. We first
explored the effect of different sizes of filters in the first convolu-
tional layer of our CNN models. The results are shown in Figure
4. We can clearly observe that the performance of CNN models
are quite sensitive with the size of filters. Besides, as discussed
in Section 3, there exist some periodical temporal patterns in the
hourly energy data, and different appliances can be differentiated
by latent temporal bases due to such distinct temporal features.
And the results here follow what we discussed. As shown in the
figure, when the size of filters equals to 7 × 7, most models achieve
the best performance (i.e., lowest error), as such filters can well
capture the periodical patterns across hours and days, such as time
of a day patterns for appliances like microwave, and day of a week
patterns for appliances like dryer. Accordingly, when we have small
sized filters, the model might miss some periodical patterns across
the multiple dimensions; and when we have large sized filters, it
might fail to capture the local features and also generate redundant
information.

In the following experiments, the filters of each layer in CNN
models are set to 7 × 7 and 2 × 2. And the decoder is a mirrored
version of the encoders with 2 deconvolutional layers. And we use
the L1-loss as the objective function. We fix CNN architecture and
only tune the hyper-parameters.

5.3.2 TreeCNN v/s baselines on data with artificial aggregation -
ideal case. First, we test the energy breakdown capabilities of dif-
ferent algorithms in the ideal case, when the sum of the appliances
equals the aggregate. We simulate this setup by manually setting
the artificial aggregate. Various previous studies have used such
a setup for evaluation [16, 27, 28]. Our main results presented in
Table 2 show that our TreeCNN algorithm has better prediction
performance compared to all the baselines. Thep-value is calculated
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Figure 4: Effect of filter size tuning on CNN models.

Table 2: Mean MAE on artificial aggregate dataset.

MAE MAE on Active MAE on Inactive

FHMM 114.99 360.76 80.34
CP 106.19 390.39 96.11
MCP 103.46 390.90 96.93
SC 92.20 411.93 28.61
DSC 172.95 388.29 15.03
Mean 100.34 404.03 49.13
RNN 67.34 388.90 37.87
TreeRNN 64.26 383.84 36.79
CNN 56.96 310.51 41.53
Joint-CNN 57.90 332.45 42.07
TreeCNN 51.64∗ 261.30∗ 40.05

* p−value < 0.05
between the predictions of TreeCNN and the second best model for
each column. As an illustration, Figure 3 shows the energy break-
down estimation from a set of baselines for a randomly chosen day
of one randomly selected home.

We now discuss why the baseline algorithms fail to provide an
accurate energy breakdown even in the ideal setting. FHMM as-
sumes that we can model appliances with a Gaussian HMM using
discrete states, which considers the transition and emission proba-
bilities between states on a time-series data. While it can well model
appliances have time-series dependency, such as HVAC and fridge,
it is not well suited to appliances such as dryer which is sparsely
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Table 3: Mean MAE on true aggregate dataset.

MAE MAE on Active MAE on Inactive

FHMM 134.99 400.76 82.94
CP 123.90 414.01 103.10
MCP 125.30 412.33 107.81
SC 245.70 515.54 215.57
DSC 218.43 521.35 190.84
Mean 126.86 421.50 102.22
RNN 97.80 435.38 60.32
TreeRNN 94.52 433.01 54.85
CNN 89.15 417.85 68.28
Joint-CNN 91.35 429.87 69.26
TreeCNN 86.94∗ 391.50∗ 61.69∗

* p−value < 0.05
used. Further, we can observe that FHMM predicts the dishwasher
and microwave to be active much more often than they actually are.
MCP and DSC algorithms are both of a similar vein focusing on
learning various “basis” or temporal patterns of energy consump-
tion. Both these algorithms perform reasonably well in general.
However, they are not well-tuned for the instances when energy
consumption patterns differ from the average patterns. Moreover,
they are poor at capturing the active states of the ON/OFF appli-
ances. From Table 2, we can observe that for MAE on Inactive,
SC and DSC have better performance. This is because the design
of their two-stage decomposition adds the equality constraint be-
tween the sum of appliances and aggregate readings. The mean
baseline though is very simple, performs reasonably well. However,
it should be noted that it does so as it models the appliances to be
mostly off and thus a low MAE for the inactive cases, but high MAE
for the active cases. Previous research has also validated similar
observations a different data set [16].

Compared with the non-neural network baselines, the MAE
is largely reduced by RNN and CNN based models. Between the
individual neural network models, CNN outperforms RNN. The
main reason is with the learned filters, CNN can capture the multi-
dimensional usage patterns, e.g., hourly pattern and daily pat-
tern in our dataset, while RNN treats the energy readings as one-
dimensional time-series ignoring the periodical usage patterns. For
example, in Figure 3 with CNN models, the active states of the
ON/OFF appliances, such as dryer, is well detected, while RNN
gives zero predictions. From Table 2 and Figure 3, the performance
of neural network models are both improved with the tree structure,
i.e., decreased MAE; by considering the relationship among appli-
ances, TreeCNN makes more accurate energy estimations than all
baselines. Though JointCNN also encodes the relationship among
appliances, direct decomposition could not overcome the magni-
tude problem, which generates significant larger error in MAE on
Active as the “Minor” appliances are easily overshadowed and given
zero-prediction.

5.3.3 TreeCNN v/s baselines on data with true aggregation - real-
world case. Now, we evaluate the models on the true aggregate
dataset, which provides a more realistic energy breakdown evalua-
tion of the state-of-the-art solutions.

Table 4: Mean MAE on true aggregate dataset.

MAE MAE on Active MAE on Inactive

FHMM 134.99 400.76 82.94
DSC 218.43 521.35 190.84
RNN 97.80 435.38 60.32
CNN 89.15 417.85 68.28
Joint-CNN 91.35 429.87 69.26
TreeCNN 86.94 391.50 61.69

Table 5:MAEof best baseline andTreeCNNwith/without un-
known consumption modeling. (UC: Unknown Consump-
tion, DW: Dishwasher, MW: Microwave)

HVAC Fridge Dryer DW MW Average

TreeRNN w.o. UC 351.83 29.88 66.93 15.45 8.53 94.52
TreeRNN w. UC 337.69 30.02 67.16 15.43 8.43 91.75
TreeCNN w.o. UC 306.38 33.74 70.09 15.49 9.00 86.94
TreeCNN w. UC 296.11 33.34 69.01 15.45 8.83 84.55

Table 4 shows the energy breakdown performance for different
algorithms when using true aggregate. We should note that the
mean baseline shows a different result than that in the artificial
aggregate dataset since we applied the post-processing (clamping
appliance energy ≤ aggregate) to ensure that appliance energy con-
sumption does not exceed the aggregate. We can see that with true
aggregate, TreeCNN model still outperforms the other baselines.

Comparing the results from these two settings, we can clearly
notice that all algorithms show poorer performance with true ag-
gregate. As discussed before, this can be explained by the high
amount and variety of unknown consumption. Unknown consump-
tion is prevalent in energy breakdown owing to limited technology
and resources for instrumentation. If we can better model the un-
knowns, the performance of energy breakdown should improve, as
the problem becomes closer to the ideal case.

In our TreeCNN, the unknown sources can be simply treated
as a special appliance which is also consisted with multiple high
dimensional temporal patterns. The model will automatically learn
the complex latent bases for such unknown sources via filters in
CNN as well. Table 5 shows the improvements when we consider
the unknown energy sources in the model. The experiment is per-
formed on the true aggregate dataset. A model with Unknown
Consumption means we treat the unknowns as a special node in
the structure andwithout Unknown Consumptionmeans we simply
ignore it. Though the MAE difference is small, we performed paired
t-test on the predicted energy consumption of TreeCNN with and
without unknown sources, and the test statistics show almost all
the estimations are significantly improved except for the dryer. In
this work, we only have one model for the unknown sources while
the unknown energy might come from a combination of various
sources. We leave this exploration to the future work.

5.3.4 TreeCNN with greedy v/s exhaustive tree orders. Table 6
compares the mean MAE performance of our greedy tree-order
algorithm with the best, worst and average order found by exhaus-
tive search on three settings: i) artificial aggregate data; ii) true
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Table 6: TreeCNN performance under different tree or-
ders. (UC: Unknown Consumption, agg: aggregate)

Worst Average Greedy Best

Artificial agg 84.42 68.72 54.21 51.64
True agg w.o. UC 105.60 96.54 88.38 86.94
True agg w. UC 110.75 98.64 87.21 84.55

Table 7: Comparison of the tree order learned via our greedy
algorithm to the best and the worst order found via an ex-
haustive search on artificial aggregate dataset.

Fold Best order Worst order Greedy order

1 (DW, MW, FR, HV, DR) (HV, MW, DW, DR, FR) (FR, MW, HV, DR, DW)
2 (FR, MW, HV, DW, DR) (DW, HV, FR, MW, DR) (FR, MW, HV, DW, DR)
3 (FR, HV, DW, DR, MW) (HV, DR, MW, DW, FR) (DW, FR, HV, DR, MW)
4 (MW, FR, HV, DW, DR) (HV, DR, FR, MW, DW) (DW, MW, FR, HV, DR)
5 (FR, DW, HV, MW, DR) (DW, HV, DR, FR, MW) (DR, MW, FR, DW, HV)

Table 8: MAE on energy data sampled every 15 minutes.

HVAC Fridge Dryer DW MW Mean

MTF 8.70 0.80 0.34 1.64 0.20 2.34
SC 9.73 1.26 0.81 1.48 0.84 2.82
FHMM 7.49 0.98 0.40 1.98 0.67 2.31
RNN 3.49 0.64 0.27 1.01 0.17 0.11
TreeRNN 3.28 0.65 0.24 0.95 0.19 1.06
CNN 3.32 0.71 0.23 1.01 0.13 1.08
TreeCNN 2.98 0.65 0.23 0.91 0.13 0.98

aggregate data without unknown sources modelling; iii) true aggre-
gate data with unknown sources modelling. It can be seen that our
greedy algorithm performs substantially better than the average
and is only about 4% worse compared to the best order found via
exhaustive enumeration. We now dive deeper into the different tree
orders. In Table 7, we compare the best, worst and greedy order
for the five folds. We can find that HVAC occurs in the initial two
positions in all the five folds for the worst order. We believe that
placing HVAC in the first few positions in the tree structure gives
poor energy breakdown performance, as the HVAC energy is easily
to be over-estimated to “eat” up the energy of other appliances. The
greedy order is similar ones as the best order, for example, both
tend to have fridge in one of the initial positions and the dryer in
one of the latter.

5.3.5 Generaliability of TreeCNN.. As mentioned before, our
proposed TreeCNN model is applicable to energy data with both
higher or lower frequencies, as the CNN nodes in the tree structure
will capture the temporal patterns across minutes or hours. We
thus apply some of the best baselines and our model to energy
data sampled with 15 minutes and 3 hours and report the results in
Table 8 and 9. It is worth mentioning that the errors are in different
scales in these two tables, as data sampled every 15 minutes is
much smaller than that sampled every 3 hours. As shown in the

Table 9: MAE on energy data sampled every 3 hours.

HVAC Fridge Dryer DW MW Mean

MTF 991.82 104.33 319.68 67.94 32.56 303.26
SC 1077.92 90.24 287.09 89.27 38.66 316.64
FHMM 1134.86 96.53 475.06 107.33 42.26 371.21
RNN 949.36 75.76 202.99 37.01 33.06 259.64
TreeRNN 905.00 71.64 208.81 33.52 20.22 249.04
CNN 886.03 76.78 203.28 46.83 24.01 247.39
TreeCNN 836.97 70.10 161.32 33.07 20.72 224.44

results, comparing with the existing baselines, our TreeCNN model
gives the best or comparable performance on appliance-wise and
overall estimation quality with energy data sampled with a higher
or lower rate. Even with different sampling rates, there still exist
the multi-dimensional temporal patterns in the energy data, that
is why TreeCNN is still applicable for energy breakdown. Because
the magnitude problem is natural in energy breakdown, directly
decomposing the aggregate readings still gives worse performance
than iterative decomposition with tree structure.

Like in image processing, we can view the data sampled with
different frequencies as images with different resolutions. Energy
readings sampled every 15 minutes should contain more detailed
information such as the states changes of appliances, especially
for ON/OFF appliances such as dryers; and energy data sampled
every 3 hours are more likely to show the major patterns. Compar-
ing with the results in previous sections where dryer has higher
error than fridge on the hourly data, with data sampled every 15
minutes, all the model gets better predictions on dryer than fridge,
which indicates that for appliances like dryer, besides the periodical
patterns across days, the detailed information of state changes is
another key feature that distinguishes dryer from other appliances.

6 CONCLUSIONS
In this paper, we presented a new approach for hourly energy
breakdown. Our data analysis revealed that hourly energy data has
notable high-dimensional sparsity and temporal regularity, which
can be exploited for energy breakdown by learning their temporal
bases. We introduced a tree-structured CNNmodel to estimate such
temporal patterns and handle some of the shortcomings of existing
methods, particularly when the unknown consumption is high.
Empirical evaluation on a real-world household energy data set
confirmed the effectiveness of our solution. With the vast amount
of hourly smart meter data, we believe our approach has the scope
to be scaled to millions of homes.

There are a few future extensions that we would like to explore.
First, TreeCNN currently treats the residual as one dummy appli-
ance. However, residual could be a compound of various sources
of energy consumption. We can introduce several residual mod-
els, or using prior models [21] to first extract latent appliances
and generate a combined residual estimation. Second, our current
approach does not fully incorporate the dependencies that might
exist between different appliances (e.g., correlation between dryer
and washing machine). We can incorporate such dependencies by
creating additional links between different appliances, giving us a
more general graph. Third, TreeCNN only takes energy data as an
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input. However, energy consumption patterns are dependent on a
variety of factors such as external temperature, household area, etc.
In the future, we would like to incorporate such factors to guide
our learning process.
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