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Abstract

Background: Deciphering physical protein-protein interactions is fundamental to elucidating both
the functions of proteins and biological processes. The development of high-throughput
experimental technologies such as the yeast two-hybrid screening has produced an explosion in
data relating to interactions. Since manual curation is intensive in terms of time and cost, there is
an urgent need for text-mining tools to facilitate the extraction of such information. The
BioCreative (Critical Assessment of Information Extraction systems in Biology) challenge
evaluation provided common standards and shared evaluation criteria to enable comparisons
among different approaches.

Results: During the benchmark evaluation of BioCreative 2006, all of our results ranked in the top
three places. In the task of filtering articles irrelevant to physical protein interactions, our method
contributes a precision of 75.07%, a recall of 81.07%, and an AUC (area under the receiver
operating characteristic curve) of 0.847. In the task of identifying protein mentions and normalizing
mentions to molecule identifiers, our method is competitive among runs submitted, with a
precision of 34.83%, a recall of 24.10%, and an F1 score of 28.5%. In extracting protein interaction
pairs, our profile-based method was competitive on the SwissProt-only subset (precision = 36.95%,
recall = 32.68%, and F1 score = 30.40%) and on the entire dataset (30.96%, 29.35%, and26.20%,
respectively). From the biologist's point of view, however, these findings are far from satisfactory.
The error analysis presented in this report provides insight into how performance could be
improved: three-quarters of false negatives were due to protein normalization problems (532/698),
and about one-quarter were due to problems with correctly extracting interactions for this system.

Conclusion: We present a text-mining framework to extract physical protein-protein
interactions from the literature. Three key issues are addressed, namely filtering irrelevant articles,
identifying protein names and normalizing them to molecule identifiers, and extracting protein-
protein interactions. Our system is among the top three performers in the benchmark evaluation
of BioCreative 2006. The tool will be helpful for manual interaction curation and can greatly
facilitate the process of extracting protein-protein interactions.
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Background
An important step in functional systems biology is to eluci-
date the relationships between biomolecules. Interactions
between proteins define biological pathways, and knowledge
of the processes in which proteins are involved is essential to
gaining a fundamental understanding of the cellular machin-
ery. The study of protein interactions is a pressing biological
imperative, and thus characterizing protein interaction part-
ners is crucial to our understanding of both the function of
individual proteins and the organization of entire biological
processes [1,2].

More and more interaction data are being published in the lit-
erature as a result of the development of high-throughput
experimental technologies, such as the yeast two-hybrid
screening and affinity purification coupled with mass spec-
troscopy. These experimental techniques make it possible to
study protein interactions on a much larger scale, although
they suffer at times from poor resolution. To provide reliable
protein interaction data for biologists, interaction databases
such as Molecular Interactions Database (MINT) [3] and
IntAct [4] manually detect and curate protein interactions
from different information sources. However, it is becoming
difficult for database curators to keep up with the rapidly
expanding literature and the increasing number of newly dis-
covered proteins.

In addition to the rate at which interaction data are being pro-
duced, there are other challenges for manual interaction
curation. Experimental methods are not equally reliable, and
when they extract protein interactions curators must place
emphasis on thorough description of the experimental evi-
dence. Furthermore, many authors continue to use ambigu-
ous gene or protein names in their reports, or they fail to
provide the organism or tissue from which the genes or pro-
teins originate. Difficulty in mapping gene and protein names
to SwissProt/UniProt [5,6] identifiers increases the work of
an annotator, who must gather more information from refer-
ences, supplemental material, and so on. Finally, many types
of interactions are scattered in the literature, although many
are irrelevant to physical protein-protein interactions (for
example, physical interaction [MI:0218] from the Molecular
Interaction Ontology [7] is defined as interaction among mol-
ecules that can be direct). Genetic interactions (MI:0208:
functional relationship among genes revealed by the pheno-
type of cells carrying combined mutations of those genes) are
considered to be distinct from physical interactions between
proteins, and they are not currently curated. Similarly, nei-
ther drug-drug interactions nor interactions between protein
complexes and proteins are considered to be relevant in phys-
ical interaction curation.

Because of the accumulation of interaction data in the bio-
medical literature and the challenges that present for manual
curation, there is an urgent need for text-mining tools to facil-
itate the extraction of such information. In particular, the

extraction of physical protein-protein interactions, defined as
the co-localization or direct interaction between protein mol-
ecules, is becoming extremely important because physical
interactions are the most reliable data produced in high-
throughput experiments. The development of effective text-
mining tools could aid the mapping of proteins to SwissProt/
UniProt identifiers, as well as the discovery of experimental
evidence for interactions and the discrimination of physical
interactions from other types of interactions. In comparison
with previous studies on bio-text mining, BioCreative 2006
[8,9] addressed some of these difficulties, such as normaliz-
ing gene/protein mentions to molecule identifiers, discrimi-
nating physical interactions from other interactions, and
gathering as much reliable experimental evidence as possible.

The protein-protein interaction (PPI) task of BioCreative
2006 is comprised of several subtasks: the interaction article
subtask (IAS) to determine whether an article (abstract only)
is relevant to some physical interactions; the interaction pair
subtask (IPS), in which interacting protein pairs should be
extracted from full-text articles; the interaction sentence sub-
task, in which participants are required to submit a list of
summary sentences for each interaction; and the interaction
method subtask, in which the experimental detection meth-
ods should be given for each interaction.

Here, we present the methods and results from our participa-
tion in the PPI task of BioCreative 2006 [10]. By using Kull-
back Leibler divergence, we study the quantitative divergence
between the training data and the final test data in the IAS,
indicating that this originates from not being able to provide
an adequate set of irrelevant articles. We propose solutions to
overcome this issue and, in addition to the term features,
other features are studied to reduce the distribution diver-
gence such as the string, entity, and template features. Infor-
mation fusion from both the feature perspective and the
classifier perspective is studied, and our results rank in first
place in terms of accuracy and in second place in terms of area
under the receiving operator characteristic curve (AUC) in the
benchmark evaluation. With this improvement, the tool may
be useful in practical interaction curation.

In addition, we propose a named entity recognition frame-
work that utilizes the information on the organism in articles.
We present a quantitative analysis of how the extraction of
physical interactions is influenced by the errors caused by the
named entity recognition module. We point out that the
framework is extremely important because, in the interaction
curation task, protein names must be normalized to molecule
identifiers so that molecular properties such as sequence can
easily be identified. Finally, a profile-based method is pro-
posed for the IPS. The goal of the task is to extract the protein
pairs that have experimentally verified evidence, which
requires the curator to collect information from multiple sen-
tences in the article. This goal is different from the general
aim of PPI extraction systems, most of which extract PPIs at
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the sentence level. Inspired by experience in curation, we con-
structed a profile vector for each candidate interaction from
the whole article. By integrating evidence from the whole arti-
cle, a better prediction is achieved for robust interaction cura-
tion. Our results were ranked in first place in terms of F1 score
on the SwissProt-only subset, and in second place on the
entire dataset. However, these results clearly need improve-
ment if they are to be useful for any real task.

Results and discussion
Article filtering for efficient interaction curation
Automatically filtering out articles that are irrelevant to inter-
action curation will be useful to database curators. According
to the reports from database curation projects, it takes 2 to 3
hours to process a paper even for highly qualified curators [1].
The IAS of BioCreative 2006 specifically addressed this issue
of how to assess an article filtering tool in order to facilitate
this process [8]. The task is difficult because the relevance of
some articles cannot be determined through reading their
abstracts alone, and curators usually must obtain evidence
from the full text. Moreover, articles describing genetic inter-
actions are hard to separate from those with physical
interactions.

In the training dataset, there are 3,536 articles relevant to
physical interactions and 1,959 irrelevant ones, and the offi-
cial test dataset has 375 relevant and 375 irrelevant articles. A
serious problem in this task is that the performance with the
training data is much better than that with the official test
data (0.95 versus 0.80 in terms of F1 score), which was also
observed by [11]. To analyze the problem, 750 articles (375
positive) were taken out of the training corpus at random and
defined as the leave-out dataset. The top 50 features, whose
significance was measured using the χ2 test, were selected
from the remaining training dataset. Based on these 50 fea-
tures, three probability distributions were estimated from the
leave-out dataset by using Equation 3 (see below), from the
remaining training dataset, and from the official test dataset.
We then calculated the average Kullback Leibler divergence
(defined by Equation 4 [see below]) between two distribu-
tions to measure the divergence between distributions (Table

1), where the term features are unigrams/bigrams and the
string features are strings with seven characters.

For Pr(x|c+), the probability of a feature x occurring in the rel-
evant articles, there was no remarkable difference between
the term distributions estimated from the leave-out dataset,
the remaining training dataset, or official test dataset. In
other words, the three different datasets have almost the
same term distribution. However, significant differences
were observed for Pr(x|c-), the probability that a feature x
appeared in the irrelevant articles, whose distributions are
illustrated in Figure 1. There is much greater divergence
between the distribution estimated from the official test set
and that from the training dataset (0.992 versus 0.188). We
hypothesize that the term distribution is different in the offi-
cial test set, and that this may be the reason why the model
did not hold well in the official test dataset. This was also ver-
ified by [11], in which much better performance was obtained
when the training dataset and final test dataset were reversed.
When the string is selected as a feature, the divergence dimin-
ished notably (0.992 versus 0.188), which might explain why
the string feature proved even better than the term feature in
these runs, as shown in Table 2.

We might conclude that the problem originates from the fact
that the irrelevant articles are not sufficiently representative
of the entire sample space. In the interaction curation task,
irrelevant articles are more randomly distributed, where
some articles describing genetic interactions are very similar
to those dealing with physical interactions, some discuss
other types of interactions (for example, drug-drug interac-
tions), and some are completely different and can easily be fil-
tered out. It is difficult to provide a good set of representative
irrelevant articles, and so these irrelevant articles introduce
more uncertainty and bias into the learning machines.

In an attempt to overcome the problem, we first took strings
as features based on the above analysis. Furthermore, we pro-
pose a new scheme (defined by Equation 5 [see below]) to
diminish the divergence between the training data and the
test data. The new scheme takes into account the probability
of a feature being observed in both relevant articles and in

Table 1

The average Kullback Leibler divergence between the distributions of different datasets

Compared distributions Term feature String feature

Pr(x|c+) Pr(x|c-) Pr(x|c+) Pr(x|c-)

Dist on the remaining training dataset versus Dist on the leave-out dataset 0.0216 0.0703 0.0029 0.0163

Dist on the remaining training dataset versus Dist on the official test dataset 0.0369 0.9926 0.0357 0.1887

The table shows the average Kullback Leibler divergence of three distributions estimated on the leave-out dataset, remaining training dataset, and 
the official test data. The Average Kullback Leibler divergence between distributions on different datasets. Dist, distribution.
Genome Biology 2008, 9(Suppl 2):S12
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irrelevant ones, instead of simply using TF*IDF (term fre-
quency × inverse document frequency). Alternatively, we
tried to incorporate more high-level semantic features such as
the named entity features and template features. The entities
were recognized using ABNER (A Biomedical Named Entity
Recognizer) [12], including the protein, DNA, RNA, cell line,
and cell type. The TF was calculated for these entity features,
and template features were exploited to represent the specific
syntactic dependency between entities. In a third attempt, we
integrated more information from different classifiers, and by
fusing different classifiers the performance was boosted
markedly.

We first studied how the features influence performance in
terms of classification using a support vector machine (SVM)
with a linear kernel as the classification model (Table 2). The
string features easily defeated the term features (F score:
0.788 versus 0.756; AUC: 0.841 versus 0.803), and we spec-
ulated that this was because the string features are more pow-
erful, thus eliminating the divergence between the training
data and the test data (as mentioned above). Note that an
attraction of the entity features is the very high recall
obtained (0.96), indicating that almost all the original rele-
vant articles have been selected out. This is very useful if the
precision of the classification is to be improved by further
processing. By integrating all of the features together, the
AUC is further improved to 0.861.

Second, we studied how this issue is influenced by different
classification models, each model analyzing the data from a
different point of view. SVM learns to separate data by a deci-
sion hyperplane, whereas the naïve Bayes classifier and
multinomial classifier estimate probability distributions and
try to interpret data from the probability perspective. The lin-
ear kernel SVM requires the data to be represented as feature
vectors, whereas the p-spectrum kernel SVM simply views an
example as a string. The different description powers can be
combined by AdaBoost [13] and the best performance
approached the needs of practical usage, with a precision of
80% and a recall of 90%.

Readers should note that the results presented in Table 2 are
significant at the 0.02 level because we performed t-test
experiments to determine whether the observed improve-
ments were statistically significant. More details are pre-
sented in our paper published elsewhere [14].

Normalizing protein names to SwissProt identifiers
It is extremely useful to normalize protein names with mole-
cule identifiers, which will largely ease the process of interac-
tion curation. However, the task is challenging because
inconsistent naming terminologies are used. It is common in
reported research to cite just a few, nonstandard abbrevia-
tions, or to mention proteins without specifying species or
organisms, or without specifying isoforms. This problem can
be exemplified as follows.

The probability of a feature x occurring in irrelevant articlesFigure 1
The probability of a feature x occurring in irrelevant articles. The figure shows the three distributions of the leave-out dataset, remaining training dataset, 
and official test dataset. The probability of a feature x occurring in irrelevant articles (Pr(x|c-)) in different datasets are shown (only 40 features are listed 
here).
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1. Common terms, such as p53, are not easily normalized
without any contextual information.

2. The same term is used to name different molecules from
the same or related genes but different organisms. For exam-
ple, PI3K may refer to different molecules in mouse (), human
(), and cow (), whose genes have the same term PIK3CA.3.
The same term is used to name different isoforms of mole-
cules. For example, in mouse PI3K refers to both Q8BTI9 (the
β isoform of the protein) and O35904 (the δ isoform). There
are two important steps in normalizing names to SwissProt
identifiers. First, the terms of database entries must be
curated to canonical forms, and the new terms used to detect
the mention of proteins. Second, the ambiguities of multiple
mapping of protein mentions to molecule identifiers should
be removed by using organism and contextual information.
The following rules are used to curate database entries.

1. The gene names/synonyms and gene product names/syno-
nyms for the same entry are included.

2. Prefixes and suffixes that are not crucial for entity identifi-
cation are removed. For example, the prefixes c, n, and a of
PKC are removed where these prefixes mean conventional,
novel, and atypical, respectively.

3. Terms with digits or Roman/Greek numbers are trans-
formed into a unified format: alphabetical + white space +

digits. This rule affects examples such as the following: IL-2
and IL2 become IL 2; and CNTFR alpha, CNTFR A, and
CNTFR I become CNTFR 1.

4. Terms that are not in abbreviated forms are converted to
lowercase.

About 230,000 normalized entries are produced from Swiss-
Prot database and, as mentioned previously, there are many
ambiguous mappings to database identifiers, even with nor-
malized terms. To solve these ambiguities, the nearest neigh-
bor principle is used, based on the organism context. The
presumption here is that each protein name belongs to a par-
ticular organism context. Organisms in each sentence are
identified, and the organism context of a protein name is
defined by organisms appearing in adjacent sentences. The
organism of candidate proteins is determined by the nearest
neighbor principle.

Our work on protein mention normalization is very simple
and coarse, and there is still much room for improvement.
There is a thorough study on how to create a dictionary by
combining multiple gene/protein databases together [15]. A
number of spelling variation rules were studied in that work,
and the investigators pointed out that many rules appeared to
have no effect and some appeared to have a detrimental effect
on precision. These discoveries will be very useful in making
improvements to our module in the future.

Table 2

Article filtering performance with different features and classifiers

Model Precision Recall F1 score AUC

Mean 0.6642 0.7636 0.6868 0.7351

Standard deviation 0.0810 0.1926 0.1035 0.0741

Best reported in terms of AUC [8] 0.7080 0.8609 0.7770 0.8554

Our results in BioCreative 2006 0.7507 0.8107 0.7795 0.8471

Term (baseline) 0.7016 0.8213 0.7568 0.8037

String 0.7044 0.8960 0.7887 0.8416

Named entity (NE) 0.5815 0.9600 0.7243 0.7570

Template 0.7841 0.7653 0.7746 0.8239

String + NE 0.7360 0.8773 0.8005 0.8479

String + template 0.7416 0.8880 0.8082 0.8372

String + NE + template 0.7585 0.8373 0.7959 0.8507

String + term + NE + template 0.7432 0.8720 0.8025 0.8608

Naïve Bayes classifier 0.6321 0.8613 0.7291 0.7884

Multinomial classifier 0.6264 0.8720 0.7290 0.7770

Linear kernel SVM 0.7016 0.8213 0.7568 0.8037

p-spectrum kernel SVM (p = 7) 0.7352 0.8293 0.7794 0.8376

Integration of the above four classifiers (AdaBoost) 0.7995 0.8933 0.8438 0.8746

This table shows the experimental results from article filtering. AUC, area under the receiving operator characteristic curve; SVM, support vector 
machine.
Genome Biology 2008, 9(Suppl 2):S12
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In the IPS of BioCreative 2006, 740 full-text articles are pro-
vided for training and 358 for testing. The articles were pro-
vided for evaluating the extraction of protein pairs, but there
was no separate step to evaluate protein mention normaliza-
tion. However, the organizers returned to participants the
results related to normalization, which were evaluated in a
different manner. Our results are shown in Table 3, in which
the average results were based on 45 runs from 16 teams.
These results were from the official evaluation but they were
not published in the BioCreative workshop. Clearly, our
results are better than the average results (ours > mean +
dev). However, the results presented here are considerably
poorer than the results obtained from the gene normalization
(GN) task of BioCreative 2006. The best result for the GN task
was a precision of 78.9%, a recall of 83.3%, and a F1 score
of81.0%, which are significantly better than the results we
present here. Readers should note the major differences
between results in the PPI task and those in the GN task. First,
the PPI task required participants to process both abstracts
and full texts, whereas only abstracts were processed in the
GN task. Second, the measurement in the two tasks was dif-
ferent. In the PPI task, the gold standard set was made up of
only the protein molecules that have annotated interactions.
Other correctly identified proteins without interaction anno-
tation were not included in the gold standard set. In the GN
task, the gold standard set included all the gene identifiers
that should be normalized, and all of the submitted identifiers
were evaluated.

Physical interaction extraction
The module for interaction extraction will greatly facilitate
the process of interaction curation for database curators. It is
not always easy to identify a single sentence that clearly
describes an interaction in a paper. However, most previous
methods extract interactions at the sentence level [16-22],
where each sentence is handled independently. Inspired by
the fact that curators must gather sufficient evidence to
decide whether an article claims that there is a physical inter-
action, we propose a profile-based method to extract physical

interactions by integrating evidence from the whole
document.

The results shown in Table 4 confirm that our method per-
forms much better than others (ours > mean + 2 × dev). In the
benchmark evaluation, our results rank first in terms of F1

score, second in terms of precision, and third in terms of
recall on the SwissProt-only subset, whereas on the entire
dataset our results were all in second place (F1 score, preci-
sion, and recall). Also, our method outperforms traditional
template-based methods, considering that ONBIRES (Ontol-
ogy-Based Biological Relation Extraction System) represents
the state-of-the-art performance [22].

There are reasons for the success of our profile-based method
in this particular task. First, by integrating evidence from the
whole article, the method is more robust when extracting
physical interactions. For example, the sentence 'A interacts
with B' will definitely be taken as a positive example by tem-
plate-based methods, although it may describe a genetic
interaction. In the profile-based method other evidence is
required to make such a claim. Second, abundant features
such as term features, entity features, template features, and
position features are all integrated into the method. Here, we
analyze the errors in detail in order to identify the problems

Table 3

Comparative results for protein name normalization

Precision Recall F1 score

Average Mean 0.1495 0.2828 0.1707

Standard deviation 0.0963 0.1294 0.0764

Median 0.1337 0.2723 0.1683

Our results Baseline 0.2223 0.1024 0.1402

+ entry curation 0.2345 0.2648 0.2487

+ organism context 0.3483 0.2410 0.2849

The table shows the comparative results when identifying and 
normalizing protein names.

Table 4

Comparative results for interaction pair extraction

Compared models Whole collection SwissProt only article collection

Precision Recall F1 score Precision Recall F1 score

Mean 0.1062 0.1858 0.1035 0.1160 0.2000 0.1127

Standard deviation 0.0945 0.1001 0.0761 0.1035 0.1062 0.0836

Median 0.0755 0.1961 0.0788 0.0808 0.2156 0.0842

Best reported in terms of F1 score [8] 0.3908 0.2970 0.2849 0.3893 0.3073 0.2885

Template-based method (threshold = 0.0) 0.1373 0.2905 0.1578 0.1566 0.3189 0.1784

Template-based method (threshold = 80.0) 0.2177 0.2651 0.2038 0.2434 0.2828 0.2247

Profile-based method 0.3096 0.2935 0.2623 0.3695 0.3268 0.3042

'Whole collection' means that all of the articles have been considered. 'SwissProt only article collection' include articles containing interaction pairs 
that can be normalized to SwissProt entries. The table shows the comparative results for the extraction of interaction pairs.
Genome Biology 2008, 9(Suppl 2):S12
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hindering overall performance. There are 798 manually
annotated interaction pairs in the 358 test articles, and
although 339 protein pairs were extracted, only 100 of these
are true positive pairs. There were 8,172 pairs that co-exist,
and many of these include incorrectly recognized names (Fig-
ure 2). Among the 239 false-positive errors (area III), the first
50 errors were manually checked, and they fell into three
categories.

1. Twenty-two errors were due to incorrectly normalized
names. For example, in the sentence 'BAF60c interacts
directly with PPAR gamma in vitro', the annotated interac-
tion is Q6STE5 (BAF60c)-P37231 (PPAR gamma), and
although we correctly extracted the interaction, the names
were unfortunately normalized to Q6P9Z1-O19052.

2. Twelve errors were due to false-positive names in sentences
where protein A and B physically interacted, and a false posi-
tive recognized protein C coupled to A or B.

3. Sixteen errors were due to the classifier, which included
classifying nonphysical interaction pairs as exhibiting a phys-
ical interaction and other problems. This problem is partly
due to the classification model and partly to the incomplete-
ness of the training set, which does not provide evidence of
samples that truly interacted.

Among the 698 false negative errors (areas II + V), the major-
ity were caused by the identification and normalization of
protein mentions (532 errors), whereas 166 were due to the
interaction extraction model. In the 166 pairs that co-existed,
we found that 37 were negatively classified because the sen-
tences did not contain sufficient evidence. Examples of such
sentences include 'A activates B' or 'Camptothecin-induced
nuclear export of A does not require B'. This problem is also
due to the fact that the evidence of physical interactions is not
confined to a single sentence. The remaining 129 errors are
believed to be caused by our classifier.

From these analysis, we conclude that the difficulty of protein
name normalization leads to the majority of errors, producing
about 64% (34/50) false-positive errors and 76.2% (532/698)
false-negative errors. The second problem is that of incom-
plete annotation. Because the annotation only specifies the
interacted protein ID in the article without the passages pro-
viding evidence or the location of these molecules, it makes
the training process untraceable and the process of error
analysis extremely difficult. Currently, a major limitation of
our method is the requirement of protein coincidence within
a sentence. This is not always the case in practical interaction
curation, where curators often find evidence from contextual
sentences, each of which may contain only one protein of the
interacting pair. For example, the sentence 'the two proteins
are co-purified together' may describe a physical interaction,
even though both proteins are mentioned in the preceding
sentences instead of in this sentence itself.

Conclusion
In this report we discuss three key issues related to practical
interaction curation. Specifically, we deal with filtering arti-
cles irrelevant to physical PPIs, identifying the mention of
proteins and normalizing them to molecule identifiers, and
extracting experimentally verified interactions. Different lev-
els of features, including the string, term, named entity, and
template features, are exploited to study the problem of dis-
tribution divergence between the training and test data. An
AdaBoost-based information fusion technique is studied to
integrate the various powers of description of different classi-
fiers. Through these improvements, high-performance article
filtering produces a system that may facilitate the process of
interaction curation. Although the current state of protein
name identification and normalization leaves much to be
desired, our method utilizes the organism information to
reduce ambiguity and, with further improvements, it will aid
biologists. The profile-based interaction extraction method
combines evidence from sentences in the whole document,

Errors of interaction pair extractionFigure 2
Errors of interaction pair extraction. The figure shows the distribution of errors in the interaction pair extraction. The blue ellipse contains 798 annotated 
pairs, the yellow ellipse 8,172 coincident pairs, and the green circle 339 extracted pairs. I, 100 true-positive samples; II, 166 coincident but false-negative 
samples; III, 239 false-positive samples; IV, 7,135 true-negative samples; V, 532 false-negative samples but never coincident.
Genome Biology 2008, 9(Suppl 2):S12
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thereby providing some improvement in the ability to predict
physical interactions. In comparison with traditional meth-
ods that extract interactions at the sentence level, our method
utilizes information from the whole article.

There are still many difficulties and challenges in extracting
biologically meaningful knowledge, for example recognizing
biological molecules with widely accepted identifiers and
mining physical interactions with experimentally verified evi-
dence. This report provides methods to help resolve these
problems both from the perspective of the feature and that of
the classifier.

Materials and methods
We first present the architecture of our method (shown in
Figure 3), and then we describe the models and algorithms
used in our method. There are three major modules in our
framework: the first for filtering irrelevant articles; the sec-
ond for identifying and normalizing protein mentions to
SwissProt identifiers; and the third for extracting PPIs.

Article filtering module
We studied three models in the article filtering module (the
naïve Bayes classifier, multinomial classifier, and SVM classi-
fier [23]). All of these classifiers require the prior selection of
features that represent the data that are to be classified. As
mentioned before, there are a large number of term, string,
and template features, and thus we use the χ2 test to select the
most significant ones. The naïve Bayes model for article filter-
ing is defined as follows:

Where d denotes an article, c+/c- denotes relevant/irrelevant
articles, wi indicates a feature, and RNB(d) is the output score
indicating the degree of relevance. The multinomial model
implies a different distribution:

Where xi denotes the number of times that a feature wi

appears in the document d. In these two models, we must
estimate the probability of each feature appearing in both rel-
evant and irrelevant articles. This can be easily implemented
using the equation below:

Where V is the total number of features, POS is the set of rel-
evant documents, and TF(wi, dj) is the frequency that the fea-
ture wi is observed in the document dj.

These two models are called probabilistic models, because
they interpret the data by estimating a probability distribu-
tion. As mentioned previously, to analyze the quantitative dif-
ference of two distributions, we define the average Kullback
Leibler divergence as follows:

Where p and q are two distributions over the random variable
x. If the two distributions are identical, then the AKL is 0; oth-
erwise it is positive.

The SVM is a discriminative model, which constructs a hyper-
plane in the feature space to separate the data into categories.
The classification decision is made by calculating the distance
of a sample from the hyperplane and in this module; we inves-
tigated two types of SVM models. The first is a traditional
SVM with a linear kernel and in which each sample is repre-
sented as a feature vector. Instead of using TF*IDF, we pro-
posed a new computational scheme to overcome the issue of
divergence between the training set and test set, as follows:

Where TF(wi, dj) is the frequency of the feature wi observed
in the document dj. The computational scheme performs
much better than TF*IDF in the benchmark evaluation. The
decision variable in the SVM model is as follows:

Where SV means the support vectors. The kernel function
provides an alternative mechanism to represent data in a
composite manner in addition to the feature-vector represen-
tation. For instance, the p-spectrum kernel computes the
number of common substrings shared by two input samples
[24]:
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Where x and y are two strings (or documents) defined in the
alphabet Θ, and Θp indicates all possible substrings of length
p. In our method, we take p = 7, which is about 1.5 times the
average length of unigrams. An example of how to construct
string features is shown in Table 5. An article here is treated
as a string, and no other semantics are considered. This low-
level representation reduces the distribution divergence
between the training and test data.

Molecule recognition module
Identifying protein mentions and normalizing them to mole-
cule identifiers is a necessary step toward the extraction of
protein interactions. In contrast to traditional named entity
recognition tasks, this task requires the submitted protein
pairs be mapped to unique SwissProt identifiers rather than
presenting the original names in the text. We not only must
identify named entities but also we must map them to unique
molecule identifiers. As shown in Figure 4, there are four
main processes in the molecule recognition module: database

curation, organism detection, dictionary-based matching,
and removing ambiguity from the mapped names.

After curation, there are in total 230,000 protein identifiers,
and more than 1 million terms. Obviously, it is not feasible to
use all of the terms during the dictionary-based matching
process. Moreover, the same terms, particularly abbrevia-
tions, may correspond to many protein identifiers. This is
common when the same gene products only differ in organ-
isms, and thus the organism context is crucial to remove such
ambiguities. We first detect the organism information in an
article, and then this information is used to rule out irrelevant
database entries and to remove ambiguities when the terms
are mapped to multiple protein identifiers. Our assumption
here is that physical interactions described in one paper
should occur only within a few organisms. The organism
database used here is the NCBI (National Center for Biotech-
nology Information) taxonomy [25]. Dictionary-based
matching is used to detect organisms, and the five most
frequent organisms are left such that each sentence can be
linked with several detected organisms. To remove the ambi-
guity from the mapping of the names identified to molecule
identifiers, the nearest neighbor principle is used, implying

The system architecture of our methodFigure 3
The system architecture of our method. Blue rectangles are the three main modules in our system. The figure shows the architecture of our system, and 
there are three main modules in the system that have been colored in blue. MR, molecule recognition; PPI, protein-protein interaction.
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that the organism associated to a recognized name is the
organism in the nearest sentence where the name is detected.

Profile-based PPI extraction moduleTo extract experimen-
tally verified physical interactions in practical interaction
curation, curators usually collect evidence from multiple sen-
tences. Previous methods to extract protein interactions are
all at the sentence level, where each sentence is processed
independently, and thus they fail to synthesize information

from multiple sentences. Our profile-based method is able to
exploit profile features from multiple sources throughout the
whole document, and for each candidate interacting protein
pair a profile vector is constructed from multiple sentences.
In comparison with traditional methods, the profile-based
method is more robust for the IPS of BioCreative 2006 and
gained the best and the second best results on the SwissProt-
only subset and the entire dataset, respectively.

Table 5

An example for constructing string features

Input and processed documents and condidate string features Details

Input document The Three Human Syntrophin Genes Are Expressed in Diverse Tissues, Have 
Distinct Chromosomal Locations, and Each Bind to Dystrophin and Its Relatives

Processed document the three human syntrophin genes are expressed in diverse tissues have distinct 
chromosomal locations and each bind to dystrophin and its relatives

Candidate string features the thr

he thre

e three

three h

hree hu

ree hum

ee huma

e human

...

The length of substring is fixed to 7. The example document only has one sentence (the title of the document of PMID:8576247). A seven-character 
window moves along the sequential text. All characters are converted to lower case. Only alphabetical letters and the space character are 
processed. Punctuation is converted to the space character.

The flowchart of the molecule recognition moduleFigure 4
The flowchart of the molecule recognition module. Gray boxes are the input of our molecule recognition module and the figure illustrates the flowchart 
of the molecule recognition module.
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Every protein pair coincident in a sentence is viewed as an
interaction candidate. For each pair, profile features are cal-
culated from all the sentences in which the pair coincides. The
corresponding bit is set to 1 if the feature is found in these
sentences (Figure 5). Through such a representation, infor-
mation from the whole document can be integrated together
and a SVM with the linear kernel can be trained on the profile
feature vectors. There are three types of profile features.

1. One hundred and sixty-eight unigram/bigram features.
One hundred of these features are selected using the χ2 test,
and 68 are taken manually from the branches of the physical
interaction and detection method in the Molecular Interac-
tion (MI) ontology [7].

2. Ninety-one template features. These features are generated
in a semi-supervised manner [26] and their form is like
'Protein1 * bind to * Protein2', where * means that any word
can be omitted. Some template examples are listed in Table 6.

3. Two position features. One of which is whether the two pro-
teins coincide in the title and the other is whether they coin-
cide in the abstract.

Our method is more robust than the traditional methods
because a single description, such as 'Protein1 binds to
Protein2', does not necessarily indicate the existence of a

physical interaction. However, if there is other evidence, such
as 'The binding of Protein1 to Protein2 is determined by Y2H',
then the interaction is more trustworthy. Clearly, more evi-
dence will strengthen confidence in the interaction. In addi-
tion, our algorithm is more robust when the performance of
the molecule recognition module is far from satisfactory. For
example, in the sentence 'The Y2H experiment proved the
interaction between Protein1 and Protein2, CGA ...', CGA,
whichis the sequence of Protein2, will be recognized as
chromogranin A precursor, and then it will coincide with
Protein1 and Protein2. The previous methods will fail, and
although these false pairs are less statistically significant
across the whole document, our method is able to resolve the
problem by incorporating evidence from multiple sentences.

Abbreviations
AUC, area under the receiving operator characteristic curve;
GN, gene normalization; IAS, interaction article subtask;
IMS, interaction method subtask; IPS, interaction pair sub-
task; MI, Molecular Interaction; PPI, protein-protein interac-
tion; SVM, support vector machine; TF*IDF, term frequency
× inverse document frequency weighting.

The profile vector in the extraction of interaction protein pairsFigure 5
The profile vector in the extraction of interaction protein pairs. The construction of the profile vector for each candidate protein pair is shown in this 
figure. The term feature (unigram/bigram), template feature, and position feature are used in this process.
Genome Biology 2008, 9(Suppl 2):S12
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