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Closure is a fundamental property of many discrete systems. Transitive closure in re-
lations has been well studied, e.g. [1,14,6,5], as has geometric closure [8,9] and closure
in various kinds of graphs [17,10]. The closed sets of a closure operator illustrate a
kind of well-behaved internal structure that is the main theme of this paper.

In Section 1, we examine antimatroid closure spaces. In Section 2, we consider a
closure operator that has been widely used in digital image processing [25]. This
operator, which can be equally well defined on graphs, is not antimatroid; but it is
shown in Section 3 that it retains many of the same structural properties, and is
closely related to the classic graph-theoretic theme of domination. Finally, in Section
4, we relate these concepts to premise system|30].

1 Antimatroid Closure Spaces

Assume we have a closure operator ¢ satisfying the usual axioms: VY C U (we let U
denote the universe, or entire space)

Y C Yo,

X CY implies X.p C Y.p, and

Yo=Y
(Notice that we denote all set valued operators with Greek characters, using a postfix
dot notation.) A set Y is closed if Y = Y.p. Closure is preserved under intersection.
A minimal set Y.k of elements that will generate Y.p, that is Y.k.o = Y., is called,
depending on one’s discipline, the generators, kernel, basis, or extreme points of the
set.

Closure operators are fundamental in much of mathematics. It is common to assume
the Steinitz-MacLane exchange axiom
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if p,q & Y.p then ¢ € {Y Up}.o implies p € {Y Uq}.p
in which case the resulting system is called a matroid [29]. If U is a set of n-
dimensional vectors and ¢ is taken to be the spanning operator, then each closed set
is a vector space. A minimal set of generating vectors is a basis for the vector space.
The term matroid is derived from the traditional representation of these linear spaces
as matrices.

Although matroids are quite general, for example the circuits of an undirected graph
constitute a matroid, the authors have been particularly interested in closure systems
which satisfy an anti-exchange axiom. A closure system satisfying
if p,q & Y.o then ¢ € {Y Up}.o implies p & {Y U q}.p

is called an antimatroid or equivalently, because it is easy to show that Y.x must be
unique, a uniquely generated closure space. Such antimatroid closure spaces are
most often encountered as convex geometries [18,8,9] in the literature. But, antima-
troid closure operators abound. In [21], it was shown that n" unique closure operators
can be defined on any n element set, n > 10. They have been studied in chordal and
block graphs [17,10] and in partial orders [22]. Antimatroid closure spaces are impor-
tant because they support greedy algorithms, many of which are examined as shelling
operators in [19].

In [23], it was shown that the subsets of any closure space (U, ¢) could be ordered by

X<,V iff YNXpCXCVYop. (1)

The resulting partial order on all the subsets of U is a lattice £ on the 2/U' elements of
the power set, as shown in Figure 1(b) provided ¢ is antimatroid. Here the sublattice
of closed subsets, C = [0, bedef], is connected with solid lines, generally oriented from
lower left to upper right. The set [Y.p,Y.k| of all sets ¥ with the same closure Y.¢
is easily shown to be a distributive boolean algebra with Y.x as its supremum. These
are illustrated using bolder dashed lines oriented from lower right to upper left.

Many individuals have independently discovered that the sublattice C of closed sets is
semi-modular [20], and if every singleton is closed it is atomic as well. The entire lattice
L is neither semi-modular nor complemented nor atomic; but it is very “regular”. Two
properties we will use in this paper were demonstrated in [23].

Theorem 1 (Fundamental Covering Theorem) If p ¢ X then
(a) X <, XU{p} ifand only if p & X.¢
(b) X U{p} <, X if and only if p € X.p

where
(a) is a cover if and only if (X U{p}).¢ C X.o U{p}, and
(b) is always a covering relationship.

Moreover, if ¢ is uniquely generated then (a) and (b) characterize all covering rela-
tions in (2Y, <, ).
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Fig. 1. An acyclic graph (a), with convex closure lattice £ (b)

Theorem 2 (Fundamental Structure Theorem) Let X.¢ <, Y.p andlet X €
(X.p, X.k]. There exists a unique Y € [Y.p,Y.k| such that X <, Y, where Y is

minimal wrt. <, (mazimal wrt. C). Moreover Y = X U A where A = Y.p—X.p
and Y = Y.o—§ where 6 = X.p—X.

These two properties are seen in Figure 1(b). Consider Y.¢ = bde f which is generated
by bf. Both Y.po—b = def and Y.o— f = bde are closed; and [bdef,bf] is replicated in
(actually isomorphic to) [bedef, bef].

Convex operators such as a convex hull operator are usually uniquely generated.
Figure 1(b) arose from applying the convex closure operator Y.p = {yly; < y <
Y2, Yi € Y} to the acyclic graph of Figure 1(a). A five point discrete planar geometry
in which convexity is determined by Euclidean measure is shown in Figure 2. Both of
these are exceedingly small five point systems to facilitate illustration; but the basic
properties are apparent.

2 Pseudo Convexity in Images

A basic closure operator in any n-dimensional space is the convex hull operator. The
discrete geometry of Figure 2 is representative. However in a pixel image, defining a
notion of convexity that is completely conformal to Euclidean convexity is difficult
[11,4]. But a pseudo convex hull operator of a set of pixels based on the alternate
expansion to adjacent pixels, followed by a similar contraction is both easy to define
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Fig. 2. An discrete geometry (a), with convex closure lattice £ (b)

and to implement [25].2 We illustrate the single step version in Figure 3 assuming a
4 neighbor adjacency has been around for many years and has been widely used for
local smoothing. Readily, Figure 3(c) is not a convex hull of Figure 3(a), regardless
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Fig. 3. A discrete pseudo convex hull operator,

of how one defines “convexity”. But, Figure 3(c) is closed in the sense that it satisfies
the three closure axioms. In particular, once again expanding and contracting by 1
step will add nothing to the figure. We prove this idempotency in the next section.
We call this coarse approximation pseudo convexity. One can use more than a
single step; and one can alternate 4 and 8 neighbor cycles to get increasingly better
approximations of a Euclidean convex hull [26].

That such a process generates, in the limit, a convex hull can be most easily shown
by analogy in R? as in Figure 4. It is readily apparent that expanding a region by e
then shrinking it by e will generate a true convex hull as € — oo. A more rigorous
argument can be made by observing that the area A is non-decreasing while the
perimeter is non-increasing as € — 0o. In the messier discrete world, one must show

2 One can also expand inwards from the boundary of a pixel set. This has been used to
capture the anti-convex structure in the form of a “Blum” skeleton [24,27].



Fig. 4. Expansion of a planar region by e,

that expansion, followed by contraction of k steps, where k > |d/2], d = the diameter
of the largest subset, will result in hulls H; having the property that H; N H; is still
convex and that each H; contains all closed sets generated by any two points of the
set. The H; need not visually appear to be “convex”; but they will have the necessary
properties.

3 Pseudo Convexity in Graphs

In [12], the authors emphasize the role of the “local subset problem”. This approach
is as unusual in graph theoretic studies as it is common in image analysis. We regard
it as a fundamental point of departure. Let G = (N, E) be any undirected graph
on the set N of nodes and E of edges. For any Y C N we let Y.n denote the open
neighborhood of Y, that is Y.n = {# € Y|3y € Y A(y, 2) € E}, and let Y.7j denote the
closed neighborhood, or Y.n UY.? By the neighborhood closure, ¢, we mean
the set Y., = {z]|2.7 C Y.7ij}. Notice, that this closure concept precisely captures the
process of expansion and contraction of the preceding section because z € Y. if and
only if each neighbor of z is a neighbor of Y, and hence “filled” when Y is expanded.

Lemma 3 ¢, is a closure operator.

PROQOF. It is apparent that Y C Y., and X C Y implies X.p, C Y.o,. Only
idempotency is questionable because, in general, Y.i7 C Y.7.7.

Let y € Y., ., and suppose y € Y., . The latter implies 92 € y.7 such that z € Y.7.
But, y € Y.p,.7 requires that 3y’ € Y., such that 2z € y'.7). However, this implies
y' & Y.p, (for the same reason that y € Y. ) and contradiction. So y € Y.y, and
Yo,0, CYep,. 0O

In Figure 5, we have a small 8 element graph with 26 subsets closed under ¢, as shown
in Figure 5(b). ¢, is clearly not a uniquely generated closure. We see that {egh}.x =

3 In the graph theory literature, open neighborhoods are often denoted by N(Y') and closed
neighborhoods by N[Y] [2,12].
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Fig. 5. Pseudo Convexity Operator

{{eg},{eh}}, {abcde}.x = {{ce},{bde}}, and {abcdefgh}.x = N.k consists of 14
minimal generators. We have only sketched in a few of the 171 subsets in the interval

[N, N.k| to suggest its structure. The subsets of N, partially ordered by (1), are not
a lattice.

But, many of the important properties of closure lattices still hold. We observe that
each of the structures [Y.p ,Y.k]* is replicated in [Z.¢,, Z.k] where Y.o, <, Z.p, .
Theorem 2 remains true, even if the closure space is not uniquely generated The
reader should verify that [{abcde}, {abcde}.k] is similarly replicated with A = {fgh}.

But, for non-uniquely generated closure spaces, Theorem 1 is no longer valid; it must

be generalized. To do this we use the concept of a blockers in a graph. Let F be any
family of sets. A set B is said to be a blocker for F if VX € F, BN X # ().

4 Because ¢, 1s not uniquely generated, these intervals are not Boolean algebras.



Theorem 4 (Generalized Fundamental Covering Theorem) Let Y be closed
and let Y.K = {Y.x} be its family of minimal generators.

(a) If X CY and X is closed, then Y —X 1is a blocker of Y.K.

(b) If B is a minimal blocker of Y.K, then Y —B is closed.

(c) Y covers X in Ly iff Y —X is a minimal blocker of Y. K.

PROOF.

(a) Let Y.k € Y.K and suppose Y.k N (Y —X) = (). Then, since Y.k C Y,Y.x C X. But,
Yk =Y and thus Y C Y.k.¢ C X.¢ = X, a contradiction.

(b) Let Z = (Y—B).¢o. Then Z C Yo =Y. If Z =Y, then Y—B is a generating set

for Y, so it contains some minimal generating set Y.x. Now, Y.x C Y —B implying
Y.x N B = (), contradicting assumption that B is a blocker. So Z # Y.
Since Z is closed and Z C Y, by (a) Y—Z is a blocker of Y. Because Y—-Z7 is a
blocker, and because Y—-Z =Y —(Y—B).¢o C Y—(Y—B) = B, and because B is
a minimal blocker, we have B =Y —Z. Thus Z = Y—B, and because Z is closed,
Y —B must be as well.

(c) readily follows from (a) and (b). If Y covers X in Ly, then Y—X is a minimal
blocker of Y.K = {Y.k}; and if B is a minimal blocker of Y.K | then X =Y —-B is
closed and Y covers X. O

That is, provided Z is not the whole space, we may pick an element from each of its
generating sets (subject to the constraint that the elements are distinct and do not
themselves constitute a generating set). Deletion of such a set A = UX; from Z will
yield another closed set that will be covered by Z with respect to . Observe, that
from the 4 generating sets of {adegh}.x = {{ah}, {ag}, {dh},{dg}} one may choose
A = {ad} or A = {gh}; but no others.

Figure 5 is only a small system. It is worthwhile to look at two closed subsets of a
26 element graph, as in Figure 6.° Observe that {egp}.¢, = {befgjkp} = Z; and
that {jotv}.p, = {jkopstuvwyz} = Zy = {joxv}.¢, = {joyv}.p,. Their intersection
{jkp} is closed, with a unique generator {jp}. Smaller closed sets can be identified
using the fundamental covering theorem. For instance, Z;—{g} is closed. So is Zo—{j},
because j is an element of every generator, and once chosen as X7, we have the unique
element from all other x;. Zo—{z} is not closed, however Z,—{tzy} is. The important
observation is that any result regarding closure on an arbitrary graph must be true
on the regular rectlinear or hexagonal mesh. Important components of any computer
scene are likely to be “closed”, if not convex [13]. These results indicate how these
closed subsets can be structured and later traversed.

5 Both graphs are planar to simplify their drawing. But, there is no reason to exclude
non-planar graphs or tesselations of n-space.



Fig. 6. Two Pseudo Convex Subsets

A subset Y is said to dominate G = (N, E) if Y.j = N. If Y is a minimal set with
this property, we say Y is a domination set. The concept of dominance is one
of the oldest, and still one of the most vital, themes in abstract graph theory. Its
origins come from the issues of chessboard domination by various pieces, e.g. the 8-
queens problem; today, characteristic graph parameters and algorithmic complexity
are centers of attention [28,15,12]. For example, 7(G) < I'(G) denote the size of the
smallest and largest minimal (irredundant) dominating set of G.

In [3], Berge and Duchet conduct an investigation of a variety of generating concepts,
which they call kernels. These dominate the graph. Observe that each of the generat-
ing sets of N.k of Figure 5 is a dominating set. We observe that v(G) = 2 < 3 =T'(G)
in this graph. Theorem 2 provides a kind of upward mobility through any closure sys-
tem, by which identification of smaller closed subsets and their generating subsets can
be used to find larger closed sub-structures. Just as we are investigating this property
in the case of closed, pseudo convex subsets of an image, we are also investigating
this as a way of finding dominating sets in arbitrary graphs.

4 Premise Systems and Bases

Let ¢ be a closure operator on a finite set U. A family PS of subsets of U is a
premise system for ¢ [16] if

Y CU isclosed, if and only if VP € PS,PCY implies P CY. (2)

We can make a few immediate observations. First, lets assume that @) is closed. In-
clusion of any closed set X provides no discrimination since one only has X C Y iff
X.p =X CY. Soonly non-closed sets are interesting candidates for PS. Let X be a
minimal (wrt. set inclusion) non-closed set, X € PS because otherwise (2) is satisfied
vacuously, implying X is closed. In Figure 1(b), these are the sets {be}, {cf}, and
{df}, which also happen to be generating sets.



It is worthwhile examining premise systems for different representative closure opera-
tors. In Figure 1(b), {bf} is required to be in its premise set PS. It, too is a minimal
non-closed set. The family {{bc}, {cf},{df}, {bf}} is a minimal premise system. We
call such a premise system PS for which no proper subfamily is also a premise system,
a premise basis.

Figure 1 denotes an antimatroid convex closure on an acyclic graph [23]. Figure 5
illustrates a general closure operator which is not anti-matroid in nature. The minimal
non-closed sets {d},{f},{g}, {be}, {eh}, {ac},{bh}, {ce},{ah} are elements of PS,
but so are others.

Lemma 5 Let PS be any premise basis of (U, ) and let Y be a pseudo-closed set
such that Y € PS. If Y # Y.k, then (PS—Y)UY.k is a premise basis of (U, ).

PROOF. Since PS is a premise basis, removal of Y must violate the second property
of premise sets, so there exists Z not closed such that Y C Z whereY.o € Z. Y.k CY
and Y.k.¢ = Y.p; so clearly Y.k preserves this property with respect to any such Z
as well as Y. Thus, PS remains a premise basis. O

Consider the non-closed sets {bd} and {abd}. We claim one or the other must be
in PS, because otherwise only {d} € PS,{d} C {abd} and {d}.¢ = {ad} C {abd}
implying {abd} is closed. Observe that {abd} is pseudo-closed since {d} is its only
pseudo-closed proper subset.

Is one of {bd} or {abd} preferable to include in PS? It is a toss up. In [7], Duquenne
and Guiges demonstrated that for any closure system (U, ¢), the pseudo-closed sets
form a premise basis; but consequently we also have

Corollary 6 Let (U, p) be any closure system. There exists a premise basis PS com-
posed only of generating sets, Y.k.

Similarly {abde}, {agh}, {adeh} and {adgh} are pseudo-closed and one can include
either these or the corresponding generating sets {bde}, {ag}, {dh} and {dg} in PS.

A closure space which has a unique premise basis is said to be monotactic. The
closure space of Figure 1 is monotactic. Several other monotactic closure spaces are
given in [16].

Notions of closure and of convexity abound in mathematics and computer science.
Most often, these concepts are embedded in E™, or some other continuous space. What
we have shown is that these same concepts can be developed within discrete systems;
that the resulting closure spaces are rich with structure; and that this structure can
be profitably examined.
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