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1 Concept Lattices

Let R be a binary relation, as illustrated in Figure 1(a), with m rows and n columns. Such a relation
can represent many phenomena and there exists an extensive literature on relational algebras [1]. In
this paper we take a more limited view and simply regard R as an observation of a set of attributes
A associated with a set of objects O. In our formulation, objects are denoted by numbered rows and
attributes denoted by lettered columns.

“Formal Concept Analysis” [5] has been developed by Rudolf Wille [15], Bernard Ganter and their
colleagues at Darmstadt. In their approach the construction and visual display of concept lattices,
that is partially ordered sets of concepts, is crucial. The nodes of the concept lattice correspond to
abstract concepts of the phenomenon being modelled and relationships within the lattice are reflective
of relationships in the external world. Their book has numerous examples, and their method has
found application in industrial applications (reported by Ganter & Wille) and in code re-engineering
8, 14].

What makes it interesting to this workshop is an investigation of how these concept lattices are
transformed with the advent of new information.

We begin with a very brief overview of concept lattices. Let R be a binary relation between any
two sets O and A, as in Figure 1(a). We regard O as a set of objects and A as a set of attributes. But,
they can be arbitrary sets. For example, Lindig and Snelting [8] apply concept analysis to legacy
code by creating a relation R between P, a set of procedures, and V, a set of global variables.

By the closure, ¢y of O with respect to R, we mean a maximal set of objects which share the
same attributes as all o € O. Similarly, ¢ -1 operating on a set A of attributes picks up any other
attributes that are common to all objects which satisfy each a € A.> Ganter and Wille [5] show that
¢g and pg_1 are indeed closure operators, and constitute a Galois connection. For any R, such as
that of Figure 1(a), the closure systems of ¢y and ¢p-1 are isomorphic and can be represented by
the lattice Lg of closed sets shown in Figure 1(b), which are partially ordered by inclusion. Labeling
each node is the pair of closed sets that is joined by the Galois connection, for example < abg, 123 >.
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2 More formally, the Galois closure, ¢g, on O with respect to R consists of those closed sets O COof
the form O = 0;.R.R~1, for O; C O, where O;.R = noeo,- 0.R C Aand A, R-T = ﬂaeAi R CoO.
Conversely, one forms the closure, ¢ »—1 of A with respect to R consisting of the closed sets A = Ax.R—1.R.
The set O;.R denotes the set of all attributes shared by every object in O. Consequently, O;.o = O;.R.R~1!
denotes the set of all the objects that share (at least) these common attributes. Similarly, A;.R~! denotes
the set of all objects sharing every attribute in Ay and Ag.¢ = Ag.R—1.R consists of all the attributes
shared by the objects which (at least) have Y in common.
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Fig. 1. A relation R (a) and its concept lattice Lr (b)

The set abg is closed in A; 123 is closed in O. In this case we have oriented the lattice with respect
to A, the set of attributes, where the universe A = abede fghi (which must be closed) is the lattice
supremum. The singleton set {a}, which is an attribute of every object is the lattice in fimum. It
is partially ordered with respect to set inclusion.

Readily, the concept lattice £ is a visual model of the content of R. There are many similar
examples of applied concept analysis in Ganter’s and Wille’s book [5]. Later extensions to concept
analysis are reported in [16].

2 Closure Spaces

An operator ¢ is a closure operator if X C X.p, X CY = X.p C Y.p, and X.p.¢p C X.p. The
Galois closure on binary relations is one kind of discrete closure operator. A more general treatment
of closure spaces has been advanced in [9, 12]. A central idea in these papers is that of the generators
of a closed set, Z, denoted Z.7v, by which we mean a minimal set Y such that Y. = Z. For example,
with a convex hull closure operator, the generators of a convex n-gon are its n vertices (or extreme
points).?

An n-gon is uniquely determined by its generators. Whenever the generators of a closed set must
be unique, we say the closure operator is uniquely generated and call the resulting closure space an
antimatroid.* Much of the closure literature, e.g. [2, 3, 4, 9, 12] assumes antimatroid closure.

Using concepts from closure spaces, it is quite straightforward to generate the concept lattice
while simultaneously determining the generators of these closed concepts. For example, the single
attribute e generates the closed concept acde. That is, {e}.op-1 = {acde}. To see this in R, observe
that every object which has property e (there is only one!) also has properties a, ¢ and d as well.
Similarly we find that either {bd} or {bf} will generate {abdf} because attributes b and d only
found together in objects 5 and 6, which also share attributes abdf. This closure space, and most

% In the discrete geometry literature [3] all generators are called extreme points.
4 Matroids and antimatroids are identical, except that the closure operator of a matroid satisfies an exchange
axiom while the closure operators of an antimatroid satisfies an anti-exchange axiom.



arising from concept analysis, are not antimatroid. Nevertheless, they retain much of the structure
of antimatroid closure spaces [7].

If we regard R as a relation in the database sense, then (0,a) € R denotes that a is an attribute
of object o. In Figure 1(a) it is clear that abgh are shared attributes of objects 2 and 3. Attributes
bh generate abgh. So we may assert that in this world (Vo € O)[o.bh = o.abgh]; or more simply
we have the attribute implication bh = abgh Similarly one may show that both bed and bef are
minimal generators of abcdf; so we have the attribute implication bedV bef = abedf. By deriving the
generators of all the closed concept sets, we extract all the logical implications (universally quantified
over O) that are valid for R. From now on we will use = to denote both attribute implication and
closure generation.

The interpretation of X.v and X.p as precedent and consequent respectively in a rule based
description of a discrete world opens up a entire new approach to knowledge discovery [11] that can
be exploited in relatively small discrete worlds.> Although this cursory description of the generators
of closed sets in a concept lattices may be too brief for full comprehension, it should be sufficient to
suggest the potential for modeling inductive learning by incrementally adding observations (rows)
to R.

3 Inductive Transformations

If a concept lattice Lg captures all the logical attribute implications one can make about a collection
of objects;® it is natural to ask “suppose we observe one more object and its attributes. How will this
transform the lattice Lr?” This is the essence of discrete, empirical induction. Given a collection R
of observations that have an internal structure denoted by Lr, how does new information transform
this structure? Actually, such transformations are inherently “graceful” and “local” in nature because
of a fundamental property of closed sets — the intersection of closed sets must be closed. This leads
to an interesting interplay between closed sets Z = X.p and their generators Z.y.

Every time we add a row (object/attributes observation) to R, we add at least one new closed
set to Lr, because the attributes of a single row constitute a closed set of A.” Let < o, A’ > denote
this new row. If there exists Z € Lg such that A’ = Z, then the lattice remains unchanged. Suppose
not. Then, there exists at least one closed Z in Lg such that A’ C Z. We consider A’ NY for all
closed Y,Y C Z. These are the only elements of the concept lattice Lr with which A’ can interact.

For example, appending to R a new observation of object 9 with attributes a, ¢ and g yields
the relation of Figure 2(a) and the corresponding concept lattice Lg, of Figure 2(b). Observe that
acg C acgh and acg N agh = ag. This local interaction occurs in the lower right corner, where a
single new concept (closed set) acg has been added yielding new relationships that are indicated by
dashed lines.

This newly observed datum has also changed the generation structure of Lr. In Lr, we have
(cg V ch) = acgh. In Lg,, we have cg = acg, so cg can no longer be a generator of argh. Now in
Lr,, ch = acgh.

® A robot project at U.Va. [6] gathers sensor data about objects in its world in a relational table. It will use
our algorithm to convert this data into implications for input to its rule based planning component.

8 In [5], R; was obtained by assertions about pond life made in a child’s educational TV show. It is literally
a child-like understanding of real phenomena.

" This need not be strictly true; but it is typical. Further, wlog we may assume it.
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Fig. 2. R> and its concept lattice Lr,

We observe that this new object is not very different from existing objects. It is contained in
Z = acgh, which is fairly low in Lg. Suppose Z = abcdefghi = U, the universe of attributes?
One can show that ef is a generator of abcdefghi, along with 11 other minimal generators. But,
there are no objects associated with abcdefghi = A. In this world, ef is a logical contradiction.?
In Figure 3(a) we have now changed the new object 9 so it has the attributes a, d, e and f. The
combination ef is no longer a contradiction. In Lg,, adef is covered by Z = U. It intersects acde
and abedf (which are also covered by Z) in ade and adf respectively. The closed set ade is new, and
it recursively intersects with acd (which is also covered by acde) as ad. The changes in Figure 3(b)

abcdefghi

/
/ acghi
A 4
) abedf o acde abcgh

abcdef ghi

1 [X[X X ° \ ade”

2 [X[x X|x acdfoy // 23

3 [X]X[X XX abdf \ adeo abe o N

4 X[ [x X[X[X 56 AR 78, - 19 36 9 12 o
o 5 XX X[ [x \

6 [X|X|X[x] [x SasdanO/ 234

7 X[ [X[X]x ad\

8 x| [X[x] [x

9 [X X

123456789

(b)

Fig. 3. Rs and its concept lattice Lr,

are again indicated by dashed lines.

8 One of the strengths of this approach to knowledge discovery is that in addition to deriving all true
implications, it also identifies all logical contradictions which cannot be true in this world of objects.



For a final example, we observe that a is an attribute of every object. It corresponds to logical
tautology in the universe of R. By adding a 9t* row with only attributes def we change that. It
intersects with acde and abcdf to create de and df respectively and the interesting concept lattice
of Figure 4(b).

abcdefghi

cdef

X|X|X|&

XXX

XX

XXX XXX X[ X
X

© O~ AN e

XXX
X[ X|X|X|X
X

NP
6 123456789

(b)

Fig.4. R4 and its concept lattice Lr,

Addition of new rows (empirical observations) to the logical world described by a binary relation
R engenders a regular graceful transformation of the concept lattice based on iterated set intersection.
Conversely, it has been shown [10, 13] that deletion of an element from an antimatroid closure space
induces a lattice homomorphism 7 on its closure lattice £.° As observed earlier, concept closure
spaces are not normally antimatroid. We conjecture, but have not yet proven, that deletion in
concept lattices will still induce at least a meet homomorphism.

Together, these results would indicate that the gradual accumulation of “knowledge” based on
sequential, empirical observation is relatively “stable”. Certainly, this is in accord with our intuitive,
psychological understanding of knowledge. But, this is still very active research. For example, we
conjecture that as the concept lattice becomes large, the expected magnitude of incremental change
will become small. Also, we would like to know what a major restructuring of the concept lattice (a
world understanding) would look like — and what might cause it.
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