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1 Introduction

A Dbasic goal of “data mining” is the discovery of frequent, or common, attribute associa-
tions in very large data sets such as point-of-sale data [1, 13, 14]. These associations are
statistical in nature; for instance the old marketbasket example “people who buy hot dogs
often buy catsup”. They may also be evanescent. A frequent association this month may
not be frequent next month. The association may be indicative of a causal relationship,
but most often it is not. Surely the purchase of hot dogs does not “cause” a purchase of
catsup. Frequent associations, whether temporary or not, can be very important to our
understanding of the world around us. But, we would argue it is not for the most part a
“scientific” understanding. Scientific knowledge primarily seeks the discovery and under-
standing of causal relationships among world phenomena that can be expressed with logical
precision.

Let O denote any universe of interest. Our paradigm of scientific knowledge is an
assertion of the form

(Vo € 0)[P(0) = Q(0)] (1)

where P(0) and (o) denote predicate expressions over the bound variable o. Readily, there
are other forms of scientific knowledge; but a focus on logical implication subsumes most
causal assertions. In our development, we will regard O as a set of objects, or observations;
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we will treat predicates to be conjunctions and/or disjunctions of properties, or attributes,
of these objects. A raw, unprocessed representation of this universe of objects is a binary
relation R : (O, A) whose rows correspond to objects, or observations, and whose columns
correspond to attributes, which we collectively denote by A. Figure 1 is a typical example.
It initiates a running example from which we will, in Section 2.2, eventually construct a
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Figure 1: A small binary relation R from O = {12345678} to A = {abcdefghi}

“concept lattice”. The mathematics which we will first develop in Section 2.1 will then
allow us to derive universally quantified expressions such as (1) above from these concept
lattice structures. Finally, in Section 3, we show how to incrementally generate concept
lattices, and their associated logical implications, as successive rows (scientific observations)
are added to R. This kind of incremental discovery is not viable with many data mining
methods because they require repeated sweeps over a fixed data set [9, 13]. This iterative
form of knowledge discovery, which emulates rigorous scientific empiricism, is our major
contribution.

2 Closure, Concepts and Implication

2.1 Closure Systems

We use the concept of closure to extract the desired logical implications from a relation, R.
A closure operator ¢ is one that satisfies the three basic closure axioms: X C X.p; X C Y
implies X.¢ C Y.p; and X.p.0 = X.p, for all X,Y.! There are many different closure
operators. The geometrical convex hull operator is perhaps the most familiar [3], whereas
monophonic closure on chordal graphs [4] is a bit obscure.

The intersection of any two closed sets (that is, those Z for which Z.¢ = Z) of a closure
space must also be a closed set of the space. The collection of all closed sets, partially ordered
by inclusion, forms a lattice, Ly [10, 11]. Of central importance to our development is the
concept of “generators”. A generator of a closed set Z is a minimal (w.r.t inclusion) set X
such that X.¢ = Z. By Z.y; we mean the i'* generator of Z, and by Z.I' the collection
{Z.7;} of all generating sets.

!We use suffix notation to denote set valued operators. So read X.p as “X closure”.



Figure 2 illustrates a closure lattice £, denoting a closure operator ¢ over a set, or
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Figure 2: A lattice Ly of closed sets with some generators shown.

universe U = {a,b,c,d,e, f,g,h,i} of elements. Solid lines connect the closed sets. By
dashed lines we have tried to indicate a few of the generating sets. The singleton set {e} is
a minimal generator of {acde}.? The sets bd and bf are each minimal generators of abdf.
Thus abdf.I' = {abdf.v,,abdf .5} = {bd,bf}.

If all generators are unique, the space is said to be antimatroid. Antimatroid closure
spaces are particularly interesting [2, 6, 11]. But, readily, the closure space of Figure 2 is
not antimatroid.

The whole space abedefghi, is closed as required with any closure operator. It has 12
minimal generators, ranging from be through fi. The closure of any subset containing be,
or any other generator, must be the whole set U. We observe that, unlike closed sets which
are closed under intersection, these generating sets are closed under union.

*From now on we elide the curly braces {...} around sets of elements of U whenever possible.



Let F be any family of sets. A set B is said to be a blocker for F if VX € F,BNX # 0.
The difference between a closed set Z and the closed sets Y; that it covers in Ly we call
the faces F; of Z.2 Thus, the faces of abcdf are b,c and df. The faces of Z, its generators
and blockers are closely related by

Theorem 2.1 Let Z be closed and let Z.I' = {Z.v,;} be its family of minimal generators.
(a) If X C Z and X is closed, then Z — X is a blocker of Z.T.
(b) If B is a minimal blocker of Z.T', then Z — B is closed.
(c) Z covers X in Ly iff Z — X is a minimal blocker of Z.T.

Proof:

(a) Let Z.y € Z.T" and suppose Z.yN(Z—X) = 0. Then, since Zy C Z,Z.y C X. But, Z.y.p = Z
and thus Z C Z.v.¢ C X.p = X, a contradiction.

(b) Let Y = (Z—B).wp. Then Y C Z.p = Z. 'Y = Z, then Z — B is a generating set for Z,
so it contains some minimal generating set Z.y. Now, Z.y C Z — B implying Z.y N B = {J,
contradicting assumption that B is a blocker of Z.I'. So Y # Z.

Since Y is closed and Y C Z, by (a) Z —Y is a blocker of Z. Because Z —Y is a blocker, and
because Z—Y =Z —(Z—B).¢ C Z—(Z — B) = B, and because B is a minimal blocker, we
have B=72—-Y. Thus Y = Z — B, and because Y is closed, Z — B must be as well.

(c) readily follows from (a) and (b). If Z covers X in Ly, then Z — X is a minimal blocker of
Z.I' = {Z.}; and if B is a minimal blocker of Z.T', then X = Z — B is closed and Z covers
X. 0O

This theorem can also be found in [?]. The closed set abdf and its generators bd, bf provide
a good illustration of this theorem, since bd and bf are blockers of the two faces of abdf,
b = abdf —adf and df = abdf —ab as asserted by the theorem.

2.2 Concept Lattices

Figure 2 was generated by applying a specific closure operator ¢y to the binary relation of
Figure 1. By the closure, o of O with respect to R, we mean a maximal set of objects
which share the same attributes as all o € O. Similarly, pp-1 operating on a set A of
attributes picks up any other attributes that are common to all objects which satisfy each
a € A. Ganter and Wille [5] show that ¢y and @g-1 are indeed closure operators, and
constitute a Galois connection.* A closure lattice, so generated is called a concept lattice.

3Recall that Z covers Y; if Y; C Z and there exists no subset Y’ such that Y; C Y’ C Z. The term “face”
is derived from an application of closure in discrete geometry. ~
4More formally, the Galois closure, ¢gr, on O with respect to R consists of those closed sets O C O of

the form O = O;.R.R~1, for O; C O, where O;.R = [ ., 0-R C Aand AR T =(),_, aR™' CO.



For any R, such as that of Figure 1, the closure systems of ¢z and @gr-1 are isomorphic
and can be represented by the lattice Lg of closed sets shown in Figure 2. Labeling each node
is the pair of closed sets that is joined by the Galois connection, for example < abg, 123 >.
The set abg is closed in A; 123 is closed in O. In this case we have oriented the lattice
with respect to A, the set of attributes, so that the universe A = abcdefghi (which must
be closed) is the lattice supremum. The singleton set {a}, which is an attribute of every
object is the lattice infimum. It is partially ordered with respect to attribute set inclusion.
The nodes of the concept lattice correspond to abstract concepts of the phenomenon being
modeled and relationships within the lattice are reflective of relationships in the external
world.

In Ganter and Wille’s approach the visual display of concept lattices is crucial. For
instance, the bifurcation into two distinct classes of concepts is visually evident in Figure
2. In their book [5] they give many clear, visual examples. But this approach becomes
problematic with more than 30 concepts. One can no longer “see” the structure.

2.3 Implications

Concept lattices have appeared in the data mining literature where several authors [8, 14]
have employed them to speed the search for frequent sets and their associations; but none
have considered the role of generators.

Each closed concept of a concept lattice has generators, as discussed in Section 2.1. If we
regard R as a relation in the database sense, then (0,a) € R implies that a is an attribute of
object 0. In Figure 1 it is clear that abgh are shared attributes of objects 2 and 3. Attributes
bh generate abgh. So we may assert that in this world (Vo € O)[bh(o) — abgh(o)]; or
more simply we have the attribute implication bh — abgh Similarly one may show that
either bed and bcf are minimal generators of abedf; so we have the attribute implication
(Vo € O)[bed(0) V bef (o) — abedf (0)]. We use — to denote both attribute implication and
closure generation.

So far we have explored closure over attributes that are just sets of letters, which, by
R, are associated with objects that are only integers. Such abstraction is the essence of
mathematics, but it can lose immediacy in consequence. As reported in [5], the relation
R of Figure 1 was actually derived from a child’s educational TV program on pond life.
The attributes are those discussed in the program to show differences between life forms.
The rows represent observed life forms, or objects, which exhibit combinations of these

Conversely, one forms the closure, ¢_1 of A with respect to R consisting of the closed sets A = Ay.R 1.R.
The set O;.R denotes the set of all attributes shared by every object in O. Consequently, O;.¢ = O;.R.R~*
denotes the set of all the objects that share (at least) these common attributes. Similarly, Az.R—! denotes
the set of all objects sharing every attribute in Ay and Ag.p = Ag.R~1.R consists of all the attributes shared

by the objects which (at least) have Y in common.




attributes. These semantics are listed in Figure 3.

Objects Attributes
1 leech a needswater tolive
2 bream b livesinwater
3 frog ¢ livesonland
4 dog d needs chlorophyl to make food
5 gpike-weed e two little leaves grow on germinating
6 reed f onelittleleaf grows on germinating
7 bean g can move about
8 maize h haslimbs

suckles its offspring
Figure 3: A semantic assignment to the rows and column headings of Figure 1.

Given these semantic assignments, the assertion bh — abgh becomes “if o lives in water
and has limbs, then o can move about and needs water to live”. And, bed V bef — abedf
can be interpreted as "for any o that both lives in water and lives on land, the properties
‘needs chlorophyl to live’ and ‘one little leaf grows on germination’ are equivalent”. And, it
is evident that the visual bifurcation noted earlier is the difference between the flora and
fauna at the pond.

By deriving the generators of all closed concept sets, we extract all the logical im-
plications (universally quantified over O) that are valid for R. Counsider the eleven non-
trivial generator-closure pairs: e — acde, f — adf, h — agh, i — acghi, {bd,bf} — abdf,
{be, bi,dg,dh,di,ef,eg,eh,ei, fg, fh, fi} — abcdefghi, bh — abgh, cf — acdf, {cg,ch} — acgh,
{bed, bef} — abedf, {bcg,bch} — abcgh. These fully describe all the inferable implications
derivable in R. Consequently, Figure 2 can be regarded as a knowledge structure that com-
pletely represents a child’s understanding of pond life, given these observations O of objects
having attributes A.

Unfortunately, to calculate the generator-closure pairs using the definition at the begin-
ning of Section 2.2 requires repeated looping over all objects o € O. For large numbers of
objects, or observations, this exponential process becomes prohibitive.

3 Incremental Growth

If a concept lattice Lg captures all the logical attribute implications one can make about
a collection of objects; it is natural to ask “suppose we observe one more object and its
attributes. How will this transform the lattice Lg?” This is the essence of discrete, empirical
induction. Our understanding of world phenomena seldom occurs in one fell swoop, as by
examining a complete relation R. It normally occurs incrementally. We assimilate new
observations, or rows of R if you choose, into an existing concept structure.



If we observe a new denizen of our pond life — a plant which lives in water (b), but has
two little leaves on germination (e), that is abe, because all life (a) needs water to live, we
can add a 9% object (or row) having attributes a,b and e; the concept lattice of Figure 2
becomes that of Figure 4. The new relationships between concepts occasioned by abe are
indicated by dotted lines.
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Figure 4: The concept lattice of Figure 2 after another object 9 has been incrementally
added.

Readily, Figure 4 is a relatively smooth transformation of Figure 2. Closure properties
ensure that observing new objects must lead to reasonably “graceful” transformations of
these concept lattices [12]. Our goal is to make this notion more mathematically precise.

Let f: ¢ — ¢’ be closure preserving, that is Z closed w.r.t. ¢ implies Z is closed w.r.t
¢'. But, there may be more sets closed with respect to ¢'. We let Ly denote the entire
structure of a closure system induced by the operator ¢.

Given f : ¢ — ¢, by fy : Lo — 520’ we denote the induced transformation of Ly
caused by regarding Y as closed with respect to ¢'. Readily, if Y is already closed in Lo,
then Fy is simply the identity map which we call trivial.

Lemma 3.1 Let fy : Lo — L',(p,. For all closed X € Ly if XNY # 0, then X'NY' is
closed in Eip,.

Proof: fy closure preserving implies X.fy = X' is closed in Ly, and Y =Y" is closed in Ly by



definition of fy. The result follows from the basic property that all closure systems are closed under
intersection. O

Godin and Missaoui [7] took advantage of this to incrementally create concept lattices
in a way that minimizes the use of costly closure computation. But, their approach does
not consider generators. We have extended this notion of incremental expansion to include
the generating sets as well.

Lemma 3.2 Let fy : Lo — C(p, be non-trivial. There exists a single closed set Z in L
such that Z' covers Y' in E'@,.

Proof: Suppose Y is covered by Z; and Z5, both closed in £, then Y C Z; N Z5 C Z; which must
be closed, hence in £. O

Theorem 3.3 Let fy : Ly — E'SOI. Let Z' cover Y' in ['2,0” and let Z.~y; denote a generator
of Z in L.

(a) If Z; N (Z-Y) # 0, then (Z.7y;)" is a generator of Z' in L'.

(b) If Z~;N(Z-Y) =0, then for alla € Z-Y, (Z.y;U{a}) is a generator of Z', provided
it is minimal.

Proof:

(a) If Z;n(Z-Y) # 0, then (Z.7;) = Z.v,.fy is still a generator of Z' = Z. fy, and it blocks the
face Z-Y (as required by Theorem 2.1). Minimality follows because otherwise we would have
a smaller generating and/or blocking subset which would contradict the assumption that Z.y,
is a minimal generator.

(b) If Z~4;,N(Z-Y) =0, then Z.v; CY. And since Z.y;.¢" CY’, Z.~y; cannot be a generator of Z'
in L’iy,. Leta € Z-Y. (Z.y;U{a}).y = Z. So, since Z’' covers Y’ in L’fy,, (Zy,U{a})y' =2
and is hence a generator. Z.y; CY. Z.y; U{a} is a blocker of every face. However, it need
not be minimal, hence the caveat. O

The new closed set Y = abe is covered by Z = U = abedefghi in Figure 4 forcing
abcdefghi.I' to change. Except for be, each generator Z.y, has a non-empty intersection
with the face cdfghi = Z—abe and hence by Theorem 3.3(a) is a generator of Z' in L',iy,.
But, be = Z.y; C abe =Y, hence by part (b) of Theorem 3.3, be must be augmented by
¢,d, f,9,h,t in turn. But notice, bef is not a minimal generator since ef C bef. Only bce
and bde are minimal, and they are shown in Figure 4.

By Lemma 3.1, if Y = abe has a non-empty intersection with any other closed set in L,
then that set must also be in £’. We need only check with the siblings of Y, that is other
sets covered by Z = abcdefghi. These faces determine the generators Y'.I'. For most, such



as abedf N abe = ab, the intersection set is already in £'. Only X = acde N abe = ae yields
a new set. This too must be recursively inserted into £’ using the rules of Theorem 3.3
to change acde.I'. In L, acde covered only acd, so it had a singleton generator e. In L',
it covers both acd and ae, and so requires both ce and de to satisfy the requirements of
Theorem 2.1

It is not hard to write a recursive procedure that captures the behavior of Theorem 3.3.
With it we have found that iterative generation of concept lattices with generators is nearly
an order of magnitude faster than the way suggested by the footnote in Section 2.2.

Suppose a child exploring the pond life sees a snake, that is a creature that also needs
water(a), lives on the land(c), and can move about(e); but doesn’t have limbs. We add a
tenth observation acg to R. In a way, Figure 5 is much more representative of incremental
growth. Most transformations fy tend to be very local in nature as is this one. Only
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Figure 5: The concept lattice of Figure 4 after still another object 10 has been incrementally
added.

acgh.T', which had been {cg,ch} has changed in accordance with the rules of Theorem 3.3.
Can you determine the generator(s) of acg given its faces with respect to ac and ag, which
it covers, using Theorem 2.17

The approach described in this paper offers an effective way of extracting all the valid,
logical implications inherent in a large body of data. Moreover, these results indicate
that the gradual accumulation of “knowledge” based on sequential, empirical observations
inherent in data is relatively “stable”. This is in accord with our intuitive understanding



of knowledge.
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