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Abstract. In this paper we develop a discrete, To topology in which (1) closed sets play a
more prominent role than open sets, (2) atoms comprising the space have discrete dimension,
which (3) is used to define boundary elements, and (4) configurations within the topology can
have connectivity (or separation) of different degrees.

To justify this discrete, closure based topological approach we use it to establish an n-
dimensional Jordan surface theorem of some interest. As surfaces in digital imagery are increas-
ingly rendered by triangulated decompositions, this kind of discrete topology can replace the
highly regular pixel approach as an abstract model of n-dimensional computational geometry.

1 Axiomatic Basis

Let U be a universe of arbitrary elements, or as we will call them, atoms. We let R denote a binary
relation on U. We denote the identity relation I on U by R?. Relational composition is defined in
the usual way, so R¥ = RoRF~1, and in particular, R'oR® = Rol = R. Notationally, we denote
elements (z,z) € R¥ by z.R*.2.® Then, z.R* = {z | z.R*.2} and X.R* = {7 | 3z € X,z.R*.2}.
In addition to R, we assume an integer function § : U — Z that satisfies the following basic
axiom
z.R.z implies 4(z) > 8(2). (1)

An easy induction on k establishes that x.RF.z also implies §(z) > §(z). Consequently,

Lemma 1. If z.R™.z and z.R".x thenn =m =0 and z = 2.

Proof. If z.R™.z then §(x) > §(z), soif z.R™.z we have 6(z) > d(x), a contradiction unlessm =n =0
and z = z. O

Consequently, we can let
§(z) = min{k | z.RF # 0,z.RFt =} (2)

We should note that the implication of Lemma 1 coupled with the definition of ¢ in (2) together
imply (1) and so these could be taken as the axiomatic basis instead.

Any relation R satisfying the functional constraint (1) is anti-symmetric. It is a pre-partial order;
and its transitive closure R* = |J,~, R is a partial order. Given such a relation R and function 4,
we create a discrete topology 7 by defining a closure operator . Since closure ¢ is just a relation on

3 We employ a dot notation to clearly delineate the operator symbol from its argument(s).



U, as is R, we use a similar kind of notation. A topology 7 = (U, R, d, ¢) is said to be locally finite
if for all atoms z € U, their closure z.¢ is finite. We will always assume that 7 is locally finite.

Depending on one’s choice of § and ¢, there are many varieties of discrete topology 7 capable of
describing the structure that R imposes on U. For the closure operator ¢ on U we choose, in this
paper, to use the ideal, or “downset”, operator with respect to R, that is X is closed in U (with
respect to ¢), if z € X implies z € X for all z € 2.R¥ k > 0, or equivalently X.po = X.R*. Ideal
operators are antimatroid, in that they satisfy the following anti-exchange axiom

it z,y¢Zyp, then ye(xUZ).¢ implies z ¢ (yUZ).e. 3)

(We often elide the braces { ... } around singleton sets in expressions such as ({z} U Z)). We can
visualize any topological space 7() as R on an n-partite space such as Figure 1.

“NILK

n
A\

Fig.1. An n-partite topological space, 7,

We may assume 6 : U — [0, n] because

Lemma 2. If7 = (U, R, 6, ) is locally finite and ¢ is the ideal operator on R, thenVz € U, 3k, z.R* =
0.

Proof. Suppose not. Since B* = ;5 RE, |z.R*| = |z.¢| > k contradicting local finiteness. O

By this definition, §(§) = —1, and those atoms x of U which are minimal with respect to R* have
0(z) = 0. If 6(z) = 1, for every y € z.R, §(y) = 0. More generally, if §(z) = k, then for every
y € z.R, 0(y) < k — 1, and there exists at least one y, 6(y) = k — 1. Clearly, § : U — [0,n],
so defined satisfies (1), and it is very reasonable in the context of the specific domain we will be
examining later in this paper. As a notational convenience, we denote the collections of all atoms =z,
such that 6(z) = k by A®. Thus the universe of all atoms U = {J,_, ,, A®¥). An arbitrary collection

Z of atoms we will call a configuration which we will denoted by Z = [Z©), Z() ... Z(™ ] where
Z®) = 7z n A®)_ Sets and configurations we denote with uppercase letters; elements and atoms
by lower case. A configuration Z is closed if Z.¢o = Z.R* = Z. In Figure 1, a closed configuration
Z =[0,0,{z2},...,{z1}]-¢ has been indicated by darker lines. We extend ¢ to configurations by
letting §(Z) = k where k = maz{i | d(a) = i,a € Z}. One can regard J as a dimension concept.



2 Generators, Separation and Connectivity

A closure operator ¢ is a relation on U that is closed under intersection, that is (XNY).p = X.pNY.¢@.
Alternatively, it satisfies the standard closure axioms, e.g. it’s monotone and idempotent, When the
closure operator ¢ is defined by ideals in R, that is ¢ = R*, these properties are evident. Moreover
the anti-symmetry of R* ensures it satisfies the anti-exchange property (3) and so ¢ is antimatroid.
Equally important, this kind of ideal closure operator also has (X UY ). = X.p U Y., so it is also
a “topological” closure operator.*

A topological space is Tp if for any pair of points z and y, there exists at least one closed set
containing one of them, but not the other [5]. Thus the reason for wanting the closure operator ¢
to be antimatroid is evident with the following theorem.

Theorem 1. A discrete topology 7 = (U, R, §, ) is Ty if and only if its topological closure operator
@ s antimatroid.

Proof. Let ¢ be antimatroid. If we let Z = @) in (3), it immediately follows that 7 is Tp.

Conversely, let z,y & Z.p and let y € (Z U x).o. We must show that ¢ & (Z U y).p. Since 7 is T,
there exists a closed set C' containing precisely one of z or ¢, but not both. Suppose first that € C.
Since Z.p U C is closed (Z U x).o C Z.pUC. But, now y ¢ Z.p and y € (Z U x).p imply that
y € C, contradicting choice of C. So, we must have y € C, z ¢ C. Again, since z.o U C is closed,
(ZpUy)p CZeUC. Then x & Z.p, = & C imply z & (ZUy).p |

Theorem 2 will establish that the closed configurations of a discrete topology can be “shelled”, one
atom at a time.

Theorem 2. Let Z = [Z©, 20 ... Z®) ... ZM] be a closed configuration of dimension k in
(™). For every atom, z € Z™®, Z—{2} is closed.

Proof. Let Z = [Z©,zM,...,Z® ... Z(™] be any closed configuration of dimension k in L.
Thus, Z(*) # 0, but for Ym > k,Z™ = §. For any atom z € Z*), Z—{z} = [2©,z0), . |
Z®) —z, ..., Z(™ ] and because z ¢ Z.R, (Z—z).R* C Z—z. Readily, Z—z C (Z—2).R*, so Z—=z is
closed. O

This is actually a well-known consequence of the antimatroid nature of ¢ in 7("). See [9, 11]. Alter-
nately, Theorem 2 can be regarded as another proof that ¢ is antimatroid; one that is based solely
on the definition of closure ¢ as an ideal R*.

A set Y generates a closed set Z if Y.p = Z. We say Y is a generator of Z, denoted Z.y, if
it is a minimal set that generates Z. The generator concept is fundamental in closure theory. For
example, if closure is defined by a convex hull operator, then the generators of a convex polytope are
its vertices. It is not hard to show that a closure operator is antimatroid if and only if every closed
configuration has a unique minimal generator [11]. The set X = {z1, 2>} is the unique generator of
the closed configuration of Figure 1. Many closure systems are not uniquely generated, therefore not
antimatroid [4]. It is shown in [11] that

* The Kuratowski closure axioms [10] assume closure under union. This is not true for most closure operators.



Theorem 3. Let Z be closed in an antimatroid space ™. Y is o mazimal closed subset of Z if
and only if Z-Y = {x;}, where x; € Z.7.

This has been called the “Fundamental Covering Theorem” since it completely defines the covering
relationships in the lattice of closed subspaces of ().

It is evident from the definition of §(Z) and of generators that §(Z) = 6(Z.y). If Z.y C AW,
we say Z is homogeneously generated, or just homogeneous. Readily 6(Z) = k. The entire space
7™ must be closed; it is homogeneous if 7(") .y C A(")_ Although the entire space as illustrated in
Figure 1 is homogeneous, the closed set generated by X = {z,z2} is not.

Let 7™ = R over A, AN A™ be an antimatroid topology. The restriction of R to
AO© ARk < n, denoted 7',5"), is called the k" subtopology of 7(™. If 7(") is the topol-
ogy of Figure 1, then 7'2(") is just the lower tri-partite graph. Readily, if 7(") is homogeneous then
T,gn) is homogeneous.

A configuration Y is said to be separable, or disconnected, if there exist non-empty, disjoint,
closed configurations Z;, Z, such that Y.p = Z; U Z».® A configuration Y is connected if it is
not separable. A configuration X connects Y1,Ys if Y1.9o N Y5.0 = X # (. Readily, only closed
configurations can connect closed configurations.

This is just the classical sense of separation and connectivity cast in terms of closure. But, in
discrete systems, it is often useful to consider connectivity of different “strengths”. We say that X
is k-separable if there exist closed configurations Z;, Zy such that X.p = Z1 U Zy, §(Z1 N Z3) =
k > —1.5 When §(Z1 N Z5) = k < §(Z;) we will say that Z; N Zy k-separates Z; and Z.

X is k-connected if it is not (k-1)-separable. X is disconnected if it is (-1)-separable, that is
ZyN Zy = 0. X is 0-connected if Z; N Zy C A©).

Theorem 4. X is k-connected if and only if X. is k-connected.

Proof. Let Zy, Z2 be closed configurations such that Z; N Zy (k-1)-separates X. X = Z; U Z,. Since
Z1 U Zy is closed, X.p = Z1 U Zs, so Z1 N Zy also (k-1)-separates X.¢p.
Proof of the converse is similar. O

Thus closure cannot increase connectivity. In particular, disconnected configurations cannot become
connected by closure.

Lemma 3. In 7™, if §(X) = k < n then X is at most (k-1)-connected.

Proof. Let X.o = Z1 U Zy where Z;,i = 1,2, is non-empty and closed. Readily, 6(Z;) = 6(X) = k.

Suppose 6(Z; N Zy) = k, that is there exists € Z; N Z, N A®). Readily, X.¢ = (Z;—{z}) U Z,. By
Theorem 2, Z; —{z} is also closed. Use finite induction to remove all common atoms of dimension k
until §(Z1 N Z;) =k — 1. |

If X is not (k-1)-separable, it cannot be (j-1)-separable, where j < k. So,
Lemma 4. If X is k-connected, then X is j-connected for all j < k.
From which it follows that

5 A more customary definition would have Y C Z; U Z», with Y N Zj, # § [5]. But, since Z; U Zs is closed
and Y. is the smallest closed set containing Y, this definition is preferable.
6 Recall that in Section 1 we had defined 6(f) = —1.



Lemma 5. If X is i-connected in (™), then X is i-connected in T,gn), forall0 < i <k.

Two atoms z,z € A% are said to be pathwise i-connected if there exists a sequence p; =
< Y0,---,Ym >,m > 0 such that = yo,ym = 2z and y;.0 NYj11.90 N A® £ (. That is, y; and
yj+1 are at least i-connected. Pathwise connectivity can be regarded as a relation p; on the atoms of
the space with (z,z) € p; if they are pathwise i-connected. Demonstrating that p; is an equivalence
relation is an easy exercise.

One would like to show that topological connectivity and pathwise connectivity are equivalent
concepts, that is, a configuration X is topologically k-connected if and only if it is pathwise k-
connected. Unfortunately, this is only partially true. To begin, it is easy to show that,

Theorem 5. If a configuration X is pathwise k-connected it is topologically k-connected.

Proof. Let X be pathwise k-connected and suppose there exists closed, non-empty Z;, Z; such that
X =2Z1UZyand §(Z1NZy) < k—1. By Lemma 3, §(X) = 0(Z1 UZy) > k. Let x € Z1,2z € Z
where §(z) = §(z) = k+ 1. Let px, =< yo,-..,ym > be a k connected chain of k+1 atoms between
z and z which exists by hypothesis.

Since yo € Z1,Ym € Za there exists some pair of atoms y; € Z1,y;41 € Z2. But, y;.R C y;.p C Z1
and y;+1-R C yit1-¢ C Za. So 6(Z1 N Zy) = k > k — 1, a contradiction. O

To see that the converse need not be true, consider the simple counter example of Figure 2.
Readily the entire space 7" = [A®), AW AP ] = [{z1, 29, 23,24}, {y1,92}, {2} ] is topologically
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Fig. 2. A topologically connected configuration that is not pathwise 0-connected.

connected. But, the two 1-atoms y; and y» are not pathwise 0-connected.

A configuration X in 7(") is said to be completely k-connected if in each subtopology Tz-(") 1 <
k, X is (i-1)-connected. If X € 7(") is completely (n-1)-connected, we just say it is completely
connected. Complete connectivity and pathwise connectivity are equivalent concepts because,

Theorem 6. If a configuration Z is completely k-connected it is pathwise k-connected.

Proof. This is most easily shown by the contrapositive. Suppose X is not pathwise k-connected.
That is, there exists no sequence of (k+1) atoms between a pair of atoms 21,22 € Z. Consider the
subtopology Tk(:_)l. Let G1 be the configuration of all (k+1)-atoms that can be reached by a k-path
from z;. Similarly, let G2 be the configuration of all (k+1)-atoms reachable by a k-path from zs.



Now, let Z; = G1.¢ and Zy = Go.p. W.l.o.g we can assume Z = Z; U Z,. (If not, we can form Z3 in
the same way from remaining (k+1)-atoms.) Readily, 6(Z1 N Z2) < k else there would be a k-path
from z; to 25. Z is not k-connected. O

We can use virtually the same proof to show that complete connectedness is inherited by subconfig-
urations.

Corollary 1. If X is a k-connected subconfiguration of Z which is completely k-connected, then X
is completely k-connected.

Lemma 6. Let X € (. If X is completely k connected then X.y C A*+D . A",

Proof. Suppose z € X.yN A® i < k. Since z is a generator, for all j < i,z.R' N X =0, (i.e. z is
maximal in the n-partite representation). But, then x can at most be (k-1)-connected to any other
atom, contradiction assumption of k-connectivity O

As suggested by this lemma, one would like to be able to somehow equate homogeneity and complete
connectivity. But this need not be true. Figure 3(a) is homogeneous, but not 1-connected. Figure
3(b) is completely 1-connected (by default), but not homogeneous. However, when 7(") is completely
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Fig. 3. Contrasting homogeneity and complete connection

(n-1)-connected we do have the corollary:
Corollary 2. If X is completely connected in ("), then X is homogeneously generated.

In contrast to complete connectivity which is a global property, we have weak connectivity which
is local. A configuration X with §(X) = m is weakly connected at p if there exist atoms z,z € X,
(a) 6(z) = 6(z) = m,
(b) z.pN 2.0 =p,
(c) 6(p) =k <m —1, and
(d) X Np.R~1.p is not (k+1)-connected.
In Figure 3(a), Z = {a,b}.p is weakly connected at k. Figure 3(b) is not weakly connected at i
because §(b) = 4(¢) + 1 = 1 violating condition (c) above. The point of this condition is to prevent
the strongest possible connectivity from being called “weak”.

3 Normality and Boundaries

A space is said to be normal if for all k > 0,z € A®) implies z.R C A%*~Y and |z.R| > 2. The
topology of Figure 4 is non-normal at both atoms ¢ and f. Heretofore all our examples have been



Fig. 4. A non-normal configuration.

normal, even though none of the proofs have required it. From now on we will assume that topologies
are normal, even though it is still unnecessary for many of the results of this section.

By the boundary of a closed configuration Z, denoted Z.3, we mean that configuration of atoms,
Zp={x € Zp|z(R1)*Z Z}. Wesay y € Z.3 is a face of Z if y is a generator of Z.3, that is
y € Z.8..

Lemma 7. Z.83 is closed.

Proof. Z.p.po={x|Fy € Z.8,x € y.R*}. Sincey € Z.p, z € z.R* for some z € Z, and by transitivity,
x € z.R*. Further, since y.(R™')* ¢ Z,and y.(R")* Cz.(R~H)*,z.(R"HY)* € Z.So z € Z.3. O

Lemma 8. Ify is a face of Z.3 theny.R™' ¢ Z

Proof. y € Z.p implies y.R~1 N Z.¢ # (. Since y.(R™1)* ¢ Z, there exists y’' € y.R~! such that
y' € Z.B. y € y'. implies y is not a minimal generator. O

We often think of Z.3 as separating Z from its complement in 7(").

Lemma 9. Let Z be any configuration in 7™, and let W = 7™ —Z. Then Z.8 = W.f5.

Proof. By definition y € Z.8 if there exists z € Z and w € W such that y € 2.R* Nw.R*. By
symmetry, y € W.3, and conversely. O

Lemma 10. If 7(") is homogeneously generated and 6(Z) < n, then Z.p = Z.p.

Proof. Readily Z.8 C Z.p. Conversely, Vy € z.p, y.(R~1)* N A" #£ @ (since 7(™ is homogeneous)
so y.(R~Y)* € Z implying Z.o C Z.5. |

The boundaries of homogeneous configurations are homogeneous.

Lemma 11. Let Z be a configuration in a completely connected space 7. If Z.y C A™, then
Z.By C Aln—D),

Proof. Let Zy C A®™ _ Suppose b € ZA~ANA® k <n—1.be€ Z. C Z.p implies there exists
a € Zy C A™ such that b € a.¢. b € Z.8 also implies there exists a’ ¢ Z.¢. Because by Corollary 2,
7(™ is homogeneous, we may assume w.l.o.g. that a’ € A™ . Now a € b.(R~")* and o' € b.(R™1)*.

Since a and a' are k-connected (through b) and 7(™ is completely connected, a and a’ are (n-1)-
connected, say through ¢ € A1), By definition ¢ € Z.8, and by transitivity b € c¢.R™!, so b cannot
be in Z.5.y O



The converse need not be true.

A generator z of a topology 7(™ is said to be on the border of the space if there exists y € z.R,
such that y.R~' = {z}. Let 7(™).B denote the collection of border generators. Note that 7(").B
may be empty. A configuration Z is said to be in interior position if Z.o N 7™ .B.p = 0.

Theorem 7. Let Z be a completely connected configuration in interior position of 7™, n > 2, then
7.3 is completely (n-2)-connected.

Proof. By induction on | Z.y|. Readily, if | Z.y| = 1, then Z.8 is (n-2)-connected because Z in
interior position ensures that Z.5 C Z.v.R*, and normality then ensures connectivity of Z.4.
To make the induction work, we must establish that when | Z.y | = n there exists a generator z € Z.y
which has a face in Z.83, whose removal will still leave Z (n-1)-connected.
The tricky induction step is when | Z.y| = 2. Let Z.y = {z1, 22}, where Z is completely connected.
Because, Z is (n-1)-connected, Z is homogeneous (Corollary 2) with 1,22 € A™ and z;.RNz».R =
y € An=1. y & 7.3. But, since 7(™ is normal, zo.R—{y} # 0, so z» has a face in Z.5. Readily, one
can remove z5 from Z so that Z—{z,} is still (n-1)-connected. Now, let | Z.v| = n. Let € Z.y be
any generator with a face in Z.8. If Z—{z} is still (n-1)-connected, remove z. Otherwise, consider
either of the two (n-2)-separated configurations Z; or Zs, Z1 U Zy = Z. | Z;.y| < | Z.v|, so by
induction there exists a generator z € Z;.y satisfying our requirements.
Remove z. (Z—{z}).0 is pathwise (n-2)-connected as is {z}.8 by induction. Since the faces common
to (Z—{z}).B and {z}.5 are each pathwise (n-2)-connected to the remaining faces, (Z—{z}U{z}).8
is pathwise (n-2)-connected. O
The converse need not be true. Even though a boundary is pathwise connected it may bound a
weakly connected configuration. However we do know that:

Lemma 12. If Z.8 is completely (n-2)-connected in ™), then Z is at least (n-2)-connected.

Proof. By Theorem 4, we may assume Z is closed. Since it is not (n-1)-connected, there exist two
closed configurations Z; and Zs such that Z = Z;UZ5, and §(Z1NZ3) <n—2.But, Z.8 C Z.p = Z,
80 0(Z1 N Zy) >n — 2. O

4 Geometric Spaces

In the rest of this paper we develop a specific discrete topology which is appropriate for digital
images. It assumes an ideal closure and bounded dimension § : U — [0,n]. Its culmination will be
another “Jordan Surface Theorem” which has attracted so much attention in the digital topology
literature [3,6-8]

Intuitively, a discrete n-dimensional, geometric space is formed by subdividing the space with (n-
1)-dimensional constructs, whose intersections yield (n-2)-dimensional objects, etc. A 2-dimensional
space is subdivided by lines which intersect in points, as in Figure 5(a). We will begin using geometric
terms and call 0-atoms, “points”; 1-atoms, “lines”. Instead of calling 2-atoms, regions, we prefer to
use “tiles”; and instead of volumes, we will call 3-atoms “bricks”. Computer applications, such as
digital image processing, typically expect much more regular topologies such as Figure 5(b). In this
field, “pixels” and “voxels” are a standard terminology. Atoms in z.R and z.R~! are said to be
incident to x. Thus, line 6 is incident to tile I and to the points b and h, but tiles I and II are
not incident to each other. Terminology with a visual basis can help intuitive understanding; but



Fig. 6. The n-partite representation of Figure 5(a).

fundamentally, any discrete topology can still be represented as an n-partite graph such as Figure
6.

The notion of a boundary becomes more intuitive in geometric spaces such as Figures 5(a) and
(b). Let Z = {II,IV}.p in Figure 5(a) corresponding to the darkened edges of Figure 6. Then
Z.8=[{a,¢,d, f,9},{2,3,7,8,10},0]. Observe that the line 5 is not in Z.3. Intuitively, an atom is
in the boundary of Z only if it is incident to some atom not in Z. Readily, the generator of Z.5 is
Z.B.y ={2,3,7,8,10}. These are the faces of Z Only the generating tiles, two lines, and one point
have been labelled in Figure 5(b). Here {XIII}.f consists of the surrounding four bold lines; but
{I}.B consists of just the two bold lines. The remaining lines in {I}.R are not incident to a tile “not
in in Z”. Tile I is a border tile of 7("). The atoms {1,4,6,9,12} C A®") of Figure 6 are covered by
singleton atoms. These singletons {I,IIT,V} € A® constitute 7(".B.

A homogeneously generated n-dimensional topology 7(™, will be called geometric if 7

Gl: z € y.R,y € z.R implies there exists a unique y' # y such that
z €y .Randy' € 2.R.
G2: for all k > 0,2 € A® implies |z.R| > k + 1.
G3: for all k < n,z € A® implies |2.R™' | >n —k+ 1, and
G4: y € AV implies |y.R™ | < 2.
Figure 7(a) illustrates the G1 property. Given the presence of line 3, with incident point ¢, that

" That G1 thru G4 are properties of “geometric” topologies can be easily verified. Whether they are sufficient
to characterize these topologies is unknown.
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Fig. 7. Illustration of G1: (a) the n-partite representation of the geometry shown in (b).

is incident to tiles I and I then the existence of two more lines, which we have labelled 2 and
5, that are also incident to tiles I and II and point ¢ is forced. The other lightly dashed lines in
Figures 7(a) and (b), the geometric equivalent of Figure 7(a), denote possible configurations; but
other boundaries of the tiles I and II are quite possible. Only the two lines 2 and 5 are forced.

Property G2 further strengthens the usual normal constraint of |z.R| > 2 if 6(z) > 0. It says
that each line must have at least 2 end points, each tile must have at least 3 bounding lines, and each
brick must have at least 4 bounding tiles. This corresponds to simplicial decomposition of physical
space as we normally view it into triangles and tetrahedrons. Condition G3 implies that in a 2-
dimensional space, any point must be in the boundary (an endpoint) of at least 3 lines. Otherwise,
the point is topologically redundant. Similarly, in a 3-dimensional space, each line segment must be
incident to at least 3 tiles, because otherwise it too would be topologically redundant. Condition G4
which asserts that any (n-1)-atom can be the face of at most two atoms ensures that connected 1
and 2-dimensional topologies are strings and planar surfaces respectively. The closure structure of
a geometric 7(!) is the connected ordered topological space, or COTS, described in [6-8] and later
illustrated in Figure 9. In 3, and higher dimensions, it asserts that a topological hyperplane separates
exactly two regions.

Condition G3 says that (n-1)-atoms must separate at least two n-atoms, while condition G4
says they can separate no more than two n-atoms. Consequently, (n-1)-atoms must separate exactly
2 n-atoms, except possibly when the n-atom is at the border, 7(™.B, of the entire space. Finite,
discrete spaces often have borders where the expected properties of geometric spaces no longer hold.
For example, in Figure 5(a), lines 1, 4, 6, 9 and 12 are incident to only one tile, and the points b
and e are incident to only two lines. We must allow for these exceptions.

In Figure 5(a) and Figure 6, tiles I, III, V are border generators of 7(*).B. There are no
interior tiles in these two figures. In Figure 5(b), the 16 “outside” tiles constitute the border. All the
remaining tiles satisfy the geometric constraints G1 through G4, but only tile XIIT is an interior
tile. Generators in interior position are well removed from the border of 7(™, if there is one. In
the discussions that follow we will assume all configurations have only generating atoms in interior
position.

We now focus on the properties of the boundaries Z.8 of configurations Z in interior position in
geometric topologies.

Lemma 13. Let Z be a homogeneous n-dimensional configuration in interior position in a geometric
topology ™. Let y be a face of Z. and let © € y.R. There exists a unique y' # y such that

(a) z € y'.R, and

(b)yR'NZCy.R'nZ.
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Proof. Since y € Z.(, y separates some z € Z from some w € 7("—Z. Because y € A1),
y.R ! ={w,2},s0y.R"1NZ = 2. Since y € z.R,x € y.R the existence of a unique y' with z € y'.R
follows from G1. y' € z.R assures (b) O

Note that y' need not be an element of Z.5.

The following “continuation” theorem asserts that given a face yo € Z.3, one can move in any
“direction”, e.g. across any face z of yg, and find another face, possibly several, in Z.8. To see the
import of this theorem, consider the two configurations of Figure 8. In Z.3 of Figure 8(a), line 2 in

— |

DO I
RGN I T
A e 2

@ (b)

Fig. 8. Two configurations that are weakly connected at p.

AM is 0-connected to lines 1 and 3 in Z.3. Since Z.3 is defined with respect to the n-atoms of Z
and 7(")—Z, we cannot ignore the topology of these configurations as we investigate Z.3. In Figure
8(a) tile V is pathwise 1-connected to ITI and V (itself) of which 1 and 3 are faces. Similarly the
corresponding tiles of the complement are pathwise connected. It is at places where Z is weakly
(n-2) connected that possible complications can arise. Continuing face 4 of Z.8 through p could
lead to faces 5, 6, or 7. Face 5 is pathwise connected through Z; and face 6 is pathwise connected
through its complement. To make these ideas more formal we modify our path notation somewhat.
Assuming the connectivity k is known, we now let ps(yo,...,yn) denote a k-connected path such
that z € y;.8 for 0 < i < n. py(yo,...,yYn) can be visualized as a path around x. In Figure 8(b)
the tile labelled I in Z.8 is (n-2) path connected to three distinct tiles around p, two of which are
hidden in the “tunnel”.

Theorem 8. Let Z be a homogeneous n-dimensional configuration in interior position in a geomet-
ric topology 7™, n > 2. Let yo be any face in Z.3 separating zo € Z from wo € W = 7™ —Z, and
let x € yo.R. There exists a face y, of Z.8 separating z, € Z from w,, € W, such that x separates
Yo from y, and either

(a) yn is unique, in which case zg, z, are pathwise (n-1)-connected in Z and

wo, Wy, are pathwise (n-1)-connected in W,

or else

(b) Z (and W) is weakly (n-2)-connected at x.

Proof. Let W = 7(")—Z and let yo separate zy € Z from wo € W. Application of Lemma 13 using
T, Yo, 2o ensures the existence of a unique y; such that = € y;.R,y; € 2.R. Since y; € AP~ ¢,
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separates 2o from some a € A",

Ifae W, y; is a face of Z.3. Let y, = y1.

If a € Z, let 21 = a and iterate the application of Lemma 13 using z,y;, 2;. By local finiteness,
this construction must terminate with a face y, separating z, € Z from w' € W such that z
separates yo from y,. Observe that we have created an (n-1)-connected path p;(29, 2,) such that
z€2.R20<i<n.

We now repeat this construction using z,yo,wo to first obtain g}, and if necessary continue the
construction to yield y!, € Z.B separating 2z’ € Z from w,, € W. py(wo,wy,) is another (n-1)-
connected path with z € w;.R*,0 < j < m.

If ¥, =y, then 2’ = z,, and y,, is a unique face.

If ym # Yn, we let z{ = 2', y) = ym and repeat the construction using z, yg, z4-

Eventually, we obtain a face y}, € Z.f8 separating z;, from w" € W where p(z(, 2},) is (n-1)-connected
and z € z.R?,0 <i < k.

Since weak connectivity is a local property, we need only observe that {29, 21,...2,} C Z is weakly
connected to {z),21,-.-2,,} C Z at . O

The role of “interior position” in this theorem can be visualized using Figure 5(b). Suppose tile
V has been deleted from the space and that Z consists of the central 9 tiles. Suppose yg is the face
of I X separating it from I'V. Rotating “counterclockwise” around z one gets y; separating IX from
tile X € W. But tiles IV and X in W are not pathwise connected because V is missing.

5 Jordan Surface Theorem

A traditional statement of the Jordan Curve Theorem is:

Theorem 9 (Jordan Curve Theorem). Let C be a simple closed curve in R?>. Then R*—C
consists of exactly two components A and B. Moreover, C = A—A = B—B.[2]

Is the essence of the “Jordan curve property” that of subdividing the space into precisely two
components, with the purpose of the theorem to show that any simple closed curve in R? has this
property; or rather is the property a constraint on the curve, which one then shows separates the
space. Examples of both interpretations can be found in the literature. Our approach is to define a
discrete Jordan surface in a geometric topology 7(™, to be a configuration S that separates 7(")
into precisely two pathwise (n-1)-connected components, W and Z such that S = W.8 = Z.3, where
one is in interior position.® Neither W nor Z need be simply connected. For example, a discrete torus
floating in 7(3) could be a Jordan surface. If n > 3 either W or Z can be locally weakly connected.
The boundary X.3 of Figure 8(b) is a Jordan surface; the boundary in Figure 8(a) is not.

We briefly review the considerable history associated with configurations such as Figure 8(a);
which has become known as the “Rosenfeld Paradox”. The common assumption has been that a
“curve” in a pixel space is a “thin” connected sequence of pixels, no more than one pixel wide. If
Z, the foreground configuration of Figure 8(a), is regarded as a closed, 0-connected “curve” then it
does not separate the background into two components because the complement too is 0-connected
at p. If it is not a closed curve, i.e. not everywhere 1-connected, then it does separate the space.® A

8 Requiring one component to be in interior position, by convention Z, eliminates analogs of hyperplanes
from being considered as Jordan surfaces.

9 We should note that Rosenfeld used the terms 8-connected and 4-connected instead of 0-connected and
1-connected [12]. This designated the number of “connected” pixels in a rectangular pixel space; it is
standard in image processing.
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common means of resolving the paradox is to use 0-connectivity for the foreground (or background)
and 1-connectivity for its complement[12—14]. The paradox partially arises from the assumption that
pixels are the only elements of the space. This is a perfectly natural assumption if one is analyzing
digital images. Then Figure 8(a) may, or may not, be regarded as a “thin, continuous, closed curve”
which may, or may not, be a Jordan curve separating the space.

Several authors have resolved this paradox by introducing spatial elements of lower dimension
much as we have. One of us has begun with a connected ordered topological space (COTS), or
Khalimsky topology shown in Figure 9. It has two kinds of element. It is Tp; it is antimatroid. Its

©:©:6°:69

Fig. 9. A COTS, or Khalimsky topology.

direct product is equivalent to the geometric 7(2) of Figure 5(b) ith the “pure” direct product of
lines corresponding to tiles; the “pure” direct product of points would be a point; and the “mixed”
direct products of a line with s point would be the same as our line [7, 8].

Although he only considers pixel elements, Gabor Herman [3] effectively introduces (n-1)-dimensional
elements by considering the “boundary” of Z, denoted 8(Z, U—Z), to be the collection of pixel pairs
whose first element is in Z, with the second in U—Z. When the topology is a pixel plane, these pixel
pairs are equivalent to line segments; when it’s a 3-dimensional array of voxels, it is a collection of
voxel faces. It corresponds to our interpretation of a Jordan surface S in 7(™) as being a boundary
where S.y C A(»~1),

Theorem 10. Let Z be a homogeneous n-dimensional configuration in interior position in a geo-
metric topology 7™ . The boundary Z.3 is a Jordan surface if
(a) Z.3 is completely (n-2) connected, and
(b) if Z is weakly (n-2) connected at X C Z.3, then there exists neither
a subset Z' of Z such that X C Z'.3 C Z.f3, nor
a subset W' of the complement, W = U—Z, such that X C W'.8 C Z.5.

Proof. (Necessity) If Z.8 is a Jordan surface, then both Z and W are completely (n-1)-connected, so
(a) follows from Theorem 7 and Lemma 12 assures us that all points where Z.8 is (n-2)-connected,
Z must be at least (n-2)-connected as well. The complete connectivity of Z and W ensures that
neither Z' nor W' can exist at these points.

(Sufficiency) Because Z.8 = W.3 is (n-2)-connected, both Z and W are at least (n-2)-connected by
Lemma 12. Moreover, because Z is in interior position, our definition of “interior” ensures that all
generators of W that are border atoms belong to a single (n-1)-connected component. Now suppose
that Z (or W) is not (n-1)-connected. Say, Z = Z; U Z,, where Z; and Z, are only (n-2)-connected.
Then Z,,8 C Z.8. But, this is explicitly ruled out by condition (b). Thus Z.8 must be a Jordan
surface. O
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@ (b) ©

Fig. 10. Three configurations Z with different connectivities: (a) Z' is (n-1)-connected to Z, (b) Z' is
(n-2)-connected to Z, (c) Z' is (n-3)-connected to Z.

Theorem 10 can be more easily visualized, where n = 3, by Figure 10. In Figure 10(a), Z.8 is 1-
connected at p, but it is still a Jordan surface because no matter how the subconfiguration Z’ C Z
is chosen, its boundary, Z’.8 ¢ Z.3. The portion at the base of Z' cannot be in the boundary of Z.
In contrast, the boundary of Z in Figure 10(b) is not a Jordan surface because Z'.5 C Z.5. Neither
is the boundary of Z in Figure 10(c) a Jordan surface, but in this case it is because Z.8 is not
(n-2)-connected.

Corollary 3. Let Z be a homogeneous n-dimensional configuration in interior position in a geo-
metric topology 7. If Z is (n-1)-connected and nowhere weakly k-connected, where k < n—1, then
Z.B is a Jordan surface.

Theorem 10 is of interest for two reasons. First, it completely characterizes all those surfaces which
subdivide a geometric topology 7(™ into precisely two completely (n-1)-connected components, one
of which is in interior position. That component, which we have been denoting a Z, can be wildly
contorted with many weak connectivities. But, we have shown that only at points of weak (n-
2)-connectivity (where the argument of Theorem 8 shows the complement W must also be (n-2)
connected) is further examination is required.

Second, it provides a theoretical basis for procedures to decide whether a specific surface of
(n-1) atoms is a Jordan surface, thus reducing a potentially n-dimensional problem to one of (n-1)
dimensions. Although provision of such an algorithm is beyond the scope of this paper, it is easy
to envision one utilizing Theorem 8 which marks faces as examined and at each new face stacks all
possible unmarked “adjacent” faces. For more sophisticated “face crawling” algorithms, the reader
is refered to [3]. But, remember that those algorithms depend on a regular decomposition of the
space. Our topologies need not be at all regular. They can easily arise from Voronoi decompositions
[1] or polygonal mesh refinements [15].
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