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Abstract

Because antimatroid closure spaces satisfy the anti-exchange axiom, it is easy to show that they are
uniquely generated. That is, the minimal set of elements determining a closed set is unique. A prime
example is a discrete convex geometry in Euclidean space where closed sets are uniquely generated
by their extreme points. But, many of the geometries arising in computer science, e.g. the world wide
web or rectilinear VLSI layouts are not uniquely generated. Nevertheless, these closure spaces still
illustrate a number of fundamental antimatroid properties which we demonstrate in this paper. In
particular, we examine both a pseudo-convexity operator and the Galois closure of formal concept
analysis. In the latter case, we show how these principles can be used to automatically convert a formal
concept lattice into a system of implications.
© 2004 Elsevier B.V. All rights reserved.
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1. Overview

Matroids and antimatroids can be studied either in terms of a familyF of feasiblesets
and a shelling operator� [1,11], or in terms of a collectionC of closed sets and a closure
operator� [3,14]. There exists a considerable amount of confusion, and an equally great
richness, because these are two distinct approaches to precisely the same concepts. Given
an antimatroid universe,U, every feasible setF ∈ F is the complement of a closed set
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Fig. 1. Closure defined on a graph G (a) and its lattice,L, (b).

C ∈ C, that isF = U − C and conversely. In this paper we will choose to emphasize the
“closure” approach.
Similarly, there exist many well-known results concerningF and/orC. For example,

many individuals have observed thatC, partially ordered by inclusion, is a lower semi-
modular lattice,LC [12], and Edelman demonstrated the stronger result thatC is meet-
distributive[2]. Less is known about those sets ofU that are in neitherF norC. This paper
concentrates on those such subsets, together with closure systems which may not quite be
“antimatroid”.
Let (U,�) be a closure system satisfying the usual closure axioms, that is∀X, Y ⊆ U,

(a) X ⊆ X.�, (b) X ⊆ Y impliesX.� ⊆ Y.�, and (c)X.�.� = X.�. (U,�) is called
amatroid if it satisfies the exchange axiom, that is, ifp, q /∈X.� andq ∈ (X ∪ {p}).�,
thenp ∈ (X ∪ {q}).�. On the other hand,(U,�) is called anantimatroidif it satisfies the
anti-exchange axiom, that is, ifp, q /∈X.� andq ∈ (X ∪ {p}).�, thenp /∈ (X ∪ {q}).�.
It is not hard to show that antimatroid closure spaces areuniquelygenerated, in the sense
that every closed setZ has a unique, minimal subsetXwith closureX.� =Z. Such unique
generating (or basis, or irreducible) sets have been denoted byX.�. When the closure� is
antimatroid, there is a tight relationship between any closed set and its generators, which is
expressed by

Theorem 1.1(Fundamental covering theorem). LetZ ∈ C be any closed set. Z − {p} is
closed if and only ifp ∈ Z.�.

An ordering,X��Y if Y ∩X.� ⊆ X ⊆ Y.�, on all subsetsX, Y ⊆ U, was introduced in
[14] which also introduced graphic representations such as inFig. 1.When closure is taken
to beY.�={x|(∃y ∈ Y )[x�y]}, the lattice ofFig. 1(b) illustrates the ordering of all subsets
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of (a), the graph G. The closed sets,C ∈ C are those connected by solid lines denoting
subset inclusion. Apparently, inclusion relationships exist between the non-closed sets that
mirror those of the closed sets; that is each interval[Z.�, Z.�] is a Boolean lattice with the
property that, ifX.���Z.� then [X.�, X.�] is isomorphically embedded in[Z.�, Z.�]
by � : Y → Y ∪ �, where� = Z.� − X.�. This was proven in[14]. Does this kind of
replicated structure exist if the closure operator is not antimatroid?

2. Pseudo-convexity

Ideal operators, such as� illustrated inFig. 1, and discrete convexity operators such as
those developed in[3,4,8,9,13]are a rich source of antimatroid closure spaces. But, the
authors know of no well-defined convexity operator over a discrete pixel space. However,
a pseudo-convex operator, based on alternate expansion and contraction was developed in
[16] and subsequently used to implement a variety of digital image processing operators.
One can extend expansion–contraction operation to undirected graphsG=(N,E), where

N is a set of nodes andE a set of edges. For anyY ⊆ N we let Y.� denote the open
neighborhood ofY, that isY.�={z /∈Y |∃y ∈ Y ∧ (y, z) ∈ E}, and letY.�̄ denote theclosed
neighborhood, orY.�∪Y . By theneighborhood closure,��wemean the setY.��={z|z.�̄ ⊆
Y.�̄}. Notice that this closure concept precisely captures the process of expansion and
contraction of the preceding section becausez ∈ Y.�� if and only if each neighbor ofz is a
neighbor ofY, and hence “filled” whenY is expanded.

Lemma 1. �� is a closure operator.

Proof. It is apparent thatY ⊆ Y.�� andX ⊂ Y impliesX.�� ⊆ Y.��. Only idempotency
is questionable because, in general,Y.�̄ ⊂ Y.�̄.�̄.
Lety ∈ Y.��.�� and supposey /∈Y.��. The latter implies∃z ∈ y.�̄ such thatz /∈Y.�̄. But,

y ∈ Y.��.�̄ requires that∃y′ ∈ Y.�� such thatz ∈ y′.�̄. However, this impliesy′ /∈Y.��
(for the same reason thaty /∈Y.��) and contradiction. Soy ∈ Y.�� andY.��.�� ⊆ Y.��.
�

In Fig. 2, we have a small 8 element graph with 26 subsets closed under�� as shown in
Fig. 2(b). Clearly,�� is not a uniquely generated closure. We see that{eg, eh} are minimal
generators foregh.2 Similarly, {ce, bde}minimally generateabcde. There are 14 minimal
generators ofU = abcdefgh. We have only sketched in a few of the 171 subsets whose
closure isU to suggest this structure. The subsets ofU, partially ordered by��, arenota
lower semi-modular lattice.
But, many of the important properties of closure lattices still hold. We observe that each

of the structures[X.��, X.�]3 is isomorphically replicated in[Z.��, Z.�] by � : Y →
Y ∪ �, X.����Y ��X.�, where� = Z.�� − X.��.

2 For simplicity, we will enumerate elementseghto denote the set rather than use the more correct{egh}.
3 Because�� is not uniquely generated, these intervals are not Boolean algebras.
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Fig. 2. Pseudo-convexity operator.

We should note that the concept of dominance is one of the oldest, and still one of the
most vital, themes in abstract graph theory[7]. Our concept of pseudo-convexity subsumes
domination theory, because a subsetY is said to dominateG = (N,E) if Y.�̄ = N . If Y is a
minimal set with this property, thenY is a familiardomination set, that is,Y is a generator
for U. Similarly, we observe that[10] has employed an expansion–contraction approach to
web search that has been quite successful. Closure concepts overlap many research areas.

3. Generalized closures

In this section we generalize the development of antimatroid closure spaces found in
[14,15]. First, sinceY.� denotes a minimal generator ofY.�, when the closure operator� is
not uniquely generated, we letY.�={Y.�} denote thesetof all minimal generators ofY. Let
Zbe closed and letXi ⊆ Z denote maximal closed subsets. IfS= (U,�) is an antimatroid
closure space, then Theorem 1.1 shows thatZ − Xi = {pi} ∈ Z.�. In our generalization to
closure systems which need not be antimatroid we allowZ − Xi to be an arbitrary set�i ,
which we call afaceof Z. The collection�Z = {�i} = {Z − Xi : Xi ⊂ Z,Xi maximal,
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closed} we call theboundaryof Z. In the closure space ofFig. 1, the boundaryU.� of the
entire spaceU is {d}. The boundary of the pseudo-convex space shown inFig. 2 is more
interesting. Here,U.� = {fgh, bcf , adeg, abde, abcd}.
For non-uniquely generated closure spaces, Theorem 1.1 is no longer valid; it must be

generalized. To do this we use the concept of blockers. LetF be any family of sets. A set
B is said to be ablockerforF if B /∈F and∀X ∈ F, B ∩ X �= ∅.

Theorem 2 (Generalized fundamental covering theorem). Let Z be closed with respect to
� and letZ.� = {Z.�} be its family of minimal generators.
(a) If X ⊂ Z and X is closed, thenZ − X is a blocker ofZ.�.
(b) If B is a minimal blocker ofZ.�, thenZ − B is closed.
(c) Z. covers X inL� if and only ifZ − X is a minimal blocker ofZ.�.

Proof. (a) LetZ.� ∈ Z.� and supposeZ.�∩ (Z−X)=∅. Then, sinceZ.� ⊆ Z,Z.� ⊆ X.
But,Z.�.� = Z and thusZ ⊆ Z.�.� ⊆ X.� = X, a contradiction.
(b) LetY =(Z−B).�. ThenY ⊂ Z.�=Z. If Y =Z, thenZ−B is a generating set forZ,

so it contains some minimal generating setZ.�. Now,Z.� ⊆ Z −B implyingZ.� ∩B = ∅,
contradicting assumption thatB is a blocker. SoY �= Z.
SinceY is closed andY ⊂ Z, by (a)Z − Y is a blocker ofZ.�. BecauseZ − Y is a

blocker, and becauseZ − Y = Z − (Z − B).� ⊆ Z − (Z − B) = B, and becauseB is a
minimal blocker, we haveB =Z − Y . ThusY =Z −B, and sinceY is closed,Z −B must
be as well.
(c) Readily follows from (a) and (b). IfZ coversX in L�, thenZ − X is a minimal

blocker ofZ.� = {Z.�}; and ifB is a minimal blocker ofZ.�, thenX = Z − B is closed
andZ coversX. �

That is, wemay pick an element from each of the generating sets (subject to the constraint
that the elements are distinct and do not themselves constitute a generating set). Deletion of
such a set�=∪Yi fromZwill yield another closed set that will be covered byZwith respect
to�. Observe, inFig. 2that from the 4 generating sets of{adegh}.�={ah, ag, dh, dg} one
may choose�1= ad or�2= gh; but no others. Hence, these constitute the bounding faces
of the subsetadegh. Each face is a minimal blocker of the setZ.� of minimal generators;
and conversely each generatorZ.� ∈ Z.� is a minimal blocker of the setZ.� of faces ofZ.
A lattice ismeet distributiveif every elementZ that covers the set{Y1, Y2, . . . , Yn} of

elements is thesupremumof a distributive sublattice whoseinfinium is Y1∧ Y2∧ · · · ∧ Yn.
When the closure is antimatroid, meet distributivity is an important characteristic of the
closed set lattice,LC [2]. The latticeLC of Fig. 2 is not meet distributive. But, many
closure spaces, or portions of them, are meet distributive even if they are not antimatroid.
Antimatroid closure is a sufficient condition for meet distributivity, but not necessary.

Theorem 3. LetF be an anti-chain of sets withF.U its closure with respect to union.
Then the following are equivalent:

(a) F.U is Boolean;
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(b) F.U is distributive;
(c) no member ofF is covered by other members ofF.

Proof. (a)⇒ (b) is trivial.
(c) ⇒ (a) Consider the map� : Pow(F) → X the ambient space defined by union.

Readily� is order preserving. SupposeA1 ∪ · · · ∪ Ak = B1 ∪ · · · ∪ Bm,Ai, Bj ∈ F. We
claimk=m and theAi ’s andBj ’s are identical, given some appropriate permutation. If not,
there exist someAi �= Bj ,1�j�m. So,Ai ⊆ A1∪· · ·∪Ak=B1∪· · ·∪Bm, contradicting
(c). Hence (c) implies that�, the union map, is 1–1 and thus a Boolean lattice isomorphism.
(b)⇒ (c)We prove the contrapositive.Assume somememberF ∈ F is covered by other

members, e.g.F ⊆ G1 ∪ G2 ∪ · · · ∪ Gj . We show thatF.U either contains anM5 or an
N5, and hence must be non-distributive.
We must first dispose of:
Case1: There are three setsA,B,C ∈ F with identical pairwise unions, i.e.A ∪ B =

A∪C=B ∪C. SinceF is an anti-chain,A,B,C cover the empty union∅ ∈ F.U . Hence
F.U contains

Case2:We can assume no 3 sets have identical pairwise unions. ChooseF ⊆ G1∪ · · ·∪
Gk, wherek is as small as possible. First supposek >2. Sincek >2,F ∪ G1 can contain
no member ofF, elsekwould not be minimal. Thus(F ∪G1)∩ (G2 ∪ · · · ∪Gk) inF.U

must be empty. FurtherG1�G2 ∪ · · · ∪ Gk by minimality ofk. Hence, we have

Finally, let k = 2, soA = B ∪ C. Since we are excluding case 1, eitherB�A ∪ C or
C�A ∪ B. Wlog assume the latter, so we have

�

This theorem need not be true if pseudo-convexity is the closure operator, asFig. 2
illustrates. The closed subset{cfgh} is contained in the union{bcf h} ∪ {efgh}. Readily,
the lattice of closed subsets,LC, is not meet distributive.



R.E. Jamison, J.L. Pfaltz / Discrete Applied Mathematics 147 (2005) 69–79 75

4. Concept lattice closure

In this section, we examine an important class of closure spaces that are not uniquely
generated. LetR be a binary relation between any two setsX andY, as inFig. 3. One
can form the Galois closure,�R, of X with respect toR by generating all the closed sets
Z ⊆ X of the formZ = Xi.R.R−1, for Xi ⊆ X, whereXi.R = ⋂

x∈Xi
x.R ⊆ Y and

Yi.R−1=⋂
y∈Yi y.R

−1 ⊆ X.Alternatively one can form the closure,�R−1 ofYwith respect

to R consisting of the closed setsZ′ = Yk.R−1.R. In formal concept analysis[6], it is
customary to regardX as a set ofobjectsandY as a set ofattributes. Then, the setX.R

denotes the set of all attributes shared by every object inX. Consequently,X.�=X.R.R−1
denotes the set ofall the objects that share (at least) these common attributes. Conversely,
Y.R−1denotes the set of all objects sharing every attribute inYandY.�=Y.R−1.R consists
of all the attributes shared by the objects which (at least) haveY in common.
Ganter andWille[6] show that�R and�R−1 are indeed closure operators, and constitute

a Galois connection. These closure systems are isomorphic and can be represented by the
following lattice of closed sets, partially ordered by inclusion.4 Labeling each node is the
pair of closed sets that is joined by the Galois connection, for example〈abg,123〉. In this
case we have oriented the lattice with respect toY, the set of attributes, with the universe
Y = abcdefghi (which must be closed) as the latticesupremumand the singleton set{a}
as the latticeinfimum. It is partially ordered with respect to set inclusion.
There are no meet distributive sublattices in the lattice ofFig. 4; it is not hard to verify

that condition (c) of Theorem 3 is never satisfied. It is apparent that the faces ofabghareb
andh; while the faces ofabcdfareb, c, anddf. Consequently by Theorem 2 these constitute
the family of minimal blockers of the generators of these closed sets.

Theorem 4. Let Z be a closed set with respect to�.A setG ⊆ Z is a generator of Z if and
only if G is a blocker ofF = {�k}, the family of faces of Z.
And,G is a minimal generator if and only if it is a minimal blocker.

1
2
3
4
5
6
7
8

a b c d e f g h i

Fig. 3. A small binary relationR fromX = {1,2,3,4,5,6,7,8} to Y = {a, b, c, d, e, f, g, h, i}.

4 This complete example has been taken from Ganter andWille’s bookFormal Concept Analysis[6].
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Proof. Let G ⊆ Z be any generator, i.e.G.� = Z. We claim thatG is a blocker ofF.
Suppose not, that for somek,G ∩ �k = ∅. ThenG ⊆ Z − �k = Y . But, since�k is a face,
Y = Z − �k is closed, andG ⊆ Y impliesG.� ⊆ Y ⊂ Z, contradicting the premise that
G is a generator.
Conversely, letG ∩ �k �= ∅ for all �k ∈ F. G ⊆ Z impliesG.� ⊆ Z. Suppose the

containment is proper. Then,G.� = Y ⊂ Z, whereY is a maximal contained closed subset.
Z − Y = �k for somek.G ⊆ Y impliesG ∩ �k = ∅, contradicting the premise thatG is a
blocker.
The last assertion is trivially obvious.�

Consequently, we can see that the setbh is the unique generator ofabgh. Becauseb, c
anddf are faces ofabcdf, as can be seen from inspection ofFig. 4, its family of non-unique
generators is{abcdf }.� = {bcd, bcf }.
Readily, the setsacdeandacghiare uniquely generated byeandi, respectively. Exami-

nation of the relationR in Fig. 3shows that any object with attributeemust have attributes
acdas well (there is only one, object 7); and similarly the single object, 4, with attribute
i also has attributesacgh. We can similarly apply Theorem 4 to determine some of the
non-unique generators. For example,

Closed setZ Faces�k Generating setsZ.� = {Z.�k}
abdf b, df bd, bf

abgh b, h bh
abcdf b, c, df bcd, bcf

abcgh b, c, gh bcg, bch

acghi i i
abcdefghi bdef , def i, eghi, bfghi be, bi, dg, dh, di, ef , eg, eh, ei, fg, f h, f i

That is,bdor bf impliesabdf; i impliesaeghi; and any ofbe, · · · f i implyY.
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Fig. 5. Formal concept lattice (Fig.4) with some generators indicated.

Sometimes, as inFigs. 1and2, we indicate the generating sets for the closed sets of the
lattice. It graphically portrays the implied inference relationships. InFig. 5we only indicate
a few of these generators by dashed structures growing diagonally to the upper left.
Figs. 2and5 have a superficial semblance; but�R and�� are very different closure

operators. This is most easily seen if we regard the binary relation,R, as a bipartite graph
onN = X ∪ Y . ThenX.R = X.� andY.R−1 = Y.�. Thus we see that

x′ ∈ X.�� if x′.�̄ ⊆
⋃

x∈X
x.�̄,

while

x′ ∈ X.�R if x′.� ⊇
⋂

x∈X
x.�.

Neighborhood domination closure,��, on bipartite graphs such as this one is seldom inter-
esting; and relational closure,�R, on general networks is seldom informative either.
We are much more accustomed to having implications associated with attributes and

propositions than with objects. Consequently, the preceding discussion becomes more in-
teresting if we regardX as a set of specific objects{oi} and we associate propositions about
those objects with the elements ofY. Ganter and Wille[6] actually derived the relationR
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from a set of objects discussed in an educational film “Living Beings and Water” and the
properties attributed to them in that film. Here the 8 objects ofXwere (1)leech, (2)bream,
(3) frog, (4)dog, (5)spike-weed, (6) reed, (7)beanand (8)maize, respectively. Their prop-
erties, denoted bya throughi, were (a)needs water to live, (b) lives in water, (c) lives on
land, (d) needs chlorophyl to prepare food, (e) two little leaves grow on germinating, (f)
one little leaf grows on germinating, (g) can move about, (h) has limbsand (i)suckles its
offspring.
Now, some of the implications indicated above make intuitive sense. In this world, all

objectso “need water to live” (a), soPa(o) is a tautology, wherePa(o) is interpreted
as the predicate “objecto has attribute/propertya”. If an object “lives in water (b) and
germinates with one leaf (f), thenPb(o) ∧ Pf (o) → Pd(o) ≡ “needs chlorophyl”, and so
on. Consequently, Theorem 4 introduces implication closure[17] into the formal concept
structure in a very natural way.
If the closure system is antimatroid, all implications are of the formP1∧P2∧· · ·Pk → Q

where the precedent is a Horn clause. When the closure system is not uniquely generated,
disjunctive precedents, such as(Pb ∧Pd)∨ (Pb ∧Pf ) → Pa ∧Pb ∧Pd ∧Pf , are possible.
The advantages of inference systems based only on Horn clauses are well known[5]. They
make implicit use of the antimatroid properties of the implication closure space[17].
In this universe, no object exhibits all the attributesabcdefghi, so it represents a logical

contradictionover this universe. So too, the 12 generating pairsPb(o)∧Pe(o), . . . , Pf (o)∧
Pi(o), must each be logical contradictions because they generateabcdefghiand because no
object these pairs of attributes. This can be also intuitively determined by inspection of the
attributes themselves.
Application of Theorem 4 has introduced an easy way of associating a formal concept

lattice with a system of implications in whichY.� denotes the (possibly disjunctive set of)
premises andY.� denotes the transitive closure of those premises. Because these logical
implications are valid only in the specific context denoted by the lattice, they may be far
richer, more varied, and informative than a logic based on universal satisfiability.
Antimatroid closure spaces, or convex geometries, are important mathematical systems

with delightful properties. But, even closure spaces that are not uniquely generated can be
useful as well.
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