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Abstract

Because antimatroid closure spaces satisfy the anti-exchange axiom, it is easy to show that they are
uniquely generated. That is, the minimal set of elements determining a closed set is unique. A prime
example is a discrete convex geometry in Euclidean space where closed sets are uniquely generated
by their extreme points. But, many of the geometries arising in computer science, e.g. the world wide
web or rectilinear VLSI layouts are not uniquely generated. Nevertheless, these closure spaces still
illustrate a number of fundamental antimatroid properties which we demonstrate in this paper. In
particular, we examine both a pseudo-convexity operator and the Galois closure of formal concept
analysis. In the latter case, we show how these principles can be used to automatically convert a formal
concept lattice into a system of implications.
© 2004 Elsevier B.V. All rights reserved.
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1. Overview

Matroids and antimatroids can be studied either in terms of a fafilyf feasiblesets
and a shelling operater [1,11], or in terms of a collectior¥ of closed sets and a closure
operatorgp [3,14]. There exists a considerable amount of confusion, and an equally great
richness, because these are two distinct approaches to precisely the same concepts. Given
an antimatroid universe), every feasible seF € # is the complement of a closed set
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Fig. 1. Closure defined on a graph G (a) and its latti¢e (b).

ac

C € ¢, thatisF = U — C and conversely. In this paper we will choose to emphasize the
“closure” approach.

Similarly, there exist many well-known results concernizigand/oré. For example,
many individuals have observed thét partially ordered by inclusion, is a lower semi-
modular lattice,¥« [12], and Edelman demonstrated the stronger resultéhiatmeet-
distributive[2]. Less is known about those setdbthat are in neithe# nor%. This paper
concentrates on those such subsets, together with closure systems which may not quite be
“antimatroid”.

Let (U, ¢) be a closure system satisfying the usual closure axioms, thaf,i¥ < U,
(@ X C X.p,(b) X C Y impliesX.¢ C Y.p, and (C)X.0.0 = X.¢. (U, @) is called
a matroid if it satisfies the exchange axiom, that ispifq ¢ X. andg € (X U {p}).o,
thenp € (X U {g}).¢. On the other handU, ¢) is called arantimatroidif it satisfies the
anti-exchange axiom, that is, jf, g ¢ X.¢p andg € (X U {p}).p, thenp ¢ (X U {g}).o.
It is not hard to show that antimatroid closure spacesiaiquelygenerated, in the sense
that every closed s@has a unique, minimal subséwith closureX. = Z. Such unique
generating (or basis, or irreducible) sets have been denot&dybyWhen the closure is
antimatroid, there is a tight relationship between any closed set and its generators, which is
expressed by

Theorem 1.1 (Fundamental covering theoremLet Z € € be any closed sefZ — {p} is
closedifand only ifp € Z.y.

Anordering,X <,Yif YNX.p € X C Y.p,onall subsetX, Y C U, was introduced in
[14] which also introduced graphic representations such Bjirl. When closure is taken
tobeY.p={x|(Jy € Y)[x < y]}, the lattice ofrig. 1(b) illustrates the ordering of all subsets
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of (a), the graph G. The closed se€s,e % are those connected by solid lines denoting
subset inclusion. Apparently, inclusion relationships exist between the non-closed sets that
mirror those of the closed sets; that is each intefiZad, Z.y] is a Boolean lattice with the
property that, ifX.p <,Z.¢ then[X.¢, X.y] is isomorphically embedded iiZ.¢, Z.y]
byo:Y — YU A, whered = Z.¢p — X.¢. This was proven ifj14]. Does this kind of
replicated structure exist if the closure operator is not antimatroid?

2. Pseudo-convexity

Ideal operators, such agsillustrated inFig. 1, and discrete convexity operators such as
those developed ifB8,4,8,9,13]are a rich source of antimatroid closure spaces. But, the
authors know of no well-defined convexity operator over a discrete pixel space. However,
a pseudo-convex operator, based on alternate expansion and contraction was developed in
[16] and subsequently used to implement a variety of digital image processing operators.

One can extend expansion—contraction operation to undirected grapts, E), where
N is a set of nodes anH a set of edges. For any € N we let Y.y denote the open
neighborhood oY, thatisY.n={z ¢ Y|3y € Y A (y, z) € E}, and letY.ij denote thelosed
neighborhoodorY.nUY . By theneighborhood closutep, we mean the sét o, ={z|z.i <
Y.i7}. Notice that this closure concept precisely captures the process of expansion and
contraction of the preceding section becauseY. ¢, if and only if each neighbor dfis a
neighbor ofY, and hence “filled” whelY is expanded.

Lemma 1. ¢, is a closure operator

Proof. Itis apparentthal’ € Y., andX C Y impliesX.¢, < Y.¢,. Only idempotency
is questionable because, in general, C Y.#.1.

Lety € Y.¢,.p, and supposg ¢ Y.¢,,. The latterimplieslz € y.ipsuchthat ¢ Y.i7. But,
y € Y.¢@,.ij requires thaBy’ € Y., such that € y’.ij. However, this implies’ ¢ Y.¢,
(for the same reason that Y.¢,) and contradiction. Sp € Y., andY.p,.¢, < Y.¢,.
O

In Fig. 2, we have a small 8 element graph with 26 subsets closed yndes shown in
Fig. Zb). Clearly,,, is not a uniquely generated closure. We seef{wateh} are minimal
generators foegh? Similarly, {ce, bde} minimally generat@bcde There are 14 minimal
generators ot) = abcdefgh. We have only sketched in a few of the 171 subsets whose
closure isU to suggest this structure. The subsettlppartially ordered by< ,, arenota
lower semi-modular lattice.

But, many of the important properties of closure lattices still hold. We observe that each
of the structure$X.¢,, X.y1® is isomorphically replicated iNZ.p,, Zylbyo : Y —
Yyu4, X0, <Y <pX.y, whered = Z.gy— X0y

2 For simplicity, we will enumerate elemergghto denote the set rather than use the more cofegét.
3 Becausep, is not uniquely generated, these intervals are not Boolean algebras.
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Fig. 2. Pseudo-convexity operator.

We should note that the concept of dominance is one of the oldest, and still one of the

most vital, themes in abstract graph theptly Our concept of pseudo-convexity subsumes
=(N,E)ifYy=N.IfYisa

domination theory, because a subéét said to dominaté&
minimal set with this property, theviis a familiardomination setthat is,Y is a generator

for U. Similarly, we observe th410] has employed an expansion—contraction approach to
web search that has been quite successful. Closure concepts overlap many research areas

3. Generalized closures
In this section we generalize the development of antimatroid closure spaces found in

[14,15] First, sinceY.y denotes a minimal generator bfp, when the closure operatoris

not uniquely generated, we [BtI" = {Y.y} denote thesetof all minimal generators of. Let

Zbe closed and lex; € Z denote maximal closed subsetsyf= (U, ¢) is an antimatroid
{pi} € Z.y. In our generalization to

closure space, then Theorem 1.1 shows #hat X
closure systems which need not be antimatroid we alfow X; to be an arbitrary set;,
i @ X , Xi imal,

which we call afaceof Z. The collectionf, = {4;} ={Z — X, : X; C Z, X; maximal
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closed} we call theboundaryof Z. In the closure space &fig. 1, the boundaryJ.p of the
entire spacdJ is {d}. The boundary of the pseudo-convex space showkign2 is more
interesting. Herel.f = {fgh, bcf, adeg, abde, abcd}.

For non-uniquely generated closure spaces, Theorem 1.1 is no longer valid; it must be
generalized. To do this we use the concept of blockersZ & any family of sets. A set
B is said to be dlockerfor # if B¢ # andvX € #, BN X # 0.

Theorem 2 (Generalized fundamental covering theojerhet Z be closed with respect to
¢ and letZ.I' = {Z.y} be its family of minimal generators

(@) If X ¢ Z and X is closegthenZ — X is a blocker ofZ.I".
(b) If B is a minimal blocker oZ.I", thenZ — B is closed
(c) Z.covers XinZ, ifand only ifZ — X is a minimal blocker of.1".

Proof. (a)LetZ.y € Z.I'and suppos€.yN(Z—X)=¢@.Then,sinc&Z.y < Z, Z.y C X.
But, Z.y.p = Z and thusZ C Z.y.¢ C X.p = X, a contradiction.

(b) LetY =(Z—B).p.ThenY Cc Z.o=Z.If Y =Z, thenZ — B is a generating set fat,
S0 it contains some minimal generating Zet. Now, Z.y € Z — Bimplying Z.y N B =,
contradicting assumption thBtis a blocker. S # Z.

SinceY is closed andr C Z, by (2) Z — Y is a blocker ofZ.I". Becaus&Z — Y is a
blocker, and becausé — Y =7 — (Z — B).9p € Z — (Z — B) = B, and becausB is a
minimal blocker, we hav®8 = Z — Y. ThusY = Z — B, and sinc& is closed,Z — B must
be as well.

(c) Readily follows from (a) and (b). IZ coversX in %, thenZ — X is a minimal
blocker of Z.I' = {Z.y}; and if B is a minimal blocker oZ.I', thenX = Z — B is closed
andZ coversX. [

Thatis, we may pick an element from each of the generating sets (subject to the constraint
that the elements are distinct and do not themselves constitute a generating set). Deletion of
such a sett =UY; from Zwill yield another closed set that will be coveredbwith respect
to ¢. Observe, irFig. 2that from the 4 generating sets{faliegh}.y ={ah, ag, dh, dg} one
may choosel1 = ad or A2 = gh; but no others. Hence, these constitute the bounding faces
of the subseadegh Each face is a minimal blocker of the sét” of minimal generators;
and conversely each generathy € Z.I" is a minimal blocker of the sét. 8 of faces ofZ.

A lattice is meet distributivef every elemen¥ that covers the sdtry, Yo, ..., Y,} of
elements is theupremunof a distributive sublattice whosefiniumisY1 A Yo A -+ A Y.

When the closure is antimatroid, meet distributivity is an important characteristic of the
closed set latticeZ [2]. The lattice.#« of Fig. 2 is not meet distributive. But, many
closure spaces, or portions of them, are meet distributive even if they are not antimatroid.
Antimatroid closure is a sufficient condition for meet distributivity, but not necessary.

Theorem 3. Let # be an anti-chain of sets with .U its closure with respect to union.
Then the following are equivalent

(a) #.U is Boolean
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(b) Z# .U is distributive
(c) no member of7 is covered by other members.#f.

Proof. (a)= (b) is trivial.

(c) = (a) Consider the map : Pow(#) — X the ambient space defined by union.
Readilyo is order preserving. Suppogg U ---U Ay =B1U---UB,, A;, Bj € 7. \We
claimk=m and thed;’s andB;’s are identical, given some appropriate permutation. If not,
there existsomd; # B;, 1< j<m.S0,A; € A1U---UA=B1U---UB,, contradicting
(c). Hence (c) implies that, the union map, is 1-1 and thus a Boolean lattice isomorphism.

(b) = (c) We prove the contrapositive. Assume some meniiber.7 is covered by other
members, e.gf € G1U G2 U ---U G ;. We show that# .U either contains aMs or an
N5, and hence must be non-distributive.

We must first dispose of:

Casel: There are three sets, B, C € % with identical pairwise unions, i.ed U B =
AUC =BUC.SinceZ is an anti-chainA, B, C cover the empty uniofi € #.U. Hence
& .U contains

B
N
c

P

JU/ER

N

s—%—C

Case2: We can assume no 3 sets have identical pairwise unions. Chogs€1 U - - - U
G, wherek is as small as possible. First suppése 2. Sincek > 2, F U G1 can contain
no member of#, elsek would not be minimal. ThusF U G1) N (G2 U ---U Gy) in #.U
must be empty. Furthef1Z G, U - - - U G by minimality ofk. Hence, we have

Finally, letk = 2, soA = B U C. Since we are excluding case 1, eittBf A U C or
CZA U B. Wlog assume the latter, so we have

} uc
AUB \
| c
B
\/
7
This theorem need not be true if pseudo-convexity is the closure operatbiy.a2

illustrates. The closed subsetf ¢k} is contained in the uniofbcfh} U {efgh}. Readily,
the lattice of closed subset%, is not meet distributive.

NSI

O
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4. Concept lattice closure

In this section, we examine an important class of closure spaces that are not uniquely
generated. LeR be a binary relation between any two s&tsandY, as inFig. 3. One
can form the Galois closurep, of X with respect taR by generating all the closed sets
Z C X of the formZ = X;.R.R~1, for X; € X, whereX;.R = MNeex,X-R € Y and
Y;. R 1= ﬂyey,.%R_l C X.Alternatively one can form the closure,-1 of Y with respect

to R consisting of the closed se® = Y;.R—1.R. In formal concept analysif], it is
customary to regar as a set obbjectsandY as a set ofttributes Then, the seX.R
denotes the set of all attributes shared by every objeét@onsequentlyX.¢p = X.R.R~1
denotes the set @il the objects that share (at least) these common attributes. Conversely,
Y.R—1denotes the set of all objects sharing every attribu¥eandY.¢ = Y.R—1.R consists
of all the attributes shared by the objects which (at least) Maweommon.

Ganter and Willg6] show thatp , andg -1 are indeed closure operators, and constitute
a Galois connection. These closure systems are isomorphic and can be represented by the
following lattice of closed sets, partially ordered by inclusforL.abeling each node is the
pair of closed sets that is joined by the Galois connection, for exataple 123. In this
case we have oriented the lattice with respedt, tthe set of attributes, with the universe
Y =abcdefghi (which must be closed) as the lattisepremurrand the singleton sét}
as the latticenfimum It is partially ordered with respect to set inclusion.

There are no meet distributive sublattices in the latticBigf 4; it is not hard to verify
that condition (c) of Theorem 3 is never satisfied. It is apparent that the faabglbéreb
andh; while the faces odbcdfareb, ¢, anddf. Consequently by Theorem 2 these constitute
the family of minimal blockers of the generators of these closed sets.

Theorem 4. Let Z be a closed set with respeci@oA setG C Z is a generator of Z if and
only if G is a blocker of#7 = {4, }, the family of faces of Z
And G is a minimal generator if and only if it is a minimal blocker

abcdef ghi
1 |X|X X

2 | X|X XX
3 [ X|X|X XX
4 | X X X| X | X
5 | X|X X X

6 | X|X|X|X X

7 |X X| X | X

8 | X XX X

Fig. 3. A small binary relatioRfrom X ={1,2,3,4,5,6,7,8}t0oY ={a,b,c,d, e, f, g, h,i}.

4This complete example has been taken from Ganter and Wille's Bowkal Concept Analysig6].
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Proof. Let G € Z be any generator, i.€.¢p = Z. We claim thatG is a blocker of#.
Suppose not, that for sonkeG N 4, =@. ThenG C Z — A, =Y. But, since4 is a face,
Y =7 — A isclosed, and; C Y impliesG.¢ C Y C Z, contradicting the premise that
Gis a generator.

Conversely, lelG N 4, # @ forall 4y € #. G C Z impliesG.¢ C Z. Suppose the
containment is proper. The6,.p =Y C Z, whereYis a maximal contained closed subset.
Z — Y = Ay for somek. G C Y impliesG N 4, = @, contradicting the premise th@tis a
blocker.

The last assertion is trivially obvious.[]

Consequently, we can see that thelseis the unique generator abgh Becausé, ¢
anddf are faces oébcdf as can be seen from inspectiorFd. 4, its family of non-unique
generators i$abcdf}.I' = {bcd, bef'}.

Readily, the setacdeandacghiare uniquely generated leandi, respectively. Exami-
nation of the relatiomRin Fig. 3shows that any object with attribugamust have attributes
acdas well (there is only one, object 7); and similarly the single object, 4, with attribute
i also has attributeacgh We can similarly apply Theorem 4 to determine some of the
non-unique generators. For example,

Closed seZ Facesd, Generating setg.I' = {Z.y,}
abdf b,df bd, bf

abgh b, h bh

abcdf b,c,df bed, bef

abcgh b,c, gh beg, bch

acghi i i

abcdefghi bdef,defi,eghi,bfghi  be,bi,dg,dh,di,ef,eg,eh,ei, fg, fh, fi
That is,bd or bf impliesabdf, i impliesaeghi and any ofe, - - - fi imply Y.
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Sometimes, as iRigs. 1and2, we indicate the generating sets for the closed sets of the
lattice. It graphically portrays the implied inference relationship&ign 5we only indicate
a few of these generators by dashed structures growing diagonally to the upper left.
Figs. 2and5 have a superficial semblance; hp and ¢, are very different closure
operators. This is most easily seen if we regard the binary reld®iams a bipartite graph
onN =X UY.ThenX.R = X.nandY.R~1 = Y.5y. Thus we see that

x'eX.p, it x'ihcC U x.1,
xeX

while

x'eXpp if X2 ﬂ x.1.
xeX
Neighborhood domination closure,, on bipartite graphs such as this one is seldom inter-
esting; and relational closure,, on general networks is seldom informative either.

We are much more accustomed to having implications associated with attributes and
propositions than with objects. Consequently, the preceding discussion becomes more in-
teresting if we regari as a set of specific objects;} and we associate propositions about
those objects with the elementsYofGanter and Willg6] actually derived the relatioR
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from a set of objects discussed in an educational film “Living Beings and Water” and the
properties attributed to them in that film. Here the 8 objects wkre (1)leech (2) bream

(3) frog, (4) dog, (5) spike-weed(6) reed (7) beanand (8)maize respectively. Their prop-
erties, denoted bg throughi, were (a)needs water to livg(b) lives in water (c) lives on

land, (d) needs chlorophyl to prepare fop¢e) two little leaves grow on germinatingf)

one little leaf grows on germinatingg) can move abouih) has limbsand (i) suckles its
offspring

Now, some of the implications indicated above make intuitive sense. In this world, all
objectso “need water to live” (a), saP, (o) is a tautology, whereP, (o) is interpreted
as the predicate “objea has attribute/propertg”. If an object “lives in water ) and
germinates with one leaf)( then P, (0) A Pr(0) — Pa(0) = “needs chlorophyl”, and so
on. Consequently, Theorem 4 introduces implication cloglirginto the formal concept
structure in a very natural way.

If the closure system is antimatroid, allimplications are of the f®im P, A- - - P, — Q
where the precedent is a Horn clause. When the closure system is not uniquely generated,
disjunctive precedents, such@3, A Py) v (P, A Py) — Py A Py A Py A Py, are possible.

The advantages of inference systems based only on Horn clauses are well[&holitrey
make implicit use of the antimatroid properties of the implication closure giage

In this universe, no object exhibits all the attributésdef ghi, so it represents a logical
contradictiorover this universeSo too, the 12 generating pais(o) A P.(0), ..., Pr(0) A
P;(0), must each be logical contradictions because they gersvatiefghiand because no
object these pairs of attributes. This can be also intuitively determined by inspection of the
attributes themselves.

Application of Theorem 4 has introduced an easy way of associating a formal concept
lattice with a system of implications in whidhI” denotes the (possibly disjunctive set of)
premises and’.¢ denotes the transitive closure of those premises. Because these logical
implications are valid only in the specific context denoted by the lattice, they may be far
richer, more varied, and informative than a logic based on universal satisfiability.

Antimatroid closure spaces, or convex geometries, are important mathematical systems
with delightful properties. But, even closure spaces that are not uniquely generated can be
useful as well.
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