
Logical Implication and Causal Dependency

John L. Pfaltz,

Dept. of Computer Science, Univ. of Virginia
Charlottesville, VA 22904-4740

jlp@virginia.edu

Abstract. Suppose that whenever event x occurs, a second event y must subsequently occur.
We say that x “causes” y, or y is causally dependent on x. Deterministic causality abounds in
software where execution of one routine can necessarily force execution of a subsequent sub-
routine. Discovery of such causal dependencies can be an important step to understanding the
structure of undocumented, legacy code.
In this paper we describe a methodology based on formal concept analysis that first uncov-
ers necessary logical implications between software events, and then extracts possible causal
dependencies from execution trace streams. We provide an example of its potential by apply-
ing our method to 1,227 threads involving 498,489 executed events that were monitored in a
well-known open source middleware system.

1 Introduction

Since its first application as “concept analysis” [18], Galois closure [9] has proven to be a valuable
tool for the investigation of various phenomena. Many examples can be found in Formal Concept

Analysis [3] and the reader is assumed to be familiar with this fundamental work. Our past interest
in Galois closure and concept analysis has been its ability to extract logical implications in observed
data. But, until now we had only been concerned with biological applications [12, 13]. Our goal in
this research has been to use concept analysis to discover likely causal dependencies in software from
execution traces without requiring any a priori semantic information.

To our knowledge the first effort to apply closure concepts to software engineering was by Gregor
Snelting who used formal concept analysis to analyze legacy code [8, 15]. Siff and Reps [14] published
shortly after. Snelting’s goal was to reconstruct the overall system structure by determining which
variables (columns) were accessed by which modules (rows). It was hoped that the concept structure
would become visually apparent as it does in all of Ganter and Wille’s examples [3]. Unfortunately,
the resulting concept lattice shown on page 356 of [8] is little more than a black blob. Visual
interpretation of closure concepts does not seem to scale well. In [1], Ball specifically proposes using
concept analysis to establish the relationship between individual test runs and procedure executions
in a red-black tree retrieval system. However, Ball does not seem to have done any further work
on this concept based approach to dynamic software analysis. The conclusion we will draw in this
paper is that concept based software analysis has considerable promise, much of which is as yet
unexplored.

2 Discrete Deterministic Data Mining

The first step in our analysis of software execution employs the discrete deterministic data mining
(DDDM) system we have developed at the Univ. of Virginia. As described in [12, 13] this system
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extracts all the logical dependencies between attributes, or properties, of observed objects as recorded
in a binary relation R ⊆ T ×E, where E denotes a collection of software events and T is a collection
of execution traces. We let L denote the concept lattice generated by R. Each “concept” of L is a
set of events that is closed with respect to the Galois closure of R. Let Z be a closed set. A subset
X ⊆ Z is said to be a generator of Z, if Z is the closure of X . Our interest is in minimal generators,
that is those generating sets X for which no subset X ′ ⊂ X generates Z. Each closed set, together
with its generator(s) then determines a logical dependency. More specifically, if a subset {ac} is a
generator of the closed set {abcdef} of events then, as shown in [12], {ac} logically implies {abcdef},
as well as any subset of {abcdef}. The dependency, or implication, can be expressed in first-order
notation as

(∀t ∈ T )[a(t) ∧ c(t) → a(t) ∧ b(t) ∧ c(t) ∧ d(t) ∧ e(t) ∧ f(t)] (1)

where a(t) means that a occurs somewhere in trace t, that is (t, a) ∈ R or, loosely speaking, a ∈ t.
Letting concatenation denote conjunction and suppressing the universal quantifier, we abbreviate
(1) as simply

ac → abcdef

Suppose bc is also a generator of abcdef , then we would have
bc → abcdef

or
ac ∨ bc → abcdef

These expressions implicitly indicate that the closed set {abcdef} has two generators.
In contrast to more common statistical data mining where item associations often occur, the data

mining performed by the DDDM system is deterministic because these implications always occur
— at least in all observations so far. We sometimes call this closed set data mining to distinguish
it from more customary apriori, or frequent set, data mining which yields statistical associations
between the attributes, properties, or items.

We say that the DDDM approach is discrete because the universal quantification can only be
over the finite domain T comprising the relation R.

The DDDM system constructs the concept lattice L incrementally in a manner that was first
described by Godin and Missaoui in [4–6] and refined a bit more in [16, 17]. Incremental construction
of the concept lattice facilitates the incorporation of new data into an existing set of formal concepts
without rereading the earlier data. The actual implementation of our system is more fully described
in [13].

3 Trace Data

To test this approach, the author used trace data generated by JBoss software. Jboss is an open
source, professional middleware company which is accessible through www.jboss.com. All of the
method entrance events of the transaction management module in JBoss 1.4.2 were instrumented
by my colleagues, Jinlin Yang and David Evans. They then ran the entire JBoss regression test
suite to collect the traces [19]. A small sample of this trace data from a single thread is shown below
in Figure 1.

By an “event” in these traces we mean the invocation of a method. In other traces the notion
of an event could be expanded, for example to include two variables becoming equal. But that fine
level of granularity was not captured in the raw data given to us. Preprocessing consists of scanning
each event in each of the 1,227 traces; and, if new, assigning it an identifying integer. The integers to
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3 TxManager.getTransaction()Ljavax/transaction/Transaction;

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

4 TxUtils.isActive(Ljavax/transaction/Transaction;)Z

1 TxManager.getStatus()I

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

1 TxManager.getStatus()I

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

3 TxManager.getTransaction()Ljavax/transaction/Transaction;

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

4 TxUtils.isActive(Ljavax/transaction/Transaction;)Z

5 TxManager.suspend()Ljavax/transaction/Transaction;

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

1 TxManager.getStatus()I

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

1 TxManager.getStatus()I

2 TxManager.getThreadInfo()Lorg/jboss/tm/TxManager$ThreadInfo;

3 TxManager.getTransaction()Ljavax/transaction/Transaction;

Fig. 1. A representative fragment of an event sequence

the left in Figure 1 are representative. This preprocessing has several benefits. First, it insures that
the closed sets are extracted without using any embedded semantic information. Second, it permits
us to represent a set of events as a set of integers, which we will see has definite display benefits.
Third, because identifying integers are assigned in sequence as methods/events are scanned we have
an interesting artifact in which related events often appear as a number sequence. Our programs
make no use of this artifact, but human inspection can reveal interesting structures that are not
uncovered by the Galois closure itself.

The trace fragment of Figure 1 would be perceived by our DDDM software to be

. . . 3 2 4 1 2 1 2 3 2 4 5 2 1 2 1 2 3 . . . (2)

From now on we consider only discrete integer representations. We observe that many methods are
repeated in definite patterns. A method for describing these repeating patterns can be found in [19].
However, our analysis is set based. All we can assert is that methods {1,2,3,4,5} all occur somewhere
in this trace.

We analyzed 1,227 trace sequences consisting of 498,489 events of which 144 were distinct. The
shortest trace consisted of no more than 6 events; the longest trace involved 1,405 events.

Given this data our DDDM software creates a concept lattice L with 1,805 closed concepts. No
attempt to draw this lattice could be meaningful. We have the same problem as Lindig and Snelting.
But later a fragment will be displayed in Figure 4. A smaller, synthetic example consisting of just
57 events in 8 thread sequences can be found in [11]. In that case a concept lattice of only 29 closed
event sets, which is easy to comprehend, was generated.

4 Logical Implication

Section 2 gave us a quick sketch of how closed sets and their generators correspond to logical
implication. In this section we expand on this theme.
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Two representative concepts from the printed version of the concept lattice generated by our
DDDM system are shown in Figure 2. The first “attribute” line enumerates the closed set of at-

concept #445:

attribute--> {2, 3, 13, 14, 17, 18, 19, 20, 21, 22, 23}

object--> << 1,100 >>

generators--> {{17}, {20}, {21}, {22}, {23}, {2, 18}, {3, 18},

{13, 18}, {14, 18}, {2, 19}, {3, 19}, {13, 19}, {14, 19}}

downpointers--> {446, 1744}

concept #448:

attribute--> {2, 3, 13, 14, 17, 18, 19, 20, 21, 22, 23,

50, 53, 54, 55, 58, 59, 61}

object--> << 1,098 >>

generators--> {{50}, {53}, {54}, {55}, {58}, {61},

{2, 59}, {3, 59}, {13, 59}, {14, 59}, {17, 59},

{20, 59}, {21, 59}, {22, 59}, {23, 59}}

downpointers--> {445, 1743}

Fig. 2. Two concepts from the printed output of the DDDM system.

tributes/events comprising the concept. The second “object” line enumerates the objects supporting
the concept. (When we coded this print procedure we were analyzing closed sets of attributes, or
properties, associated with objects.) The set of supporting object/trace sequences is a closed set in
the object/trace domain. This dualism is well explained in [3]. To save space in this figure, we have
replaced the actual enumeration of the 1,100 associated trace sequences of concept #445, and the
1,098 of concept #448 with their cardinalities.

The attribute/event “generators” of the concept are enumerated on the third line. Observe that
events 17, 20, 21, 22, 23 are each, by themselves, generators of the closed set of #445. This means
that if event 17 appears anywhere in the trace then all the events of the closed set must also occur in
the trace. As explained in [13], because the closure operator is the Galois closure we can express the
generation relationship as a logical expression < generator > → < closed set >. Or more formally,

(∀t ∈ T )[17(t) → 2(t)∧ 3(t) ∧ . . .∧ 22(t)∧ 23(t)
where as before 17(t) is interpreted to mean that event 17 occurs in trace t, or 17 ∈ t. Since the same
can be said for event 20, or event 21, a more comprehensive logical implication based on concept
#445 would be

(∀t ∈ T )[17(t)∨ 20(t)∨ 21(t)∨ 22(t) ∨ 23(t) → 2(t) ∧ 3(t) ∧ . . . ∧ 22(t)∧ 23(t)
The presence of any of these generating events in a trace ensures the presence of all of the events in
the closed set.

There are more entries in the generating set of concept #445. The set {2,18} is designated as a
generator, that is, if event 2 and event 18 both occur in a trace, then all of the events of the closed
set must be present as well. The corresponding logical expression is

(∀t ∈ T )[2(t)∧ 18(t) → 2(t) ∧ 3(t)∧ . . .∧ 22(t)∧ 23(t)
But, if we want a single logical expression relating all generators of the concept to the closed set we
get
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(∀t ∈ T )[17(t)∨ . . .∨ 23(t)∨ (2(t) ∧ 18(t))∨ . . .∨ (3(t) ∧ 19(t)) → 2(t) ∧ 3(t) ∧ . . .∧ 22(t)∧ 23(t)
We can simplify the preceeding expression slightly by using concatenation to denote the logical and

and eliding the universal quantification, to get
17∨ 18∨ . . . ∨ 23∨ (2, 18)∨ . . . ∨ (3, 19) → 2, 3, 13, 14, 17, 18, 19, 20, 21, 22, 23

But, this is still unwieldy. For example concept #272 has 1,435 disjunctive generators, some of which
consist of as many as 4 conjunctive events.

One does not interpret these concept structures by eye! One does not try to draw an entire
concept lattice.

For this paper, we will consider only closed event sets which have a singleton (event) generator.
So we use a short procedure to traverse through the entire concept lattice and output the 66 closed
concepts that have at least one singleton generator. A somewhat condensed version of its output
is shown below. In particular, whenever possible we denote sets of 3 or more consecutive integers
(event identifiers) by two dots. Here we have flagged with a * those concepts referenced elsewhere
in this paper.

support singleton
concept size generators closed set

210 1,034 {1} -> {1,2,3}
837 1,160 {2} -> {2}
211 1,158 {3} -> {2,3}

250 977 {4} -> {2,3,4}
836 1,143 {5} -> {2,5}

273 3 {6} -> {1..6}
118 3 {7} -> {1..5,7}
40 3 {8} -> {1..5,8}

1789 2 {9} -> {1..6,8,9}
1 1 {10,11} -> {1..11}

1733 1,099 {12,15,16,24} -> {2,3,12..24}
* 446 1,130 {13,14} -> {2,3,13,14}

* 445 1,100 {17,20,21..23} -> {2,3,13,14,17..23}
* 1744 1,103 {18,19} -> {18,19}

251 966 {25..32} -> {2,3,5,12..32,56,57}

389 938 {33} -> {1..3,5,12..40,56,57}
392 1,057 {34} -> {1..3,5,12..32,34..38,56,57}

* 391 962 {35,36,37,38} -> {2,3,5,12..32,35..38,56,57}
* 444 975 {39,40} -> {2,3,13..23,39,40}

443 977 {41,42,43,44} -> {2,3,13,14,17..23,40..44}

1735 863 {45} -> {2,3,12..24,45}
945 852 {46} -> {2,3,5,12..24,46..51,53..55,58..64}

458 1,077 {47..49,51,60,62} -> {2,3,13..23,47..51,53..55,58..61}
* 448 1,098 {50,53..55,58,61} -> {2,3,13,14,17..23,50,53..55,58,59,61}

* 455 960 {52} -> {2,3,5,13..23,39..44,47..55,58..62}
53 1,091 {56,57} -> {2,3,5,12..24,56,57}

* 1743 1,101 {59} -> {18,19,59}

* 449 865 {63,64} -> {2,3,13..23,50,53..55,58,59,61,63,64}
* 74 167 {65} -> {2,3,5,12..24,65}

* 375 28 {66} -> {2,3,5,12..24,39,40,50,53..59,61,66,67,69..72}
* 150 96 {67} -> {2,3,5,12..24,50,53..59,61,67,69..71}

* 1754 28 {68} -> {2,3,5,12..24,50,53..59,61,65,68..72}
* 279 100 {69} -> {2,3,5,12..24,50,53..59,61,69..71}
* 452 101 {70} -> {2,3,5,12..24,50,53..59,61,70}

581 102 {71} -> {2,3,5,12..24,50,53..59,61,71}
583 101 {72} -> {2,3,5,12..24,50,53..59,61,71,72}

* 1745 65 {73,74,75} -> {18,19,59,73..75}
37 167 {76} -> {76}

1528 39 {77} -> {1..3,5,12..24,39..44,47..51,53..62,77}

966 252 {78} -> {2,3,5,12..24,78,79}
967 231 {79} -> {2,3,5,12..24,79}

358 157 {80} -> {80}
1181 61 {81} -> {1..5,12..45,50,53..59,61,78,79,81}

232 17 {82} -> {82}
1746 7 {83} -> {18,19,59,73..75,83}
725 3 {84,117,118} -> {1..5,12..32,35..45,47..51,53..62,71..75,78,79,83,84,101,114..118}
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833 5 {85} -> {76,80,85}

575 62 {86,87,88} -> {1..5,12..32,35..45,47..51,53..64,76,78..80,82,86..88}
* 272 1 {89} -> {1..6,12..45,47..51,53..65,68..72,76,78..80,82,86..100}

823 2 {90..100} -> {2,3,5,12..24,45,47..51,53..65,68..72,76,79,80,90..100}
1283 3 {95,96,99} -> {2,3,5,1224,45,47..51,53..62,65,76,79,80,95,96,99}
731 8 {101} -> {1..5,12..32,35..40,47..51,53..62,78,79,101}

439 1 {102,103,105..112} -> {2,3,13..23,39..44,47..55,59..64,70,76,102..112}
1748 5 {104} -> {104}

* 499 1 {113} -> {1..5,12..32,35..64,73..76,78..80,82,86..88,113}
1618 4 {114..116} -> {1..3,5,12..24,39..44,47..51,53..62,71..75,83,114..116}
1802 2 {119} -> {2,3,5,12..24,45..51,53..64,76,80,119}

764 1 {120} -> {2,3,5,12..24,45..51,53..65,68..72,76,79,80,90..100,119,120}
1274 1 {121} -> {1..5,12..45,47..62,65,73..76,78..80,95,06,99,121}

1508 1 {122} -> {1..3,5,12..24,39..44,46..65,67..77,83,114..116,122}
1676 3 {123..125} -> {1..3,5,12..24,47..51,53..62,76,78,79,123..126}

1804 4 {126} -> {1..3,5,12..24,47..51,53..62,76,126}
1742 3 {127..129} -> {18,19,59,73..75,83,127..129}
1747 4 {130,131} -> {104,130,131}

* 1749 4 {132} -> {132}
1788 1 {133..144} -> {1..6,8,9,12..64,76,80,82,85,133..144}

Fig. 3. Concepts with singleton generators.

In just the 66 concepts shown in Figure 3 there are interesting patterns emerging. Some concepts are
supported by observations in hundreds of trace sequences; others may occur in only one trace. Some,
such as #1749: {132} → {132}, are obviously trivial. There are an unusual number of “consecutive”
generating events. We will discuss this phenomena in some depth in Section 6. Finally, each of the
144 different event types found in these traces by itself generates a closed set. This is surprising; it
is not true in other sets of trace data we have used. We do not know if this is somehow significant
or just an accidental artifact.

A very small (and manageable) subset of the entire concept lattice L involving a few of these
singly generated concepts is shown in Figure 4. The last “downpointer” line of Figure 2, which
enumerates the concepts covered by any specific concept was used to hand draw this fragment. In

#1745: {18,19,59,73..75} #448:  {2,3,13,14,17..23,50,53..55,58,59,61} #444:  {2,3,13..23,39,40}

#1743: {18,19,59}

#1744:  {18,19} #446:  {2,3,13,14}

59

865

#445:  {2,3,13,14,17..23}

#449: {2,3,13,14,17..23,50,53..55,58,59,61,63,64}

73..75

50,53..55,58,

59,61 15,39,40

2,3,13,14,

17,20..23
17..23

65 1,098 975

1,100

1,1301,103

1,101

2,3,13,17,

50,

20..23,

53..55,58,61

63,64

Fig. 4. A fragment of the 1,805 concepts comprising L.
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Figure 4, the events in the closed set have been enumerated. We have not indicated which events
are singleton generators, but the concept numbers provide a link back to the listing of concepts with
singleton generators in Figure 3. Below, and to the right, of each concept in Figure 4 we show the
number of supporting traces. Because this is a dual representation to those concept lattices found
in [3], these support numbers must be monotonically increasing as one descends through the lattice;
just as the closed set cardinality must be monotonically decreasing.

If a closed set Z of events covers the closed sets {Yi} then beside each edge in Figure 4 we
have shown the “closed set difference” ∆Z,Yi

= Z−Yi, consisting of all events in Z but not in Yi.
Closed set differences are seldom indicated in concept lattice figures, but they are fundamental to
our method of incrementally determining generating sets. Consider the collection of all generating
sets, Z.γk of Z. Let the closed set Z cover the closed sets Yi in L. As first proven in [7], X ⊆ Z is
a generator of Z if and only if (∀i)X ∩ Z−Yi 6= Ø, that is at least one event of every difference set,
∆Z,Yi

is represented in X . The set X is a minimal generator if no proper subset of X is a generator.
The reader is encouraged to verify this theorem using the concepts of Figure 2 and Figure 4. In
particular, why is {17} a generator of concept #445, but not {18}? Why is {2, 19} a generator?

5 Causal Dependency

Let S = {sk} be a collection of ordered sequences of integers, events, or whatever.1 By i <k j

we mean that event i preceded event j in sequence k. If the sk can be ordered sequences with
repetition, then by i <k j we mean that an instance of i precedes the first instance of j. We say
that i dominates j in S if i <k j, in all sk ∈ S where both occur. Because of the universal quantifier
in the definition of domination it is much easier, given actual sequences, to discover pairs i, j where
i cannot dominate j because in some sequence j <k i.

As our DDDM software reads each trace sequence, tk, to incrementally construct the lattice
of closed event sets, it also checks for non-domination. If an event j is found to precede the first
occurrence of event i in some trace, tk, then i cannot dominate j and cant dominate[i, j] is set
to true (1). A portion of this 144 × 144 array, cant dominate, is shown in Figure 5. It plays a key
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01

8
1

6
1

7
1

Fig. 5. A small portion of the cant dominate array.

role in our post processing to extract causal dependencies.
Logical implication is not equivalent to causal dependency. The accepted concept of “causal-

ity” involves time, whereas logic does not. If an event, such as 65 in concept #74, is the genera-
tor/precedent then we expect that this concept must precede the occurrence of the events {2, 3, 5, 12,

1 A more precise definition of a sequence sk can be framed as a function sk : [1, . . . , m] → [1, . . . , n] where
m denotes the length of the sequence, or trace, and n denotes the number of distinct events.
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..., 24} of the closed consequent in order to say that 65 “causes” these events as a consequence. But
inspection of each of the 167 trace sequences supporting concept #74 reveals instances where each
of these other operator events precede the first occurrence of event 65. Event 65 does not dominate
any of these other events.

Only if an event j never precedes the first occurrence of event i in any trace can we assume that
a logical implication i → j can be rewritten as a plausible causal dependency, which we denote
by i ⇒ j. We observe that if i → j, then in every trace sequence where i occurs, j must also
occur; and if j never occurs before i in any trace, then an instance of i must occur before the first
instance of j in every trace where i occurs. It is important to note that i ⇒ j is only a plausible
causal dependency. We cannot establish that event i actually causes event j to occur. We can only
establish that they satisfy the necessary conditions for “causality”. We will discuss this further in
Section 6.

We now examine concepts #375, #150, #1754, #279 and #452 of Figure 3 with singleton
generators {66}, {67}, {68}, {69}, {70} respectively. Our question is whether any of these correspond
to functional dependencies. Consider, for example, #375: {66} → {2, 3, 5, 12, ..., 24, 50, 53, ..., 59,
61, 67, 69, 70, 71}. Although not illustrated in Figure 5, all events 2 through 59 of the closed set
precede 66 in at at least one trace. Referring to Figure 5, we see that events 61, 71 and 72 also
precede 66 in at least one trace, while 67, 69 and 70 do not. So a plausible functional dependency is

{66} ⇒ {67, 69, 70}
Using a similar analysis we see that

{68} ⇒ {67, 70, 71, 72}
{69} ⇒ {70}

while the singleton events {65}, {67}, {70} as shown by the evidence of Figure 5 cannot functionally
determine any other events in the closed sets that they logically imply.

In Figure 6, we summarize all of the causal dependencies that can be inferred from the logical
implications of Figure 3 and the cant dominate array.

6 Observations and Conclusions

The technique described in the preceding sections has four distinct steps. It: (1) identifies software
events of interest; (2) extracts them from trace data to form a relation R ⊆ T × E; (3) creates a
concept lattice LR embodying a number of logical implications of the form < generator > → <

closed concept >; and (4) retains only those implications for which the < generator > precedes
the remainder of the consequent < concept > in all supporting trace sequences in T . This approach
works. But, there are still a number of issues to be considered.

First, the prior identification of software events of interest can be awkward. If the events denote
entrance, and/or exit, from modules, methods or other bodies of code as in Ball [1] and in this
paper, then this step is fairly straight forward. But, there are other kinds of “events” that are of
interest in software analysis. Prime examples are “conditions” such as “x + y > 100 ∗ z”. Typically
such conditions form the basis of triggers, or guards. Uncovering the various relationships between
conditions and the events they may trigger is a key to finding the “likely invariants” that describe
a body of software [1, 2, 10].

Michael Ernst, in particular, has been a leader in identifying likely invariants from dynamic trace
data [2, 10]. Causal dependencies are a form of software invariant. So, this paper can be considered
to be an extension of his work. But, neither Ernst nor we know how to discover what conditional
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support

concept size causal dependencies (possible)

1733 1,099 {12} => {13...24}
445 1,100 {17} => {22,23}

{20} => {21...23}
{21} => {22,23}

251 966 {25} => {26} => {27} => {28} => {29}

{28} => {30} => {31} => {32} (Note: {29} /=> {30...32})
391 962 {35} => {36} => {37} => {38}

444 975 {39} => {40}
443 977 {41} => {42} => {43} => {44}
945 852 {46} => {47,48,49,60,62}

458 1,077 {47} => {48} => {49} => {51} => {60} => {62}
448 1,098 {50} => {53} => {54} => {55} => {58} => {61}

53 1,091 {56} => {57}
449 865 {63} => {64}

375 28 {66} => {67,69,70}
1754 28 {68} => {69,70,71,72}
279 100 {69} => {70}

1745 65 {73} => {74} => {75}
966 252 {78} => {79}

725 3 {84} => {117} => {118}
575 62 {86} => {87} => {88} => {25...44,45,63}
272 1 {89} => {33,34,90...100)

823 2 {90} => {91}=>{92}=>{93}=>{94}=>{97}=>{98}=>{100}
1283 3 {95} => {96} => {99} => {65}

439 1 {102}=> {103}=>{106}=>{107}=>{108}=>{109}=>{110}=>{111}=>112}
499 1 {113}=> {46...63,78,79}

1618 4 {114}=> {115} => {116} => {83}
1802 2 {119}=> {23...51,55...58,60...64}
764 1 {120}=> {46...55,58...64,68...72,91...100}

1274 1 {121}=> {35...45,52,65,95...99}
1508 1 {122}=> {83}

1676 3 {123}=> {124} => {125} => {1,2,3,5,12...24,47...51,53...62,78,79}
1804 4 {126}=> {1,2,3,5,12...24,47...51,53...58,60,61,62)

1742 3 {127}=> {18,73...75,83,128}
{128}=> {59,129}
{129}=> {19}

1747 4 {130}=> {131}
1788 1 {133}=> {134}=>{135}=>{136}=>{137}=>{138}=>{139}=>{140}=>{141}=>{142}

{142}=> {1...6,8,9,12...58,60...64,80,82,119,143,144}
{143}=> {1...6,8,9,12...58,60...64,80,144}
{144}=> {1...6,8,9,12...58,60...64}

Fig. 6. Possible causal dependencies.

relationships might participate in a likely software invariant without first identifying them a priori.
It is a significant outstanding problem that we are currently investigating.

Second, given a set of causal dependencies such as Figure 6 we would like to be able to reason
about them. Some rules, such as the transitive law, if x ⇒ y and y ⇒ z then x ⇒ z remain true in
a causal logic. But others do not. For example, it is easy to show in a first-order logic that if a → x

and b → y then ab → xy. Such rules of inference are common place. But, they need not be valid in
causal dependence. One can easily construct examples where a ⇒ x and b ⇒ y, yet ab 6⇒ xy because
a does not dominate y or b does not dominate x.

Similarly, in first-order logic it is customary to declare x and y to be equivalent, x ≡ y if x → y

and y → x. However, a concept of causal equivalence in which x causes y and y causes x does not
appear to make semantic sense. We consider the closed set #391 for which events 35, 36, 37, 38 are all
generators. Since each generates the same set, all are logically equivalent. But, they are not causally
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equivalent. It would appear in this case that the JBoss software employs a stack architecture in
which procedure 35 invokes 36 which invokes 37 and finally 38.

If x precedes y in at least one trace tk we say x < y. Readily, < is only a pre-order, since it
is transitive but not necessarily antisymmetric. If x < y then y cannot causally determine x. By
creating a cant dominate precedence relation such as Figure 5 in parallel with the concept lattice,
we can incrementally uncover likely causal dependencies on the fly with no need to re-examine earlier
trace data, or even to retain it. Of course, if we do not keep the original trace data we will then lose
the opportunity to look more carefully at any particular trace to see why this is, or is not, a case of
causal dependency.

But we wonder if a precedence relation such as Figure 5 can do more. Why not use an anti-
symmetric sub-relation to directly indicate causal dependencies? For example, we see in Figure 5
that 66 < 81 while 81 6< 66. Thus we know that event 66 precedes 81 in at least one trace, and
that 81 never precedes 66. This strict anti-symmetry is one property that we have postulated for
causal dependence. It is a necessary condition. But, it is not sufficient. Our understanding of causal
dependence 66 ⇒ 81 is that whenever event 66 occurs then 81 must also always ensue. But, in this
set of events 66 6→ 81. This second necessary condition whose logical expression is

(∀t ∈ T )[b(t) → [b(t) < a(t)]] (3)

seems to be a fundamental property of causal dependence that cannot be derived from simple
precedence relations.

This author believes that the key to discovering causal dependencies from observed software
behavior must make use of Galois closure, which is the basis of formal concept analysis. Only by
adopting a formal concept methodology can we derive a universal expression such as (3). It seems
to have been a key piece that has been missing in the search for “likely software invariants”.

Finally, we observe that our procedure still only reveals “likely” causal dependencies. Because
we find that a ⇒ x in the set T of trace data, we cannot literally say that the event a “causes” the
event x as a consequence. One can only base such a claim on examination of the code itself. But,
without having likely dependencies to specifically look for, such examination is extremely difficult;
and in the case of legacy systems without source code it is essentially impossible. Nevertheless, our
work can provide a mechanism for discovering “likely” dependencies.

The principles of formal concept analysis have an important application in software analysis and
software engineering.
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