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Abstract

We review a method of generating logical rules,
or axioms, from empirical data. This method, us-
ing closed set properties of formal concept analysis,
has been previously described and tested on rather
large sets of deterministic data.

The contribution of this paper is a completely
new extension of this method to create implications
involving numeric inequalities.

1 Rule Based Systems

Russell and Norvig assert that “the representa-
tion of knowledge, and reasoning processes that
bring knowledge to life, are central to the entire
field of artificial intelligence” (p. 194 [22]). Rea-
soning in turn is based on logical implication which
enables both forward and backward chaining tech-
niques. In this paper we introduce a somewhat un-
usual representation of both existential knowledge
and reasoning rules, that is logical implications,
about a closed world of which we have gained some
knowledge.

We assume a classical, deterministic world in
which inference steps, such asmodus ponens, are
valid.1 Our system does not actually make infer-
ences, but rather simply creates a set of consistent
axioms or rules or implications that can be sub-
sequently used by logic programs [10] employing
Prolog [6, 7]. Nor do we support multiple models,
as can be the case with stable set logic [17] or an-
swer set programs [3] using, for example A-Prolog

1It is evident that in many real life situations knowledge may
be probabilistic. In such a world, inference by Bayesian-like
rules is more appropriate. But, we are not prepared to engage
in such a world and deliberately ignore it.

[12]. There is only one model — that of which we
currently have partial knowledge. Our understand-
ing of this world consists of only that which we have
empirically observed, without anyapriori axioms.
Of course, we may have to change our operative
rules as our knowledge of the world expands — that
is the nature of learning. We demonstrate how this
occurs in Section 3.

By a rule Rk, we mean a logical implication
which we denote byP → C. That is, if the prece-
dentP is true, then the consequentC must be true.
(Some logicians prefer the symbolismP ⊃ C, sug-
gesting that the truth ofC is contained within the
truth ofP .) In this paper we will be using a simple
first-order predicate logic and we will develop im-
plication in disjunctive normal form, that is,P can
have the formP ≡ (p1 ∧ . . .∧ pm)∨ (pm+1 ∧ . . .∧
pn), while C will always be a conjunction of pred-
icates. We will normally denote conjunction (and)
by juxtaposition, as inp1p2p3p4, unless we want to
deliberately emphasize the conjunctive aspect.

Given this preamble, our goal is to create a rule-
based world view from the kinds of existential data
found in a typical relational database such as Fig-
ure 1. Here we have 8 objects, or observations,
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Figure 1. A relation R1 composed of 8
objects and 9 predicates.

1



each of which may, or may not, exhibit 9 different
properties, or predicates,a, . . . , i. Each row is an
existential assertion, and we can interpret the first
row asa(o1) ∧ b(o1) ∧ g(o1) or just abg(o1). By
the rule-based world view we meanall the possible
logical implications, or rulesRk, for which the ex-
istential world described by the database can be a
model. Thus the knowledge setK = {R1 . . . Rk}
must be consistent.

2 Logical Implication from Empirical
Observations

The notion of “closure” plays a major role in our
representation of the real world. In particular we
will be concerned with closed sets of objects, closed
sets of predicates and closed sets of numbers.

2.1 Closure Concepts

By a “closure system” over a “universe”U, we
mean a collectionC of setsX, Y, . . . Z ⊆ U satis-
fying the property that ifX, Y ∈ C thenX∩Y ∈ C.
The sets ofC are said to be the closed sets ofU. Al-
ternatively, one can define a closure operatorϕ on
U satisfying the following 3 axioms for allX, Y, Z:

X ⊆ X.ϕ,
X ⊆ Y impliesX.ϕ ⊆ Y.ϕ

X.ϕ.ϕ = X.ϕ.
(For technical reasons we prefer to use suffix op-
erator notation, so readX.ϕ asX closure.) Read-
ily, a setX is closed,i.e. in C, if X.ϕ = X . The
equivalence of these two alternative definitions is
well known [18], and we will use both in the fol-
lowing sections.

Closure systems can satisfy many other axioms,
and those that do give rise to different varieties of
mathematical systems. If(X ∪ Y ).ϕ = X.ϕ ∪ Y.ϕ

we sayϕ is a topological closure. If the system sat-
isfies the “exchange axiom”, that is ifp, q 6∈ X.ϕ

but q ∈ (X ∪ {p}).ϕ thenp ∈ (X ∪ {q}).ϕ, then
the system can be viewed as a kind of linear alge-
bra, or more generally a “matroid”. The Galois clo-
sure we will be using in this section satisfies neither
of these additional axioms. But later in Section 5,
we will be using “antimatroid” closure operators,
that is those which satisfiy the “anti-exchange ax-
iom” if p, q 6∈ X.ϕ and q ∈ (X ∪ {p}).ϕ then
p 6∈ (X ∪ {q}).ϕ .

2.2 Galois Closure and Concept Lat-
tices

The approach we will follow is similar to For-
mal Concept Analysis (or FCA) that was first de-
veloped by Rudolf Wille and is best presented in
[11]. FCA begins with a relationR between two
sets, say a setO of objects and a setP of object
predicates, or attributes. Using standard relational
terminology, each objectoj ∈ O can be regarded
as a row inR and each predicatepk ∈ P is a col-
umn. Each attributepk is a binary, logical property,
i.e. true or false. A conceptCn is a pair of subsets
Cn = (On, Pn) whereOn ⊆ O, Pn ⊆ P with the
propertyT that for everyoi ∈ On, everypk ∈ Pn is
true. Each concept is assumed to be maximal, that
is for the setOn there is no larger subsetP ′

n ⊃ Pn

satisfying propertyT , and forPn there is no larger
subsetO′

n ⊃ On satisfyingT .
The collectionC of all conceptsCn, so defined,

forms a closure system; that is, the intersection of
any two concepts inC is a concept. Consequently,
the collectionC of concepts forms a lattice when
partially ordered by containment with respect to the
predicate setsPn.2 If we start with the relationR1

of Section 1 we obtain the concept latticeL shown
as Figure 2. Each node is labelled with a closed set
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Figure 2. Concept lattice L corre-
sponding to Relation R1.

of predicates and a closed set of objects satisfying
those predicates, or properties. These two closed
sets constitute the concept pair. For example, the
combination of propertiesadf is found in rows, or
objects, 5, 6 and 8.

2Ganter and Wille [11] prefer to order with respect to object
set containment yielding the dual lattice.
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In the case of FCA, the closure operator is called
the Galois closure betweenO andP , and has been
well studied [5, 8] In this paper we emphasize the
closure aspect as denoted byϕ, rather than the con-
cept aspect developed in [11].

2.3 Closed Sets, Generators and
Logical Implication

LetC denote a closed set. Then there is some set
A ⊆ C such thatA.ϕ = C. If A is a minimal such
set, w.r.t. set inclusion, we call it a generator ofC

denoted byC.γ, or byA → C [18]. The latter sym-
bolism is not accidental. Ifϕ is a Galois closure,
then closed set generation and logical implication
are identical.

The issue now becomes: “given a lattice of
closed concepts, such as Figure 2(b), how does one
derive the generating sets?” For example, what is
the generator of the closed setacde in Figure 2(a)?
In [13] it is shown that “ifC coversCi in a closure
lattice3 thenC.γ ∩ (C−Ci) 6= Ø.” With this theo-
rem, one can construct the generator of any closed
setC as a combination of elementsei ∈ (C−Ci)
whereC coversCi in L. The nodeacde covers only
one nodeacd in the latticeL, so C−C1 = {e}.
Thus, using the result above we can show that the
generatoracde.γ = {e}, or e → acde. That this is
true is evident from Figure 2(a). Propertye is only
found in observation 7, wherea, c, andd were also
seen. So the propertye, in this case, trivially implies
propertiesa, c and d. With the result above, the
derivation of generating sets is an inexpensive, lo-
cal construction whose details can be found in [21].
The essence of this process is to find at least one el-
ement ofC which “cannot” be an element/predicate
of the covered setCi. We use this intuition to find
numeric generators in Section 5.

3 “Learning” New Rules

We hesitate to use the term “learning” because
of its many overtones. But, as we make new obser-
vations of our world they may either add to, or con-
tradict, existing rules — our knowledge base must
be changed. Here we should note that we assume
a static world, but one in which we are constantly
making new discoveries. Therefore, it is not equiv-
alent to what has been called “dynamic logic pro-
gramming” [2] in which the properties associated
with a single object can change as a result of agent
manipulation.

3C coversCi if we do not haveCi ⊂ C′
⊂ C, C′ closed.

Given an entire relationR, as in Figure 1, there
exist algorithms to construct its closed set latticeL;
however we find it preferable to constructL incre-
mentally, one row or observation, at a time. This is
certainly similar to real data acquisition.

By the nature of Galois closure each new row of
observed properties is closed. So it either already
exists as a node inL, or will constitute a new node.
First, one must find its location inL using set inclu-
sion in a search down from the top (or up from the
bottom) ofL. If the observation has no new proper-
ties and so already exists we simply increment the
set of occurrences. Otherwise, the new set of prop-
erties is inserted as a closed setC, covered by some
existing setC′, which is the smallest set containing
C. UsuallyC′ will be covering other closed setsCk

in L. Because of the intersection property of closed
set lattices described in Section 2.1, we must now
calculateC ∩ Ck for eachCk covered byC′. If
C ∩ Ck already exists inL, nothing more needs be
done; otherwiseC ∩ Ck must itself be recursively
entered intoL as well. This can create a recursive
cascade of insertions, but as noted in [19] this is for-
tunately rather rare.

In Figure 3 a new observation, labeled 9, has
been entered with the propertiesa, b and e. The
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Figure 3. Modified relation R (a) and
Resulting lattice L (b).

nodeabe has been entered intoLwhere it is covered
by the top node consisting of all attributes. Now we
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must check the intersection of this closed setabe

with all others covered by the top ofL. We have
abe∩abcdf = ab, abe∩acde = ae, abe∩acghi = a

andabe ∩ abcgh = ab. Of these, onlyae is new. It
must be recursively entered as indicated in Figure
3(b) by the dashed lines.

Becauseabe covers bothae and ab in L and
abe−ae = {b}, abe−ab = {e}, its generator must
be be. Of more interest is how the generator of
acde has changed. Initially we hade → acde

becauseacde only coveredacd. Now we have
ce ∨ de → acde becauseacde−acd = {e} and
acde−ae = {cd}. This can be more formally ex-
pressed as(∀o ∈ O)[(c(o)∧e(o))∨ (d(o)∧e(o) →
a(o) ∧ c(o) ∧ d(o) ∧ e(o)]. As more information is
entered the generators, or premises, of many closed
sets, or conclusions, are expanded. This is not un-
usual in knowledge acquisition. New examples may
generate exceptions to a general rule which are of-
ten conjunctively explained. Other rules, however,
may be simplified as inappropriate predicates are
pruned from the premise/generator.

Observation and new data can change our under-
standing of the world.

4 Two Real Life Examples

Does this approach actually work? This is a
reasonable question and the answer is “yes”. It
does; and we offer the two following working ex-
amples to demonstrate proof of concept given bi-
nary true/false predicates.

4.1 The MUSHROOM Database

Using precisely the mechanisms described in the
preceding section, we took as input the physical
properties of 8,124 different mushrooms as given
in the “The Audubon Society Field Guide to North
American Mushrooms” [14]. Figure 4 illustrates
representative values of the first 6 (of 22) attributes
used to characterize mushrooms in [14]. Each at-
tribute was encoded as one, or more, separate pred-
icates. For example, we have the predicatese0 for
“edible”,p0 for “poisonous”,a6 for “attached gill”
andn6 for “notched attachment”. Encoded this way
the attributes of Figure 4 yield 42 effective predi-
cates.4 The lattice generated by the8, 124 × 42 re-
lation R consists of 2,641 closed concepts5; and,

4Encoding all 22 physical attributes yields 85 distinct predi-
cates.

5The entire8, 124 × 85 relation R generates a lattice of
104,104 closed concepts.

Attr-0  edibility:

attr-1  cap shape:
  e=edible, p=poisonous 

  b=bell, c=conical, f=flat, k=knobed, s=sunken,
x=convex

attr-2  cap surface:
  f=fibrous, g=grooved, s=smooth, y=scaly
attr-3  cap color:
  b=buff, c=cinnamon, e=red, g=gray, n=brown,
p=pink, r=green, u=purple, w=white, y=yellow 

  t=bruises, f=doesn’t bruise
attr-5  odor: 
  a=almond, c=creosote, f=foul, l=anise, m=musty,

attr-4  bruises?:

  n=none, p=pungent, s=spicy, y=fishy

  a=attached, d=descending, f=free, n=notched
attr-6  gill attachment:

Figure 4. The first 6 attributes of the
MUSHROOM data set, with nominal val-
ues.

because some concepts have multiple generators,
3,773 distinct implications, or rules.

To provide some sense of this data set we list
in Figure 5 a few of those rulesP → C in which
a singleton predicateP impliesp0, or poisonous.
We have added the concept number to the left to

1597 s5  ->  p0, f4, f6
1687 y5  ->  p0, f4, f6

2562 c1  ->  p0, n5, f6
2022 m5  ->  p0, y2, f4

1401 g2  ->  p0, w3, t4, n5
924 f5  ->  p0, f6
668 c5  ->  p0, x1, f4, f6

IMPLICATIONCONCEPT

 576
 576

   4
  36

   4
2160
 192

SUPPORT

Figure 5. All implications in MUSHROOM

with |P | = 1 and p0 ∈ C.

indicate where this rule was uncovered in the ob-
servations and the number of times the implications
has been observed, or its support, to the right.

Are there simple combinations of attributes that
also denote poisonous? Figure 6 illustrates those
non-trivial conjunctive implicationsP → C for
which |P | = 2 andp0 ∈ C.

A more detailed description of this application
can be found in [21].

4.2 Analysis of Software Trace Data

An important concept in science is that of deter-
ministic causality in which the occurrence of some
event, or conjunction of events, must necessarily
“cause” a consequent event. Indeed, this was the
holy grail of Newtonian physics and much of19th

century science. “Causality” implies necessity, or
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1495    b1, b3 -> p0, t4, n5, f6
1567    b1, p3 -> p0, t4, n5, f6
2081    y3, n5 -> p0, f4, f6

2181    y2, a6 -> p0, f4, m5
2372    c3, a6 -> p0, y2, f4, m5
2470    e3, a6 -> p0, y2, f4, m5
2561    c1, y3 -> p0, y2, f4, n5 
2561    c1, f4 -> p0, y2, y3, n5
2563    c1, y2 -> p0, n5, f6

2177    e3, f4 -> p0

 696    f2, p3 -> p0, x1, f4, c5
 667    p3, f4 -> p0, x1, c5, f6

CONCEPT IMPLICATION

  12
  12
  24
 876
  18
   6
   6
   2
   2
   3

  32
  64

SUPPORT

Figure 6. Rules with two predicate
precedents that denote poisonous
mushrooms.

logical implication. But, it also assumes a tempo-
ral aspect. The consequent event must temporally
follow all assumed antecedent events. One arena
where we expect deterministic causality is software
execution. It is a reasonable place to test our ideas.

The application of FCA to re-engineering of
legacy software has been explored by others [4, 15].
They used closed concepts to reveal significant clus-
ters of code modules. Our interest instead has been
to uncover “likely” causal dependencies between
such modules.6 To do this we examined trace se-
quences of procedure invocations, which we regard
as events. (Each procedure invocation, or event, can
be assigned an integer identifier for easier display,
as in Figure 7.) The first step is to find which events
logically imply other events, that is, which events
ei, if they occur in a trace sequence, must imply the
occurrence of eventsek within the same sequence.
To do this we treat the occurrence of an event as if
it were an attribute of the sequence and create the
closure lattice as in Section 4.1.

As we noted above, logical implication denoted
by → need not mean deterministic causality, which
we will denote by⇒. If P → C then we can as-
sertP ⇒ C only if eachek ∈ C has been pre-
ceded in the trace by everyei ∈ P .7 Each trace
can be treated as a temporally ordered set. We are
then looking for events that temporally dominate
other events. The logic is simplified if we create
a singlen × n boolean arraycant dominate,
where(ek, ei) ∈ cant dominate if in any trace
the first occurrence ofei precedes anyek. This
cant dominate relation provides a filter that we
use to reduce the set of logical implications to a set

6Michael Ernst coined the term “likely” in his search for code
invariants [9]. It seems extremely appropriate here as well.

7Since events may occur multiple times in a trace, we actually
ensure that thefirst occurrence ofek is preceded by allei ∈ P .

of likely causal dependencies.
To test this approach on real trace data,

the author examined an open source, profes-
sional statistical package available fromJBoss at
www.jboss.com. All of the method entrance
events of the transaction management module in
JBoss 1.4.2 were instrumented by my colleagues,
Jinlin Yang and David Evans [25]. They then ran
the entireJBoss regression test suite to collect
1,227 trace sequences consisting of 498,489 events
of which 144 were distinct. By an “event” in these
traces we mean the invocation of a method. The
shortest trace consisted of only 6 events; the longest
involved 1,405 events.

The representation of these 1,272 trace se-
quences as a closed set lattice consisted of 1,804
nodes. For simplicity we extracted the 79 logical
implications that had only singleton antecedents,
similar to Figure 5. These we ran against the
cant dominate filter yielding 43 likely causal
dependencies. An even smaller subset of 17 of these
is shown in Figure 7. (From what we know of the

support
concept size causal dependencies (likely)

1733 1,099 {12}=>{13...24}
445 1,100 {17}=>{22,23}

{20}=>{21}=>{22,23}
251 966 {25}=>{26}=>{27}=>{28}=>{29}

{28}=>{30}=>{31}=>{32}
391 962 {35}=>{36}=>{37}=>{38}
443 977 {41}=>{42}=>{43}=>{44}
945 852 {46}=>{47,48,49,60,62}
458 1,077 {47}=>{48}=>{49}=>{51}=>{60}=>{62}
448 1,098 {50}=>{53}=>{54}=>{55}=>{58}=>{61}
53 1,091 {56}=>{57}
375 28 {66}=>{67,69,70}

1754 28 {68}=>{69,70,71,72}
1745 65 {73}=>{74}=>{75}
725 3 {84}=>{117}=>{118}
575 62 {86}=>{87}=>{88}=>{25...44,45,63}
272 1 {89}=>{33,34,90...100)

Figure 7. Some likely causal depen-
dencies.

JBoss system, without having the actual source
code, these all seem to be true dependencies.) More
details can be found in [20].

Although the creation of closed set lattices, as
described in section 2.3 and 3, together with the
real life examples of this section may seem impos-
sibly complex, this lattice structured representation
of data based on closed sets is really rather simple.
Precisely the same code (which is available from
the author) was used to represent both mushroom
attributes and software events. In both cases there
has been a clear “value added” by providing logi-
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cal rules that can provide the input for a subsequent
logical inference engine.c.f. [16].

5 Finding Implications with Numeric
Predicates

Formal Concept Analysis, as well as our devel-
opment to date, has been focused on binary pred-
icates. Either a predicatep is true for a given ob-
ject/observation, or it is not. However, much of our
understanding of the natural world is numeric. We
count and we measure.

Both Alberti et al. [1] and Simonset al. [23],
find it necessary to employ mathematical inequal-
ities to implement effective constraint logic pro-
gramming. The approach that we describe in this
section is based on inequalities, as well.Q2 learn-
ing is more ambitious. It seeks to discover quantita-
tive functional relationships between its variables;
but the qualitative aspect (its second “Q”) is also
couched in rules of inequalities [24].

It is perhaps worth noting that mathematical
functions constitute a compressed and highly effec-
tive notation for expressing a family of implications
of the form “if x equals ..., theny equals ...”. But
to discover such mathematical functions,Q2 and
most numerical data modelling procedures presume
knowledge of the independent (generating) and de-
pendent variables, together with an assumed depen-
dence structure, such as linear. Our approach does
not.

Every boolean algebra, or latticeL, is a closure
system becausex, y ∈ L impliesx∧ y ∈ L. In par-
ticular, any predicatep = 0 or 1 is a trivial boolean
algebra, or closure systemCp. Each element, 0 or
1, is its own generator. We achieve far greater ex-
pressive power if we let each predicatepk of an ob-
servational tuple(p1, . . . , pn) be the generator of
a closed set in a closure systemCk, whereCk can
be more complex than just{0, 1}. If each closure
systemCk is antimatroid, as defined in Section 2.1,
then every closed set has a unique generator [18].
Consequently, if the tuple of predicates(p1 . . . , pn)
is a tuple of unique generators, then(p1 . . . , pn) de-
notes a unique closed set in then-fold direct product
C1 . . . , Cn.

What are some examples of these generating
predicates? Consider the≤ operator on an ordered,
or partially ordered, set. In [18], it is shown that a
collection of principal ideals, that is sets of the form
{y : y ≤ z}, is a prototypical antimatroid closure
system withz the unique generator of the set. We

use this “down set” closure in the following devel-
opment.

It will be easier to understand the theory we are
about to develop if we first consider a concrete ex-
ample. Figure 8 has been shamelessly copied from
([11], p.44). It summarizes the ratings of 14 monu-
ments on theForum Romanum by different travel
guides. Here, B = Baedecker, G = Les Guides
Bleus, M = Michelin and P = Polyglott.
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1 2 1
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a

b

c

d

e

f

g

h

i

j

k

l

m

n

Arch of Septimus Severus

Arch of Titus

Basilica Julia

Basilica of Maxentius

Phocas column

Curia

House of the Vestals

Portico of Twelve Gods

Tempel of Antonius and Fausta

Temple of Castor and Pollux

Temple of Romulus

Temple of Saturn

Temple of Vespasian

Temple of Vesta

Figure 8. Ratings of Roman monu-
ments by 4 guide books.

The 14 numeric 4-tuples can be partially or-
dered in the usual way, that is(x1, x2, x3, x4) ≤
(y1, y2, y3, y4) if and only if xk ≤ yk, k = 1, . . . 4.
Figure 9, in which individual tuples have been pre-
fixed with a letter denoting the monument giving
rise to that tuple, illustrates this ordering. In order
to make it a closure lattice, whenever two tuples are
covered by a common tuple, their “intersection tu-
ple” has been entered into the order, as mandated
by the incremental growth algorithm of Section 3.
These intersection tuples have been underlined for
emphasis.

Consider the tuplen : (0, 2, 2, 1) which covers
the tuples(0, 1, 2, 1) and (0, 2, 2, 0) in L. Recall
from Section 2.3 that the generators of a set are de-
termined by the sets it covers. We claim that the
generators ofn : (0, 2, 2, 1) areG > 1 ∧ P > 0.
Moreover, we claim that the implication embodied
by this closed set is(G > 1 ∧ P > 0) → (M ≥
2∧B ≥ 0). First, verify that in Figure 8 this impli-
cation is in fact true, withj andn being confirming
instances.

The principle behind this derivation, which was
sketched in Section 2.3 and rigorously proven for
sets in [13], is to show “what constitutes the differ-
ence between this closed set and the closed sets it
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(1, 1, 2, 1)(0, 2, 2, 1) (1, 2, 2, 0)

(0, 2, 2, 0)(0, 1, 2, 1) (1, 1, 2, 0)

(0, 1, 1, 1) (0, 1, 2, 0)(0, 0, 2, 1)

(0, 0, 1, 1) (0, 0, 2, 0) (0, 1, 1, 0)

(0, 0, 0, 1) (0, 0, 1, 0) (0, 1, 0, 0) (1, 0, 0, 0)

(1, 2, 3, 1)

(1, 1, 3, 1)

m:

f:

l: h:

c,g: k: d:

e:

n: a:

i:

j:

b:

(0, 0, 0, 0)

(B, G, M, P)

Figure 9. Lattice of closed sets implicit
in Figure 8.

covers”. In our case, the only difference between
(0, 2, 2, 1) and (0, 1, 2, 1) is that “G is not≤ 1”,
or equivalently “G is > 1”. Similarly, (0, 2, 2, 1) is
not in the closed set(0, 2, 2, 0 becauseP is not≤ 0,
that isP > 0. The conclusion,i.e. those predicates
with no differences, could beB = 0 andM = 2.
But, what we really know is that¬(B < 0) and
¬(M < 2); soB ≥ 0 andM ≥ 2 represent the best
inferences, or(G > 1∧ P > 0) → (B ≥ 0∧M ≥
3). The adjacent tuple in Figure 9 isa : (1, 1, 2, 1)
which covers the tuples(0, 1, 2, 1) and(1, 1, 2, 0).
Thus the same reasoning yields(¬(B ≤ 0)∧¬(P ≤
0) → ¬(G < 1) ∧ ¬(M < 2) or equivalently
(B > 0 ∧ P > 0) → (G ≥ 1 ∧ M ≥ 2) which
is supported by observationsa, i andj.

Figure 10 provides a rather typical relationship
between numeric data that is a bit more complex
than Figure 8. We will again use downset closure,
≤, to order both thex andy values.

The resultant closure lattice is shown in Figure
11. Using the same logic that we have described
above, we can assert thaty > 3 → x ≥ 5, based on
nodec and thatx > 10 → y ≥ 5, based on nodei,
among many others. These can be verified in Figure
10. We have begun to reason about the relationship
betweenx andy.

6 Conclusion

Using the properties of closed sets to estab-
lish logical axioms for inference systems has great
promise. The two examples of Section 4 demon-
strate that we can automatically extract valid rules
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Figure 10. A semi-random distribution
of points.
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Figure 11. The closure lattice corre-
sponding to Figure 10.

from rather large sets of data. The extraction of
logical implications where some of the predicates
are mathematical inequalities is, we believe, com-
pletely new. Unfortunately, we have not yet auto-
mated it in a software system because there are sub-
tiles we do not fully understand. Instead, we are just
beginning to explore its potential, which we believe
is considerable.

Our goal is to begin generating implications of
the form “if [p1 ∧ (x > 7)] ∨ [p2 ∧ p3 ∧ (y <

9)] then . . .”, We know, for example, that gene

7



expression is dependent not only on the boolean
presence of specific genes, but also on the stage
(time) of the replication and degree of separation
of gene sequences. These latter factors are best ex-
pressed as numeric inequalities. Similarly, evidence
based diagnostic systems typically consider both
the boolean presence of symptoms and the bounded
behaviour of specific variables,.e.g. cholesterol>
180.

The approach of this paper can facilitate the cre-
ation of, or refinement of, a variety of intelligent
computer systems.
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