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Abstract—There exist a variety of procedures for networks plays a vital role. But what is a network’s
identifying clusters in large networks. This paper fo- “structure”?
cuses on finding the connections between such clusters. Frequently, some of the nodes form “clusters”, or

We employ the concept of closed sets to reduce a, LT . !
network down to its fundamental cycles. These cycles CommU”'F'?S '_W'th many intra-cluster connections.
begin to capture the global structure of the network by The identification of such clusters has been the
eliminating a great deal of the fine detail. Nevertheless, focus of considerable research; there is an immense
the reduced version is completely faithful to the amount of literature in disparate fields, of which [1],
original. No connection in the reduced version exists 5], [15], [17], [18] is but a small fraction. The focus
unless it was in the original network; connectivity is ! ! ' . L
preserved. of our research, however, is the identification of

Reductions of as much as 80% can be observed in those nodes, or connections, that “go between” dif-

real networks. Just reducing the size makes compre- ferent clusters. They are often harder to discover. In

hension of the network much easier. the drug trade, a “mule” is a go-between that brings
drugs from a cluster of producers to a community of
I. INTRODUCTION users. Hence the term “mule” in our title. In real life,

A network, or graph, is a seP of n points, mules are equally hard to discover. To find mules we
or nodes, or vertices, or individuals together wittmust understand the network structure.
ann x n relation A defining the associations, or Possibly the most effective approach to under-
edges, between the points or individuals. Figure gtanding the overall structure of a network, when

is a representative example. Each non-zero entity,works, is to graphically represent it [6]. Many
times this allows a visual comprehension of its

a . . .
s emunnus : essential features. Figure 2 is one such represen-
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Fig. 1. An adjacency representation of a small 23 node n&twor

Fig. 2. A graphic representation of Figure 1.

such ag1, 8) € A, denotes an edge, or connection,
between the node, or point, 1 and the node 8. Fgields little insight! One can improve the picture
the purposes of this paper we will assume that considerably by iteratively moving nodes and their
is symmetric, or equivalently, that the network isonnections, so as to shorten the connecting edges
undirected. and thus cluster related nodes. We'll see such a

Networks play an important role in the studyreorganized drawing later as Figure 8 in Section .
of many phenomena. Social networks describe thénfortunately however, most interesting networks
interactions between individuals [2], [3], [21]; theare “large”, far too large to effectively organize
internet is a familiar feature of our every dayin such an iterative fashion without some prior
computer life [11], [13]; genetic expression can benderstanding of the underlying structure.
modeled as proteins in a regulatory network [4], [9]. A common approach is to try to spatially cluster
In these examples, and others, the structure of theb®se highly interconnected nodes and separate them



in the image. Then one should be able to spot The region dominated by, or d.p, is abcefh.
the connecting edges and outlier points. But, &eadily h.n C d.p, SO h € d.¢,. Similarly, a.n C
suggested by much of the literature cited above,p, soa € c.¢,. In the network of Figure 3., =
clustering is not an automatic process. For exame,d., = dh, andz., = « for all z # ¢ or
ple, many techniques must first input the estimatefl Consequently, we see that the individual points
number of clusters to function effectively. of a network may, or may not, be closed. If every
The approach described in this paper involvesingleton seti(e. point) is closed, the network is
reducing the network to its “fundamental cycles”said to beirreducible.
These are cycles of length greater than 3 with no There is a much more detailed treatment of neigh-
cross connections. The reduction process and therhood closure in [20] where it is used to define
nature of fundamental cycles is explored in Sectiocontinuous network change. But, we will not need
lll. The network shown in figures 1 and 2 will beit here. Instead we focus solely on those nodes
used as a running example in this section. But, it ®r which there exist a singleton nodesuch that
far to small to be considered realistic. In Section I\ € {y}.¢,. We sayz is subsumedby y.
we explore this reduction process as it is applied to
larger, real life networks. In Section V, we examine I1l. NETWORK REDUCTION
some of the underlying mathematics. In classical mathematics, open sets are used to
establish the topology of continuous manifolds. We
find closed sets are more valuable tools for under-
A collection of set” = {Y;} is aclosure system standing discrete structures like a network.
on a setP provided (a)P € C, and (b)Y; NY} € If y subsumesz in N, then any closed set
C for all 7, k. We use the neighborhood concept tstructure involvingz must equally includey, so
establish a closure system on a network, or graph,contributes little to our understanding &f. We
N = (P, A). Non-zero entriegz, z) in A denote can deletez and all incident edges with almost no
some form of connection betweenand z. They loss of information. If the subsumed pointsh and
constitute edges in a graphical representatiodvof incident edges are removed from Figure 3 we obtain

II. NEIGHBORHOODCLOSURE

such as figures 2 or 3. Figure 4. The deleted nodes and edges are indicated
Let Y C P, the neighborhood of Y, denoted
Y, isYn={z € P-Y | (y;,2) € A for some A
y; € Y}. That is,Y.n) consists of all points not iy’ /b / .
‘ —-th)

that are connected to at least one element oBy .

the region dominated byY’, denotedY’.p, we mean a’> \

Y.p =Y UY.m, orY together with its surrounding i / /f
neighborhood. Finally, we define tlatosure of Y, —
denotedY.y,, by Y.¢,, = {z € Y. | z.n C Y.p},

that is, those neighborswhose own neighborhood Fig. 4. Figure 3, less its subsumed points.

is completely dominated by'. A setY is closedif ) o
Y.o, =Y. The collection of set§Y;.¢,},Y; C P by dashed lines. Each of the remaining nodeg,
constitute a closure system. Readip,, = P and {b}, is a closed set.

it is not hard to show tha¥;.¢, N Y., is closed. ~ We have automated this rather simple process
In Figure 3,{a}.n = {b,c,d}. In our work, all Of removing subsumed points from a network. The

core of the reduction process, which we will denote
by w, is the following loop: it iteratively removes

e
b/ \
for_each y in P
a—nh {
a \ for_each z in y.nbhd
AN f { o
. g/ if (z.nbhd contained_in y.region

{ /I z is subsumed by y
for_each x in z.nbhd
remove edge (X, z)

. remove z from network
the elements are sets; thus we regard the “paint” }

to be a singleton sefa}. But, repeated use of the }

delimiters{, } becomes tedious, so we will normally }

elide them and writer.ny = bed, unless we want to

specifically emphasize the set nature. Fig. 5. Key loop in reduction process.

Fig. 3. An undirected graph or network.



subsumed points and edges until all singleton satsth node 20, and< 4 > associated with node 18
(i.e. nodes) are closed and the network is reduceduggest that there may be small clusters attached to

Applied to the network of Figure 2, we obtainthe cycle at these points. The count of subsumed
the network of Figure 6 with only 11 nodes and 13odes,< 1 > and < 2 >, associated with nodes 6
edges. and 9 are less convincing.

In Figure 8 we have reconstituted the original
network around the two fundamental cycles of Fig-
ure 7. It is similar to one found in [17]. This is
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Fig. 6. The reduced network of Figure 2.

A. Fundamental Cycles

The striking characteristic of the irreducible subFig. 8. Figure 2 reconstituted around its fundamental gycle
networks of figures 4 and 6 is that the remain-
ing nodes and connecting edges form cycles. Ti&complished by iteratively expanding each point on
two cycles of Figure 4 are< b,c,d,e,b > and @ fundamental cycle. For example, nodes 13 and 21
< ed, f.g,c>. Acycle < yo,y1,...,yn = yo > Were the two points subsumed by node 9. Node 6
of lengthn > 4 is said to be #undamental cycle Subsumed 22.
if yio1 € yim, for 0 < i < n, andy, € y;.m In Figure 8 we have circled the small clusters
implies & = i 4+ 1. That is, there are no “crossWith dashed lines. In the program they are simply
connections”. The two cycles of length 4 in Figurélenotes as sets of nodes. It is fairly obvious that 4
4 are fundamental. A graph/network composed ongnd 12 are the “mules” in this small network. The
of fundamental cycles is in many ways the antithesf0ss connection between 16 and 18 may also be of
of “triadic closure” in social theory [12], [16] and interest.
“chordal graphs” in graph theory [10], [14]. The
latter are graphs with no chordless cycles of length
greater than 3. A more striking example is the reduction of
The cyclic structure of Figure 6 is more evidenthe 379 node network of collaborating scientists
when redrawn as Figure 7. Here, the fundamentg®nstructed by M.E.J. Newman [18]. The reader
is encouraged to view an annotated version at
\ www.umich.edu/ Tejn/centrality
9 13l After 3 iterations identifying and removing sub-
2 / ‘\ sumed points, our program produced the graph of
\ 16l Figure 9. There are 65 points in this reduced net-
\ work. This network is much more comprehensible,
\[5] both visually and algorithmically, than the original.
18\23 o Values < n > denote the number of points sub-
sumed by each node.
Fig. 7. The fundamental cycles of Figure 6. Our graph reduction algorithm removes the pen-
dant chordal subgraphs that were present in the
cycle < 16,15,4,20,10,12,23,18,16 > of length original. Basically, only the key fundamental cycles
8 is quite prominent. Longer fundamental cyclesemain, together with those triangles all of whose
convey more information about the global structurpoints lie on some chordless cycle of length4.
of the network. But the information loss is minimal. As seen above,
Our program keeps a count of the numbers dhe subsumed portions can be regenerated if neces-
nodes subsumed directly, or indirectly, by each nodsary. Of more significance to us are those retained
The numbers in angle brackets,n >, indicate this. nodes, and paths in Figure 9, which “connect” the
The number< 5 >, of subsumed nodes associatedommunities of intellectual activity.

IV. NETWORK REDUCTION IN REAL LIFE
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Fig. 9. The reduced version of Newman’s 379 node collabmmatietwork.

In his book [8], Malcolm Gladwell talks of con- if (z.nbhd contained_in y.region)
nectors which are the central nodes of communities,
or clusters, comprised of many connections. Whanvolves only the intersection (logical and) of two
we see in Figure 9 are those singular “connector®it strings followed by a test for equality. The code
between clusters which are rarer, and harder to findoes not loop over either set.

in A by more usual numerical methods. For exam- Next, we observe that the process of Figure 5

ple, there is a connection/edge between the nofg,ns over alln nodes,y, of the network. And then

at the top, denoting a cluster ef 23 > individuals  the inner loop runs over its neighborhoady. If N
with a node representing 18 > persons. Similarly, ;g 5 complete graph thelp.;)| = n—1 and the order

there is a path towards the lower left through nodesy ., would appear to be? in this worst case. But

labeled < 1 > and < 2 > to a community of gince nodes are removed frof within the loop,
< 17 > individuals. These two nodes are likelyy of the nodes ofy.n will be subsumed and the

candidates to be mules. , , outer loop will execute but once. It still appears to
Because of the arbitrary order in which nodes arg, |inear.

subsumed, which was exhibited to some extent in

the expansion of Figure 8, the values: > should In practice, the size of neighborhoods is bounded,
not be taken too literally. For example, one coul§@y [y-7| < k, and average neighborhood size is
argue that the nodes encircled with the dashed ligglite @ bit smaller. Consequently execution of the
actually comprise a single community. But, the nodeeduction loop in Figure 5 is bounded iy n.

< 18 > would be a natural candidate for automatic However, the subsumption loop of Figure 5 may

re-expansion, subject to whatever independent comave to be iterated. A point may not be subsumed
munity criteria is appropriate for the application. yntil after other points in its neighborhood,,

have been subsumed and removed. This is dependent
. on the order in which the points of the outer

We have not had the opportunity to proces%op are accessed. We are convinced, but have no

enough large neworks to "?‘Ccurate'y_ measure .tr&ample, that there exists a worst case ordering of
performance of our reduction algorithm. But,

b ially in th the points such that only one node is subsumed in
appears to be essentially linear in the number, each iteration. Thus the worst case behavior could
of nodes of the network.

2
First, all operations are performed on sets, or c:oP—e of ordern.
lections of sets. We use a C++ software package thatHowever, in practice, no network reduction has

represents every set, or collection, as a S'mplee%gquired more than 3 iterations, and each iteration is

string. Individual points and edges are only involv : : -
in conversion to/from singleton sets and neighboPVer @ set of decreasing size. As indicated above,

hoods during input and output. Consequenﬂy' ane believe this process is effectively linear and thus
operation such as scalable.

A. Process Performance



V. MATHEMATICAL DETAILS The points of those chordal subgraphs still remain-

ing in Figure 8 such as the triangle 9,15,16 >,

Although netwo_rk red_uct|on IS & process th.agre all elements of other fundamental cycles as
largely speaks for itself, its mathematical underp|r&f

) : sredicted by Proposition 5.2.
nings can be of interest. We explore these detai ! y Post

here. sProposition 5.3:Let G’ = G.w be an irreducible
A graph, or subgraph, is said to bshordal

version of a finite networlkG. A path (possibly of
if it contains no cycles of length greater than

éength 0) exists between’ = w.w andz’ = z.w in
) . .
without a chord (edge) joining two of its pointsG. if and only if there exists a path betweenand
[10], [14]. Any complete graphK,,, is chordal.

n G.

Every tree is chordal. In fact, chordal graphs can be  Proof: First, let there be a path from to = in
regarded as tree-like structures of point connected; If z is on some path between and z, and z
or edge connected, complete graplis. A cycle has been subsumed hyin the reduction process,
C =< yo,...yn = yo > is chordlessif no subset thenz.n C y.n implies there exists a path between
of its points{y;, ...yx},0 < i,k < n forms a cycle. w andz throughy.
We will call a chordless cycle, such &, ann- Now, assume there exists a path betweénr= w.w
cycle, wheren denotes both the number of pointéndz’ = z.w in G'. Supposew’ = 2’ thenw and
and number of edges. Thus, a graph is chordal if it have been subsumed by some single point,;say
contains non-cycles,n > 4. Since subsumption, of say, requiresw € y.n, and
An n-cycle C' is fundamental if for all y; € ¢, Similarly for z, y must lie on a path between and
{y;} is closed. The key elements of Figure 8 are in G.
its fundamental 4-cycle< 2,6,9,16,2 > and its Now, supposev’ # z’. The reduction process never
8-cycle < 16,15,4,20,10,12,23,18,16 >. These adds an edge, so the edges in the path betwéen
fundamental cycles define the topology of the ne@nda’ in G’ are edges irtz, and there exists a path
work in much the same manner that 1-cycles can @m w in the tree-like chordal graphs that mapped
used to define the topological structure of manifold@ntow’ and similarly a path fronx in the tree that

[7]. mapped on tar’; thus a path betweew andz in
Proposition 5.1:Let G be a finite network and G- u
let G’ = G.w be a reduced version, the@’ is Corollary 5.4: If a finite networkG is connected
irreducible. then its reduced networ&’ = G.w is connected.

Proof: Suppose{y} is not closed. Therdz € Note, however, that the reduced gragh may be
Y., implying z.p C y.p or thatz is subsumed by a single point. In particular, this will be the case
contradicting termination of the reduction cod® wheneverG is a tree, or a chordal graph.

Proposition 5.2:Let G be a finite network with  |f + andy can mutually subsume each otherfin
G' = G.w an irreducible version. Ify € G’ is not  thenz.n = y.n. But the converse need not be true as

an isolated point then either illustrated by Figure 10. The graph (a) is irreducible,
(1) there exists a fundamentaicycle C, n > 4

such thaty € C, or X

(2) there exist fundamental-cyclesC;, Cs each a< >d
of length> 4 with x € C; z € Cs andy lies on a ‘ y
path fromz to z. b

Proof: Let y; € Pg. Sincey; is not isolated, @ (b)

let yo € y1.1, SO (yo,y1) € A. With out loss
of generality, we may assumg € C; a cycle
of length > 4. Sincey; is not subsumed by,

Jya € y1.m, y2 € yo.n, and sincey, is not subsumed all singleton points: are closed. The graph (b) will
by y1, Jys € yo1), ys € y1.1. Sinceys & yo.n, Pecomeirreducible with the deletion of eitheor y.

d

a/“\
‘\y/
b

c c

Fig. 10. Mutual subsumption illustrated by two graphs.

Y3 # Yo. In grr_;lph (b)z.p = y.p, the necessary and sufficient
Supposeys € yo.1, then < yo,y1,y2,y3,y0 > condition for mutual subsumption.
constitutes an-cycle n > 4, and we are done. Two graphs, or networks7 = (P, A) andG’ =

Supposeys ¢ yo.n. We repeat the same path extentP’, A’) are said to bésomorphic, or G = G’, if
sion. y3.n € yo.n implies 3y, € y3.1, y4 € y2.n. If  there exists a bijection,: P — P’ such that for all

Ya € Yo.n OF Y4 € y1.m, We have the desired cycle.z,y € p, (i(z),i(y)) € A’ if and only if (z,y) € A.

If not 3 ys5,... and so forth. Becausé& is finite, That is the mapping precisely preserves the edge
this path extension must terminate wigh € y;.n, structure, or equivalently its neighborhood structure,
where0 <i <n—3. Letz =yp,2 = yn. B thatisi(y) € i(z).n' if and only if y € z.1.



As indicated by Figure 10, the order in which [5]
points, or more accurately the singleton subsets,
of G are encountered can alter which points argg
subsumed and subsequently deleted. Nevertheless,
the reduced grap&'.w will be unique, upto isomor- [7]
phism. 8

Proposition 5.5:Let G.w andG.w' be irreducible
images of a finite networks, thenG.w = G.w'.

Proof: Let yg € Gw, yo & G.w'. Thenyy is
subsumed by some poigt in G.w’ andy; ¢ G.w
else becausgo.p C yi.p impliesyo € {y1}.¢, SO
G.w would not be irreducible.

Similarly, sincey; € G.w' andy; € G.w, there
existsys € G.w such thaty; is subsumed byy,.
Now we have two possible cases; eithgr= Yy,
or not.

Supposeys = yo (which is most often the case),
thenyo.p C y1.p andyi1.p C yo.p OF Yyo.n = Y1.7).
Hencei(yo) = y1 is part of the desired isometry,
Now supposey, # yo. There existys # y1 € G.w’
such thaty2.p C y3.p, and so forth. Sincé is finite
this construction must halt with someg. The points [14]
{v0,y1,¥2,-..yn} coOnstitute a complete grapt,
with {y;}.p =Y,,.p, for i € [0,n]. In any reduction
all y; € Y,, reduce to a single point. All possibilities
lead to mutually isomorphic maps. ]

Proposition 5.6:Let G’ = G.w be an irreducible [16]
image of a finite networkG. For all Y C Pg,
Y.opw CYw.p, [17]

Proof: Let z € Y.¢,,. We must show that either
zeYorzeYworzeYuwyp,. (18
If 2z¢Y,then3yy €Y,z € yo.n. If 2 & Y.w, then
Jx € zn,x & yo.n SOy € Y,z € y1.m. Whether [19]
Yo, 2, ¢, y1 are distinct inG.w or not, by Prop. 5.3,
z€Ywn s0z e Yuw.p, . [ |

An operator, such as, satisfying the containment
property of Proposition 5.6 is said to leentinuous
[19], [20]. Continuous operations on discrete spacgsi]
have a number of interesting properties; but they
are not relevant to this paper. Nevertheless, that this
reduction process is a continuous transformation of
the networkN onto its irreducible versionV.w is
quite satisfying.

El
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(23]
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