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CONTINUOUS FUNCTIONS OVER DISCRETE

PARTIAL ORDERS

JOHN L. PFALTZ

Abstract. This paper examines the properties of structure preserving morphisms f
over discrete partial orders. It employs concepts of continuity and path homomor-

phisms. It will conclude that no single constraint on f will be sufficient, and it will

also conclude that a convexity constraint on f−1 seems to be essential. We employ
closure lattices to help reach this conclusion.

1. Introduction

Mathematics is hugely concerned with functions that preserve the essential struc-
ture of its mathematical objects even as they change specific details. We think of
continuous functions, f : Rm → Rn; of group and ring homomorphisms; and of
automorphism concepts.

But, what constitutes a “structure preserving” morphism of a partially ordered
set has not received as much study as these more familiar examples. This is sur-
prising, because partial orders, or partially ordered sets, or posets, which are terms
that we will use interchangeably, are common in applied mathematics. They are
ubiquitous in computer science. They are readily a model of concurrent processing
[3,7], and any system of events occurring in time, such as task scheduling [8]. The
theory of data types [9], and abstract models of computation, such as denotational
semantics [33] have been extensively studied as “directed-complete partial orders”,
or dcpo’s, in domain theory [1, 16, 37]. In “formal concept analysis”, or FCA [15],
the concepts have a partially ordered structure. There is no shortage of application
instances.

In pure mathematics, lattice theory [4, 5, 18] is the study of “well-behaved”
partial orders; they are fundamental in some algebraic systems, such as “Stone
Spaces” [21].

So, partial orders are widely used and very well understood – except for their
functional change. Functions that map one partial order into another are far less
easy to characterize.

1.1. Basic terminology

Partially ordered sets, denoted (P,≤), are a familiar mathematical system. The
element ordering, ≤, is a pre-order if for all elements x, y, z ∈ P we have
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(A1) x ≤ x reflexive
(A2) x ≤ y and y ≤ z imply that x ≤ z, transitive

If in addition
(A3) x ≤ y and y ≤ x imply that x = y, anti-symmetric1

then (P,≤) is a partially ordered set. Usually these three axiomatic properties
are presented together; but we shall see that (A3) is very different in character
from (A2). While it is convenient to have ≤ be reflexive (A1); nothing essential
is changed if it is omitted, or if the order is assumed to be “anti-reflexive” with
x 6≤ x.

Let (P,≤) be a partially ordered set. An element y is said to be a maximal
element of S ⊆ P if y ∈ S and there exists no element z ∈ S, z 6= y such that
y ≤ z. An element y is said to be an upper bound, or u.b., of S ⊆ P if for all
x ∈ S, x ≤ y. An element y is said to be a least upper bound, l.u.b, of S if it is an
upper bound and if for all upper bounds zi of S, y ≤ zi. Minimal elements, lower
bounds (l.b.) and greatest lower bounds (g.l.b.) are defined analogously.

A subset S ⊆ P is said to be totally ordered if for all x, y ∈ S, x 6= y implies
either x < y or y < x. A chain, C(x, z) ⊆ P is a totally ordered subset C with
minimal element x ∈ C and maximal element z ∈ C. A partial order (P,≤) is
said to be discrete if for every chain C(x, z), the set C(x, z)\{z} is a chain with
a maximal element. (For this paper, we also assume that C(x, z)\{x} is a chain
with a minimal element.) This distinguishes our approach to partial orders from
that of domain theory [1, 16] which is largely concerned with convergence and
approximation of least upper bounds in infinite partial orders.

Any finite partial order must be discrete. Discrete partial orders need not be
finite.

Because we restrict ourselves to discrete partial orders, we can illustrate the
concepts of this paper with directed graphs. A chain, C(x, z) in (P,≤) can be
visualized as a path ρ(x, z) from x to z, consisting of a sequence of elements
< x, . . . , yi, . . . , z > where x ≤ yi ≤ z. We shall use ¬ρ to denote the non-existence
of any path. Thus x ¬ρ y is equivalent to x 6≤ y. By the length of ρ(x, z), which we
denote by |ρ(x, z)|, we mean the number of elements in the chain C(x, z) less one.
Thus, every element y has a path ρ(y, y) of length zero. If y = max(C(x, z)\{z}),
we say z covers y. Equivalently, we could say there is a “directed edge” between y
and z.2 Figure 1 illustrates a partial order ≤ on P = {a, . . . h}, in which g covers e.
We choose to represent partial orders in a horizontal (left to right) manner rather
than the more conventional vertical Hasse diagram because it conserves space on
the printed page. The arrow heads suggest the ≤ relation with “lesser” elements
to the left. As with the ≤ relation, we will use x ρ z to denote that there exists at
least one path from x to z, and let ρ(x, z) denote a specific path, in much the same
way that a chain denotes a specific total ordering. Those readers more comfortable
with the order terminology using ≤ may replace every occurrence of ρ with ≤.

1There are various names for (A3); some would call this “weak anti-symmetry” and want

“anti-symmetry” to mean that x < y implies y 6< x.
2It is customary to define graphs as an “edge” relation E on the ground set of elements P ,

e.g., [2, 11, 19, 26]. Since our focus is on transitive ordering relations it seems more natural to
emphasize the “path” relation, and let edges denote covering situations.
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Figure 1. A representative partially ordered set (P, ρ).

A cycle is a path ρ(x, . . . yi, . . . x) of length ≥ 2.3 A directed graph (P, ρ) is said
to be acyclic if it contains no cycles. It is well known that

Proposition 1.1. A discrete pre-ordered set (P,≤) is a partial order, if and
only if its corresponding directed graph (P, ρ) is acyclic.

2. Order preserving functions

A function f : (P,≤)→ (P ′,≤′) is said to be order preserving , or isotone, if x ≤ z
implies f(x) ≤′ f(z). In our discrete case this is equivalent to saying x ρ z implies
f(x) ρ′ f(z).4 However, order/path preserving functions need not preserve partial
orders. This is most easily demonstrated when we visualize the partial orders as
acyclic graphs. Let (P, ρ) be that of Figure 1. Let f(b) = f(h) = b′ = h′ and let
f(x) = x′ for x = {a, c, d, e, f, g} as in Figure 2. While f is readily path preserving,
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Figure 2. An order/path preserving function on Figure 1.

(P ′, ρ′) is not acyclic; it is not a partial order.

2.1. Categorical posets

In some texts [10, 31], the category, Poset, of partially ordered sets is defined to
consist of the class of all partially ordered sets as its objects, and the class of all

isotone functions [A
f−→ B] between objects A and B. It is easy to understand

why this is often presented as an early example; it is not hard to show that the
essential axioms of a category are satisfied, namely that the composition f ·g, of
isotone functions f and g, is isotone; that identity functions idA and idB exist for
all objects A,B; and that idA·f and f ·idB are isotone. But, does this category
really characterize partial orders? It does characterize a preorder, which is any
transitive order relation; but it does not capture the “antisymmetry” aspect. This
is tacitly acknowledged in [1] where we have “If we drop antisymmetry from our
list of requirement than we get what is known as preorders. This does not change

3In definition of “path” we assumed a path of length 0 at every node to assure reflexivity;
consequently “loops” or edges of the form (x, x) are simply ignored, if they exist.

4It is correct to denote the order/path relation on P ′ by ≤′ and ρ′, because the ordering
relation may not be the same as on P .
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the theory very much.” Mac Lane [24] never defines a poset category. The author
knows of no definition of a Poset category that is distinct from that of a PreOrder
or TotalOrder category; but see [36], which is quite relevant to this paper.

2.2. Graph theoretic maps

In graph theory, the term “homomorphism” is widely used to describe an “edge
preserving” function f : G → G′ where G = (P,E), G′ = (P ′, E′) and (x, y) ∈
E implies (f(x), f(y)) ∈ E′, [17, 26]. A function f satisfying this definition of
“homomorphism” is path preserving, or order preserving. Unfortunately, this
common definition need not imply that G and G′ have similar structure. It is
satisfied if f(E) ⊆ E′. For example, every graph G is the homomorphic image of
the anti-chain (with E = ∅) on the same set P of elements.

The notion of a “homomorphism” should imply that the essential “structure”
of the graph is somehow preserved. Consequently, some authors prefer a stronger
notion of “homomorphism”. In this paper, we will call f : G → G′ a homomor-
phism if it is edge (order) preserving and (x′, y′) ∈ E′ implies ∃x, y ∈ P such that
(x, y) ∈ E, x′ = f(x), y′ = f(y).

However, even if f : G→ G′ is a homomorphism in this stricter sense, and thus
edge preserving, we can not assume f : (P, ρ)→ (P ′, ρ′) is a homomorphism with
respect to ρ. Consider the function f of Figure 3 in which f(b1) = f(b2) = b′.
It is a homomorphism of (P,E) onto (P ′, E′), but not a homomorphism of (P, ρ)

a b

b c

a’ b’ c’

f
1

2

Figure 3. A homomorphism with respect to E that is not homomorphic with respect to ρ.

because (a′, c′) ∈ ρ′, although there is no (a, c) ∈ ρ. We can strengthen the
homomorphism concept a bit more by requiring that if x′ ρ′ z′ then ∃x, z ∈ P
such that f(x) = x′, f(z) = z′ and x ρ z. We call this a path homomorphism.

A subset S ⊆ P is said to be convex if for all x, z ∈ S, x ≤ y ≤ z implies
y ∈ S. This terminology is more intuitive when we visualize the partial order
as an acyclic graph. In this case, x, z ∈ S and x ρ yi ρ z implies yi ∈ S; or
equivalently all paths between x and z lie within S, which is a traditional definition
of convexity. In Figure 1, S1 = {a, c, d, f} is convex; but S2 = {a, c, e, g} is not,
because c ρ f ρ g, but f 6∈ S2. In particular, chains, or paths, need not be convex
subsets. And cycles, such as {d′, f ′, g′, h′} in Figure 2, may be convex. Readily, if
(P, ρ) is acyclic, then every singleton subset {x} is a convex subset, since any path
of the form x ρ yi ρ x, yi 6= x, would constitute a cycle. In this paper, we will
regard a path homomorphism f as the standard for a “structure-preserving” map
of a partially ordered set, provided it can be assured that f(P ) is acyclic. This
latter constraint is non-trivial.

The following two propositions have been taken from [27], but their proofs are
repeated here for the reader’s convenience.
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Proposition 2.1. Let f : (P, ρ)→ (P ′, ρ′) be a homomorphism (of any kind).
If S′ is convex in P ′, then S = f−1(S′) is convex in P .

Proof. Because f is a homomorphism, x ρ z in P implies x′ ρ′ z′ in P ′. If there
were a path x ρ y ρ z where x, z ∈ f−1(S′), but y 6∈ f−1(S′) then y′ = f(y) would
lie on a path between x′ and z′ in S′ contradicting the convexity of S′. �

Thus, convexity is preserved under the inverse mappings of order preserving
functions. But, f(S) need not be convex, even if S is. A homomorphism will
be called a convex homomorphism if it takes convex subsets onto convex subsets.
This definition is reminiscent of open functions in topology which take open sets
onto open sets.

Proposition 2.2. Let f : (P, ρ)→ (P ′, ρ′) be a convex path homomorphism. If
(P, ρ) is acyclic, then (P ′, ρ′) is acyclic.

Proof. Suppose there exists a cycle x′ ρ′ y′ ρ′ x′ in (P ′, ρ′). Let x1, x2 ∈
f−1(x′) and y1, y2 ∈ f−1(y′). Since f is a path homomorphism, there exists a path
xi ρ yj ρ xk, i, j, k ∈ {1, 2} in (P, ρ). If i = k, we have an immediate contradiction
to the acyclicity of (P, ρ). So we assume xi 6= xk. We claim there exists a path
xk ρ xi (or xi ρ xk) so that xk ρ xi ρ yj ρ xk becomes the contradictory cycle. If
not, {xi}∪{xk} constitutes a convex set, but f({xi}∪{xk}) = {x′} is not convex.
Readily, if xk ¬ρ xi, then we use the same argument to assure that xi ρ xk for the
same contradiction.

While a path homomorphism guarantees the existence of some path between
two pre-image elements such as xi and xk, it does not guarantee the existence of
the path through any specific element such as yj . We might have xi ρ y1 and
y2 ρ xk, in which case we us the same argument involving f({y1} ∪ {y2}) = y′

where y′ is not convex will work. �

Order preserving functions (homomorphisms) by themselves do not ensure that
partial orders (acyclic structures) map onto partial orders. Anti-symmetry may
not be preserved. Convex functions, by themselves, also need not preserve the
partial order structure, as shown by the example of Figure 4. The function g, as

a
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c’ d’
g

Figure 4. A convex function g that does not preserve the partial order.

well as any function mapping onto (P ′, ρ′), must be convex because every subset
of (P ′, ρ′) is convex. Clearly, g is not a homomorphism, and it does not preserve
the order of (P, ρ).

It seems impossible to functionally preserve both the structural properties (A2)
and (A3) of partial orders with a single functional property, such as order preser-
vation or convexity.
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3. Closure and closure lattices

Closure operators, ϕ, which are defined over sets of elements, play a key role in
our development. Typically we will consider the closure of subsets Y ⊆ P which
we denote by Y.ϕ (read this as Y closure).5 Recall that closure operators must
satisfy three closure axioms

(a) Y ⊆ Y.ϕ expansive,
(b) Y ⊆ Z implies Y.ϕ ⊆ Z.ϕ monotone, and
(c) Y.ϕ.ϕ = Y.ϕ idempotent.

We call (2P , ϕ) a closure system. A subset Y ⊆ P is closed if Y.ϕ = Y .
There exist many closure operators in the literature, but because we are explor-

ing partial orders we will focus on the three natural path closures, ϕ↓, ϕ↑ and ϕC ,
where for all Y ⊆ P ,

Y.ϕ↓ = {x|∃y ∈ Y, x ρ y},
Y.ϕ↑ = {z|∃y ∈ Y, y ρ z},
Y.ϕC = {y|∃y1, y2 ∈ Y, y1 ρ y ρ y2}.

Observe that ϕ↓, those elements to the left in our figures, is sometimes called
a “downset” operator, or ideal, and that ϕ↑, with elements to the right, is called
an “upset” operator, or filter, ϕC has been called a convex closure and its closed
subsets called “convex” [27]. A set Y is said to be directed if x, z ∈ Y implies there
exists an upper bound ub(x, z) ∈ Y . If every directed subset, Y , has a l.u.b.(Y ),
the partial order (P,≤) is called as “directed-complete partial order”, or dcpo [1].
Figure 1 is a dcpo with least upper bound h.

The closed sets of ϕC are called “intervals” in [29], or “causal sets” [6, 32].
Causal sets are thought to play a role in modeling quantum gravity. When we are
modeling temporal events, Y.ϕ↓ denotes antecedent events occurring at, or before,
the events of Y , Y.ϕ↑ denotes descendant events occurring at, or later, than events
of Y , and Y.ϕC denotes events occurring “between” events in Y [12].

A closure operator, ϕ, that satisfies the anti-exchange axiom,

∀x 6= z, x, z 6∈ Y.ϕ, and z ∈ (Y ∪ {x}).ϕ imply x 6∈ (Y ∪ {z}).ϕ (3.1)

is said to be an anti-matroid operator [23].6

Proposition 3.1. If (P, ρ) is a partial order, then ϕ↓, ϕ↑, ϕC are antimatroid
closure operators.

Proof. Let Y be closed with respect to ϕ↓ and let x, z 6∈ Y . So x ¬ρ y, z ¬ρ y, y ∈
Y . Now assume z ∈ (Y ∪ {x}).ϕ↓, implying that z ρ x. Since (P, ρ) is a partial
order, x ¬ρ z, so x 6∈ (Y ∪ {z}).ϕ↓. The proof when ϕ = ϕ↑ or ϕC is similar. �

Antimatroid closures are sometimes called “convex geometries” [13,14].7

5We prefer to use suffix notation when denoting set-valued morphisms such as ϕ. It facilitates

arrow chasing in categorical diagrams. We reserve the more conventional prefix notation for point
functions. The change of notation hopefully alerts the reader to the paradigm shift.

6Closure operators that satisfy the “exchange axiom”, or “if x, z 6∈ Y.ϕ, but z ∈ (Y ∪ {x}).ϕ
then x ∈ (Y ∪ {z}).ϕ”, are called “matroid” closure operators. There is an extensive matroid
literature.

7Antimatroid closure spaces are far more abundant than one might expect. For example,
there exist at least 202 distinct closure spaces comprised of 5 elements. More generally, it can
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Let Y be any closed set, by a generator of Y , we mean a minimal set X ⊆ Y
such that X.ϕ = Y . Arbitrary closure operators may have multiple generating
sets, but the generating set of an antimatroid closure operator must be unique
[14, 30]. We denote this unique generating set of Y by Y.γ.8 In the literature of
convex geometries, elements of the generator are called “extreme points” [12,14].

3.1. Closure lattices

Let Cϕ denote the collection of all subsets of P that are closed with respect to
a closure operator, ϕ. These may be partially ordered by inclusion to form a com-
plete lower semi-modular lattice in which the greatest element is P (since P must
be closed), and least element is, usually, ∅.9 We call this the closure lattice of P
with respect to ϕ, and denote it by LP , or Lϕ, depending on the context. Fig-
ure 5 shows three different closure lattices arising from the three path closures,
ϕ↓, ϕC , ϕ↑, applied to a small 6 element acyclic graph.
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Figure 5. Three closure lattices, L↓,LC ,L↑.

Proposition 3.2. Let ϕ be an antimatroid closure operator and let Lϕ be its
closure lattice. If Z covers Y in Lϕ then Z\Y is a singleton.

Proof. Suppose not, that Z\Y = {x, y}, x 6= y. Then x ∈ (Y ∪ {y}).ϕ = Z and
similarly y ∈ (Y ∪ {x}).ϕ, contradicting (3.1). �

be shown that there exist more than nn distinct, non-isomorphic antimatroid closure spaces

provided n ≥ 10 [28].
8So that γ is defined for all Y ⊆ P , we let Y.γ = Y.ϕ.γ.
9It is possible, but unusual, to have a singleton element other than ∅ be the least element of

the lattice.
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So, all covering edges in Figure 5 represent singleton elements.10 Moreover,
these elements precisely constitute the generating sets of the closed sets above
them.

Proposition 3.3. Let ϕ be a path closure with Lϕ its closure lattice. Z covers
Y1, . . . Yn in Lϕ if and only if Z.γ = Z\Y1 ∪ . . . ∪ Z\Yn.

Proof. Let ϕ be the downset closure ϕ↓. Since ϕ↓ is antimatroid (Proposi-
tion 3.1), Z\Yi = {zi}, by Proposition 3.2. Readily, zi is a maximal element of Z,
since if not, ∃z ∈ Z, ziρz implying Yi = Z\{zi} is not closed. Hence, zi ∈ Z.γ.

Conversely, let zi ∈ Z.γ implying zi is maximal in Z. Obviously, (Z\{zi}).ϕ↓
is a closed set which must be covered by Z in Lϕ↓ .

The proof for ϕ↑ and ϕC is similar. �

Proposition 3.3 is actually true for all antimatroid closures, as shown in [29].
A variant has been established for all closure operators, antimatroid or not, which
asserts that Z.γ∩Z\Yi 6= ∅ for all Yi covered by Z in Lϕ, [20]. But, such generality
is not needed here.

In Lϕ↓ of Figure 5, abcd covers abc and abd, with abcd\abc = {d} and abcd\abd
= {c}, so {abcd}.γ = {cd} which is easily verified in (P, ρ). Similarly in LC , abcde
covers abcd, acde and bcde, so {abcde}.γ = {e, b, a}; the differences between abcde
and the closed sets it covers in LC . Finally, bcdef covers cdef and bdef in Lϕ↑ .
{bcdef}.γ = {d, c}.

In the case of Lϕ↓ and Lϕ↑ , given the closure lattice, one can completely

reconstruct (P, ρ). It is a direct consequence of the well known fact that a poset
P is isomorphic to the set JD(P ) of join-irreducible elements of the set of its
down-sets. For example, because {abcd}.γ = {cd} we know a ρ {cd} and b ρ {cd}.
But, {bd} does not cover {a} in Lϕ↓ so a ¬ρ b and a ¬ρ d in (P, ρ). This is not

the case for LC . For example, if the set {x, y} is closed in LC , we may have x ρ y
or x ¬ρ y. It is shown in [27], that if there exists an undirected path of length
≥ 2 in a connected component, the LC uniquely determines all the undirected
paths in that component. Given a single covering relationship (directed edge) in
(P, ρ), in a component then all the directed paths in that component are uniquely
determined by LC .

We observe in Figure 5 that ϕC is finer than ϕ↓, or ϕC ⊆ ϕ↓, in that Y ∈ C↓
implies Y ∈ CC . Similarly, ϕC ⊆ ϕ↑. This follows from the obvious fact that
ϕC = ϕ↓ ∩ ϕ↑.

4. Closure space transformations

Sections 2.1 and 2.2 have provided ample evidence of why it is difficult to cre-
ate a functional “structure preserving” concept that maps discrete partial orders
(acyclic graphs) into discrete partial orders based on order preserving point func-
tions over P . In this section, we “lift” the discussion to functions on 2P , the power
set over P , rather than P itself. In Section 3, we considered closure operators, ϕ,

10Labeling each of the covering edges in Lϕ can be instructive. It illustrates why Korte,

Lovász and Schrader [22] define antimatroid structures in terms of shelling sequences.
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which are set-valued functions mapping 2P into 2P . Now we examine functions
that map 2P into a possibly different power set 2P

′
, as in [35]. To emphasize the

fact that these are functions on 2P , we will call them transformations, denote them

by (2P , ϕ)
f−→ (2P

′
, ϕ′), and use suffix notation, such as Y.f , instead of f(Y ). The

use of suffix notation when referencing these set-valued operators and functions
will help to prevent confusion. However, repeated use of the notation (2P , ϕ) be-
comes awkward and clumsy. From now on, we will just write (P,ϕ). Since 2P is
completely determined by P there is no loss of accuracy.

We assume all transformations (P,ϕ)
f−→ (P ′, ϕ′) are monotone, that is, Y ⊆ Z

implies Y.f ⊆ Z.f .11

A transformation (P,ϕ)
f−→ (P ′, ϕ′) is said to be continuous [10,25,30,34,35].

if ∀Y ⊆ P , Y.ϕ.f ⊆ Y.f.ϕ′.

Proposition 4.1. Let (P,ϕ)
f−→ (P ′, ϕ′), (P ′, ϕ′)

g−→ (P ′′, ϕ′′) be transfor-

mations. If both f and g are monotone and continuous, then so is P
f.g−→ P ′′.

Proof. We have X.ϕ.f ⊆ X.f.ϕ′ for any X ∈ P and Y.ϕ′.g ⊆ Y.g.ϕ′′ for any
Y ∈ P ′. Consequently, as g is monotone, X.ϕ.f.g ⊆ X.f.ϕ′.g ⊆ X.f.g.ϕ′′. This
means that f ·g is continuous.

That the composition of monotone transformations is monotone is obvious. �

A major reason for considering transformations which map 2P into 2P
′

is that it
provides a functional way of adding elements to a partial order, or deleting them.
A simple point function f : P → P ′ must map every element y ∈ P to some
element y′ = f(y) ∈ P ′. A transformation (2P ).f can map {y} ∈ 2P onto ∅ ∈ 2P

′
,

and thereby delete {y} from the partial order. That is, Y.f = Y \{y} if y ∈ Y ,
else it is the identity map. Since we are concerned with continuity and closed sets,
transformations can be regarded as lattice morphisms over the respective closure
lattices [35]. Figure 6 illustrates the deletion of d ∈ P of Figure 5 with respect
to ϕC . Pre-image equivalence classes are enclosed in dashed lines. They are the

closed sets in 2P that map onto singleton sets in 2P
′
. Readily, every set Y ⊆ P

is transformed, but in Figures 6 and 7, we use only the lattice of closed sets to
depict its behavior.

Figure 7 illustrates the addition of g′ ∈ P ′ obtained by letting Y.f = {Y ′∪{g′}}.
Here, the dashed lines denote the resulting lattice morphisms induced by f . Their
relative position in L′ϕ↓ determines the paths that must exist in (P, ρ′).

As can be visually tested in figures 6 and 7, both the transformations are
continuous. The use of two distinct closure operators, ϕC and ϕ↓, is deliberate.

4.1. Extended transformations

In Section 2, we focused on functions f : P → P ′ which preserved essential proper-
ties of the partial order (P,≤), or acyclic graph (P, ρ). A point function f : P → P ′

11Note that monotone transformations preserve set inclusion; isotone functions preserve
ordering.
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Figure 6. The transformation f deletes d ∈ P from P ′.
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Ø
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a’b’c’a’b’d’

b’d’ a’b’

a’b’

 ρ

Ø

(P’,    ’)

Figure 7. The transformation f adds the new element g′ to P ′.

can be extended12 to a transformation 2P
f+

−→ 2P
′

by simply letting

Y
f+

−→ = {y′|∃y ∈ Y, y′ = f(y)}
We use the notation f+ to denote a transformation that has been so derived. The
transformation f of Figure 6 cannot be an extended transformation. The transfor-
mation, g, of Figure 7 could be an extension of the identity map into (P ′, ρ′); but

12This extension of the function f , should not be confused with the “linear extension” of

the partial order (P, ρ) itself, which is a bijective order preserving function of (P, ρ) onto a total
order.
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that fails to capture its basic essence. Nevertheless, transformations are frequently
defined by extension of a point function, so we examine their properties. Extended
transformations must be monotone.

Proposition 4.2. A function f : (P, ρ) → (P ′, ρ′) is path/order preserving

if and only if its extended transformation (P,ϕ)
f+

−→ (P ′, ϕ′) is continuous with
respect to either the ϕ↓ or ϕ↑ path closures.

Proof. Let ϕ be the downset closure ϕ↓. Let f be path preserving and let
Y ⊆ P . ∀y ∈ Y , if x ρ y then f(x) ρ f(y). Consequently, Y.ϕ↓.f

+ ⊆ Y.f+.ϕ↓′, so
f+ is continuous.

Conversely, assume f+ is continuous and that x ρ y. Then x ∈ {y}.ϕ↓.
By monotonicity and continuity, {x}.f+ ⊆ {y}.ϕ↓.f+ ⊆ {y}.f+.ϕ↓′ implying
f(x) ρ f(y).

The proof when the closure is ϕ↑ is similar. �

Proposition 4.3. Let (P,ϕ)
f+

−→ (P ′, ϕ′) be an extended transformation. If it
continuous with respect to ϕ↓ or ϕ↑ then it is also continuous with respect to ϕC .

Proof. Suppose f is not continuous w.r.t. ϕC , then ∃Y ⊆ P such that Y.ϕC .f 6⊆
Y.f.ϕ′C which in turn implies ∃x ∈ Y.ϕC , x 6∈ Y such that x′ = x.f and x′ 6∈
Y.f.ϕ′C . x ∈ Y.ϕC implies ∃y1, y2 ∈ Y and y1 ρ x ρ y2. But by Proposition 4.2, f
continuous w.r.t. ϕ↓ (or ϕ↑) implies y′1 ρ

′ x′ ρ′ y′2 so x′ ∈ Y.f.ϕ′C , a contradiction.
�

This is hardly surprising given that ϕC = ϕ↓ ∩ ϕ↑.
Notably absent from Proposition 4.2 is the convex path closure ϕC , even though

by Proposition 4.3, ϕC must be continuous if either ϕ↓ or ϕ↑ is. Consider, for
example, Figure 4. Readily, g is not order preserving; but g+ is continuous because
every subset of P and P ′ is closed with respect to ϕC .

So “continuous” and “path preserving” are effectively synonyms. But, f need
not be a path homomorphism as defined in Section 2.2 in which every path in P ′

has a pre-image path in P . Consider the transformation of Figure 7. The path
b′ ρ′ g′ has no pre-image path in P . A element y′ ∈ P ′ is said to be invertible if
{y′}.f−1 6= ∅ [35]. The earlier definition of “path homomorphism” in Section 2.2
should be modified to include only invertible elements of P ′.

A transformation (P,ϕ)
f−→ (P ′, ϕ′) is said to be closed if Y closed in (P,ϕ) im-

plies Y ′ = Y.f is closed in (P ′, ϕ′). This is completely analogous to the topological
notion of an “open function” which maps open sets onto open sets.

Proposition 4.4. A transformation (P,ϕ)
f−→ (P ′, ϕ′) is closed if and only if

for all Y ⊆ P , Y.f.ϕ′ ⊆ Y.ϕ.f .

Proof. Let f be closed. X ⊆ X.ϕ implies X.f ⊆ X.ϕ.f . But, because X.ϕ is
closed and f is closed, X.f.ϕ′ ⊆ X.ϕ.f .

Conversely, let X be closed in (P,ϕ). X.f.ϕ′ ⊆ X.ϕ.f = X.f . But, readily
X.f ⊆ X.f.ϕ′, so equality holds. �
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Proposition 4.5. A transformation (P,ϕ)
f−→ (P ′, ϕ′) is closed and continu-

ous if and only if for all Y ⊆ P , Y.ϕ.f = Y.f.ϕ′.

Proof. This follows directly from the definition of “continuity” above and Propo-
sition 4.4. �

Proposition 4.6. A path preserving function f : (P, ρ) → (P ′, ρ′) is a path

homomorphism if (P,ϕ)
f+

−→ (P ′, ϕ′) is closed with respect to a path closure.

Proof. Let x′ ρ′ y′ in P ′, and let Y ∈ {y′}.f−1. Then Y.f+ = {y′} so x′ ∈
Y.f+.ϕ↓

′ ⊆ Y.ϕ↓′.f+ implying there exists yk ∈ Y and xi ∈ Y.ϕ↓ such that xi ρ yk
where f(xi) = x′ and f(yk) = y′.

Again, the proof is similar when the closure is ϕ↑ or ϕC . �

Observe that the converse to this proposition need not be true, as we will
demonstrate later with Figure 9. Combining Propositions 4.2 and 4.6, we have

Proposition 4.7. Let f : (P, ρ)→ (P ′, ρ′). If f+ is both closed and continuous
with respect to ϕ↑ or ϕ↓ then f is a path homomorphism.

Proposition 4.8. Let (P, ρ) be a finite partial order, i.e., acyclic directed graph,
(P ′, ρ′) be a directed graph and f : (P, ρ)→ (P ′, ρ′) be a surjective point function.

If (P,ϕ)
f+

−→ (P ′, ϕ′) is closed with respect to any path closure, then (P ′, ρ′) is
acyclic.

Proof. Assume ϕ↓ and that x′ ρ y′ and y′ ρ x′ constitute a directed cycle in
P ′. Let X = {x′}.f−1 and Y = {y′}.f−1 be distinct subsets in P . Since f+ is
closed with respect to ϕ, but X.f+ = {x′} is not, X cannot be closed. Similarly
Y cannot be closed in P . By Proposition 4.6, f must be a path homomorphism,
so there exists x0 ∈ X and y0 ∈ Y with y0 ∈ {x0}.ϕ. Since {y0}.f+ = {y′} is not
closed, there exists x1 ∈ {y0}.ϕ, x1 ∈ X. Since (P, ρ) is acyclic x1 6= x0.

Next we find y1 ∈ {x1}.ϕ, with y1 6= y0, and so forth. Since (P, ρ) is finite, this
process must terminate, leading to a contradiction. �

So having the transformations (P,ϕ)
f+

−→ (P ′, ϕ′) be closed and continuous is
sufficient to ensure that f is a path homomorphism and that (P ′, ρ′) is still a partial
order (acyclic). However, these properties are not necessary. In Figure 8, we
illustrate an order preserving f whose image is acyclic, but which is not closed
with respect to ϕ↓. The subset {a, b, d} is closed with respect to ϕ↓, but its image

f
a

b

c

d

e

a’ d’ = e’

c’

b’

Figure 8. An order preserving/continuous f that is not closed with respect to ϕ↓.

{a′, b′, d′} is not. Observe that f is path/order preserving but not a homomorphism
by our stronger definition because (c′, d′) ∈ E′, but there exists no (c, d) ∈ E.
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Proposition 4.8 has in fact proven that if f+ is continuous and closed then given
x′ ρ z′ in P ′ then for all xi ∈ {x′}.f−1 and all zk ∈ {z′}.f−1 there exists a path
xi ρ yk in P . This is too extreme.

Even path homomorphisms that preserve acyclicity need not be closed, as shown
in Figure 9. Would one intuitively regard g as “structure preserving”?

ga

b

c

b

a’ b’ c’

1

2

Figure 9. A path homomorphism g that is not closed with respect to ϕ↓.

If Y ⊆ P is closed with respect to ϕC then every path < y0, y1, . . . yn > with
y0, yn ∈ Y lies completely within Y . The transformation f of Figure 8 is closed
with respect to ϕC because only the subsets {ad} and {ae} are not closed in P ,
and {a′d′} is not closed in P ′. But, the transformation g of Figure 9 is still not
closed with respect to ϕC because {a, c} is closed in P , but {a′c′} is not closed in
P ′.

Proposition 4.9. Let (P, ρ) be acyclic and let f : (P, ρ) → (P ′, ρ′) be a path

homomorphism. Its image (P ′, ρ′) is acyclic if and only if (P,ϕC)
f+

−→ (P ′, ϕ′C) is
continuous and closed.

Proof. “If” follows from Proposition 2.2; we only need show the “only if”.
Let (P ′, ρ′) be acyclic. It is sufficient to show that for any y′ ∈ P ′, {y′}.f−1 is

convex in P . If not, there exists a path < y1, . . . , yn >∈ ρ with y1, yn ∈ Y.f−1 and
an x 6∈ Y.f.−1, but x ∈ ρ(y1, yn). Now, since f is a path homomorphism, y′ ρ′ x′

and x′ ρ′ y′ contradicting acyclicity. �

Proposition 4.9 is stated in terms of extended transformations. We wish a set

of criteria that will be applicable to arbitrary transformations (P,ϕ)
f−→ (P ′, ϕ′).

Let P
f−→ P ′ be a transformation. For all Y ′ ⊆ P ′, by f−1 we mean Y ′.f−1 =

{Y ⊆ P |Y.f = Y ′}. So, f−1 is a collection of subsets. Let (P, ρ)
f−→ (P ′, ρ′). As

analog to continuity of f we would like to define “inverse continuity” in terms of

Y ′.ϕ′.f−1 ⊆ Y ′.f−1.ϕ (4.1)

but because Y ′.f−1 is not a subset of P , this expression is ill-formed. Applying f
to both sides of (4.1) yields

Y ′.ϕ′ ⊆ Y ′.f−1.ϕ.f

and Y ′.f−1 will be replaced by a single element, i.e., a subset of P . We say that
f−1 is inv-continuous with respect to ϕ if there exists a minimal set Y0 ∈ Y ′.f−1
such that

Y ′.ϕ′ ⊆ Y0.ϕ.f
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A set Y0 is minimal if there exists no subset X ⊆ Y0 such that X.f = Y ′.

Proposition 4.10. Let (P,ϕ)
f−→ (P ′, ϕ′) and (P ′, ϕ′)

g−→ (P ′′, ϕ′′) both be

inv-continuous, then (P,ϕ)
f.g−→ (P ′′, ϕ′′) is inv-continuous.

Proof. Let Y ′′ ⊆ P ′′. Since g is inv-continuous, ∃ a minimal Y ′0 ⊆ P ′ such
that Y ′′.ϕ′′ ⊆ Y ′0 .ϕ

′.g. Since f is inv-continuous, ∃ a minimal Y0 ⊆ P such that

Y ′0 .ϕ
′ ⊆ Y0.ϕ.f . Consequently, Y ′′.ϕ′′ ⊆ Y0.ϕ.f.g. The monotonicity of

f+

−→
yields Y0 to be a minimal set for f.g. �

Proposition 4.11. Let (P,ϕ)
f−→ (P ′, ϕ′) be a transformation and let (P, ρ)

be acyclic. If f−1 is inv-continuous with respect to ϕC then (P ′, ρ′) will be acyclic.

Proof. Let f be inv-continuous w.r.t. ϕC and suppose (P ′, ρ′) has a cycle
y′ ρ′ z′1 . . . z

′
k ρ
′ y′. Let Y ′ = {y′} and let Y = {y1, y2, . . . yn} = {y′}.f−1. Because

f is inv-continuous, w.r.t. ϕC , there exists some {yi} such that {y′, z′1, . . . z′k} ⊆
{yi}.ϕ.f implying that {yi, z1, . . . zk} constitute a cycle in (P, ρ) which is a con-
tradiction. �

The converse need not be true, as shown by Figure 10.

a b c a’ b’ c’

Figure 10. Both (P, ρ) and (P ′, ρ′) are acyclic but f is not ϕC -inv-continuous.

Using Propositions 4.2 and 4.11 we can assert that if (P, ρ) is a partial order

(acyclic), then a transformation (P,ϕ)
f−→ (P ′, ϕ′) preserves the structure of (P, ρ)

if it is continuous with respect to ϕ↓, or ϕ↑, and inv-continuous with respect ϕC .

5. Summary

It is not clear what it means for a mapping f : (P,≤)→ (P ′,≤′) to be “structure
preserving” when (P,≤) is a partial order. Unless we are prepared to assert that
“order preserving” also preserves anti-chains, we cannot claim that every isotone
(homomorphic) function f is structure preserving.

In Section 2, we explored conditions on f−1 which assure that the image (P ′,≤′)
would be a partial order. This led to the notion of a convex path homomorphism.
(We observe that the concept of a path homomorphism is implicitly dependent on
f−1.)

In Section 3, we introduced closure concepts and closure lattices, which are
themselves partially ordered sets. In an effort to disambiguate the order in the
ground structure from that of the associated closure lattice, we used ρ to denote
the order in (P,≤) and ⊆ to denote the order in (2P ,≤). Every occurrence of ρ
and every occurrence of ⊆ can be replace with ≤. In some papers this is done. But,
we think our notational device, along with suffix notation, makes the mathematics
clearer and more intuitive.

While we do not reach a definitive conclusion as to the functional properties of
f that characterize it as a “structure preserving” morphism of partial orders, our
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investigations do conclude that such a characterization must be respectful of both
(A2), the transitivity of a partial order, and (A3) its anti-symmetry. To this end,
it appears that there must be constraints on both the morphism f and its inverse
f−1.

The equivalent constraints (Proposition 4.2) of path preservation (isotonicity) of

f : (P, ρ)→ (P ′, ρ′) and continuity (with respect to ϕ↓ or ϕ↑) of (P,ϕ)
f−→ (P ′, ϕ′)

are sufficient to ensure the expected transitivity. It appears that anti-symmetry
requires a convexity constraint on f−1, as seen in propositions 2.2, 4.9 and 4.11.

Other constraints on f were considered, such as requiring (P,ϕ)
f−→ (P ′, ϕ′)

to be both continuous and closed (Proposition 4.8); but this was deemed to be
far too restrictive, as it requires pre-image paths between every pair of pre-image
elements, as illustrated by Figure 8.

Partially ordered sets are of great importance in mathematical applications, as
well as how they morph from one to another. One could argue that, in practice,
these are second only to functions f : Rm → Rn which are much more studied.
Unfortunately, it feels as if this paper only scratches the surface.

Acknowledgement. The author would like to acknowledge the helpful com-
ments to a previous version of this paper by an unknown referee.
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