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THE ROLE OF CONTINUOUS PROCESSES

IN COGNITIVE DEVELOPMENT

JOHN L. PFALTZ

Abstract. Many scientists observing the cognitive development in children have
noted distinct phases in the way they learn. One phase appears to be a gradual

accumulation of experience. Another phase appears to be a reorganization of those

experiences to make them more useful. In this paper we show how mathematical
closure concepts can be used to abstractly model these cognitive processes.

Closed sets, which we will call knowledge units, represent tight collections of

experience, facts, or skills, etc. Associated with each knowledge unit is the notion
of its generators consisting of those attributes which characterize it.

Finally, we provide a rigorous mathematical model of these different kinds of

learning in terms of continuous and discontinuous transformations. There are il-
lustrations of both kinds of transformation, together with necessary and sufficient

criteria for certain kinds of transformation to be continuous. By using a rigorous
definition, one can derive necessary alternative properties which may be more easily

observed in experimental situations.

The formal mathematics is illustrated with reference to Lev Vygotsky’s view of
cognitive psychology, but it is not a verification of his model. We believe that this

concept of “continuity” can be refined to test, and possibly verify, his and other

models of cognitive behavior.

1. Introduction

It is generally accepted that mental cognition occurs in the brain, which is itself
comprised of a network of neurons, axons, and synapses. Neuroscientists have
a rather clear understanding of the physical layout of the brain, including which
portions are responsible for individual mental functions [12]. But, how mental
processes actually occur is still elusive. Nevertheless, it is clear that the response
to external stimuli occurs in a reactive network. Thus, if we want to understand
cognitive behavior we must, at some level, come to grips with network behavior.

A recurring theme in the studies of Lev S. Vygotsky [5], one of the founding
fathers in childhood cognitive psychology, is that of a distinction between two
kinds of learning. Vygotsky speaks of periods of development in which the mind
seems to be, more or less, passively assimilating its inputs from the external world,
and qualitative transformations leading to higher psychological functions. He
later equates this dichotomy with, the politically correct terms in prewar Russia,
evolution and revolution: “scientific thought . . . sees revolution and evolution as
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two forms of development that are mutually related and mutually presuppose each
other” ([5], p. 73). “The history of child behavior is born from the interweaving
of these two lines” ([5], p. 46). Roth [31] asserts that Vygotsky used the term
neoformation to denote the qualitative change in one’s knowledge, in contrast to
the quantitative accumulation that occurs during development.

In this paper, we will use the mathematical terms continuous and discontinuous
to differentiate between these two kinds of learning. It is the difference between
smooth incremental assimilation, or development, and transitional reorganization.
We are not the first to employ these two mathematical terms. Han van der Maas
and Peter Molenaar [39] made use of catastrophe theory to model the difference
between smooth continuous aggregation of knowledge and abrupt reorganization
of it. Paul van Geert [40] used classical systems modeling to do the same thing.
Both employed the classic mathematical model of a real functional output over
a multivariate system of numeric inputs. What will be novel in our approach is
that we do not define continuity in a numerical fashion; it is defined solely in terms
of discrete network behavior.

A desirable consequence of this approach is that the modeling is scale invariant.
Networks have different granularities. The granularity of the neural networks of
the mind is very different from the granularity of large scale, social networks. An
example of this is the rather small social network of 379 collaborating scientists,
constructed by M.E.J. Newman [17], that is illustrated in Figure 1.1 In contrast,

Figure 1. Newman’s 379 node collaboration network.

the smallest network granularity, of which we are aware, is one composed of poly-
mer strings forming chordless cycles (described in Section 6.2) which are thought

1Figure reprinted with permission from M.E.J.Newman, Phys. Rev. E 74, 036104 (2006).

Copyright (2006) by the American Physical Society.
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to regulate the transport of proteins through the boundary of the nucleus within
a cell [10, 20,42].

In Section 2, we will introduce the idea of an experiential operator, ρ, which
expresses the relationship between the elements of a network. The elements can
be raw visual stimuli, at a lower level, or concepts and ideas, at a higher level.

In Section 3 we introduce the concept of closure, which identifies closely related
elements. Closure is central to our mathematics. We conjecture that closure
is a formal analog of naming, which appears in Vygotsky’s approach, and that
closure, or naming, is a process that is essential for abstract, or higher level,
thinking.

For want of a better term we call closed sets, knowledge units. Properties of
these knowledge units are developed in Section 4.

It is not until Section 5 that we actually encounter network transformations,
and define the concept of continuity, and through its negation, discontinuity.
We will examine several continuous and discontinuous network transformations
and provide necessary and sufficient conditions for a simple transformation to be
continuous. This section is the meat of the paper.

Section 6 sketches some of the techniques we have found valuable for dealing
with larger networks such as Figure 1. One of these tools is a reduction process
which reduces the complexity of the network, and which can also be interpreted
as a paradigm of cognitive abstraction.

2. The experiential operator

Let U denote the finite universe of all awarenesses, sensations, etc. that an indi-
vidual might experience, U = {. . . , w, x, y, z}.2 We denote sets by {. . .} and by
upper case letters. Thus, Y = {x, z} is a set of two possible experiences in U . Y
is said to be a subset of (or contained in) U , denoted Y ⊆ U .

Experiences are related to one another. If z is related to x, say for example
that z can be experienced having once experienced x, we denote the relationship
by x ρ z. Relationships may, or may not, be symmetric; we need not have z ρ x.
Based on known neural morphology [12], most neural cells have many inputs and
relatively few outputs, so we can assume most relationships to be asymmetric.
Relationships come in a great many varieties. Experiential events can be simulta-
neous or sequenced in time; can be adjacent or distant in space; can be synonyms
or antonyms in a lexical space; or can be friendly or threatening in an emotional
space. But for this paper, we assume only one generic relationship. By ρ we mean
that some relationship exists. Throughout this paper, we are going to let the term
“experience” be generic. We might have related visual stimuli comprising a visual
object, or related skills comprising a skill set, or related facts comprising an area
of knowledge. All will be regarded as experiential.

Relationships are frequently visualized by means of graphs, or networks, such
as Figure 2. Here an edge between x and z denotes x ρ z. If no arrow head is
present, it is assumed that the relation is symmetric.

2This finiteness constraint can be relaxed somewhat, but there is relatively little yield for the
resulting complexity.
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Figure 2. A very small network depicting the relationships, ρ, between 6 experiential elements.
.

While graphs can provide a valuable intuition, we prefer to regard relationships
as operators that map subsets of U onto other subsets in U . Thus, we will denote
ρ by the expression {x}.ρ = {z}, that is, ρ operating on x yields z, or because we
tacitly assume x is related to itself, {x}.ρ = {x, z}. In Figure 2, {x}.ρ = {u,w, x, z}
and {z}.ρ = {y, z}. Using this kind of suffix notation is a bit unusual, but it has
value. One reason for preferring an operator notation is that, in order to experience
c, it may be necessary to first experience both a and b, that is, c ∈ {a, b}.ρ, but
c 6∈ {a}.ρ and c 6∈ {b}.ρ. For example, for a neuron c to respond, it may need
signals from both a and b. So properly, ρ is a function on sets, not individual
elements of U . The relation ρ of Figure 2 is said to be graphically representable
because, for all z, if z ∈ Y.ρ, there exists y ∈ Y such that z ∈ {y}.ρ. Not all
relations have this property. A second reason is that in later sections we will
compose the functional operators, and suffix notation lets us read the composition
in a natural left to right manner.

To formalize this, we let 2U denote all possible combinations of “experiences” in
the universe U . Mathematically, it is called the power set of U . The relationship
operator, ρ, maps subsets Y ⊆ U into other subsets, Z = Y.ρ ⊆ U . By convention
we assume that every experience is related to itself, so that, for all Y , Y ⊆ Y.ρ.
Consequently, ρ is an expansive operator. This is precisely what we want; ρ denotes
the possibility of expanding one’s realm of experiences. For example, having the
experiences x and y, it may be possible to also experience z, or {x, y}.ρ = {x, y, z}.

We will also assume that a greater collection of experience will permit a greater
awareness of possible new experience. That is, X ⊆ Y implies X.ρ ⊆ Y.ρ. Then,
ρ is said to be a monotone operator. Monotone, expansive operators have been
called dominance operators in the literature [14, 28]. We prefer to regard ρ as an
experiential operator that expands an individual’s awareness.

3. Closure operators and knowledge units

Certain collections of experiences, of facts, of abilities, appear to be more robust
than others. They go by many names in the literature. A cluster of perceived
visual stimuli may be called an external entity, or object. If the granularity of the
base experiential elements, U , is coarser, say that of skills or facts, we might call
a cluster of abilities an area of expertise, such as horseshoeing ; or a cluster of facts
might be regarded as a discipline, such as medieval history or high school algebra.
With so many possible terms and interpretations, we choose to use a more neutral
term. We will call such clusters knowledge units without trying to specify precisely
what such a unit is. In this section we will postulate that this organizing process
can be approximately modeled by a mathematical closure operator.
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The term “closure” has many interpretations within the psychological lexicon,
but to our knowledge, Vygotsky never used this word. However, “signs”, including
words and speech he felt to be crucial in a child’s development; they provided a kind
of closed wrapper around clusters of the child’s experiences. We will use “closure”
in a very specific, but unfamiliar, way. Imagine that we have a collection, C, of
objects within a relational system, and a separate object, z. If all of the external
objects that are related to z are also related to those of the collection C, then,
from the relationship point of view, z can be included in C with no change of
information. That is an example of “closure”.

We can make the idea of closure more precise. An operator ϕ is said to be
a closure operator if for all X,Y ⊆ U ,

Y ⊆ Y.ϕ ϕ is expansive,
X ⊆ Y implies X.ϕ ⊆ Y.ϕ ϕ is monotone, and
Y.ϕ.ϕ = Y.ϕ ϕ is idempotent.

There is an extensive literature on closure and closure operators of which [4,9,11,
18,22,25] are only representative.

Since ρ is both expansive and monotone, it is almost a closure operator itself.
But, ρ need not be idempotent. In Figure 2, we have u.ρ = {uwx} ⊂ {uwxyz} =
u.ρ.ρ.3 However, we can always define a closure operator ϕρ with respect to ρ.
Let,

Y.ϕρ = {z ∈ Y.ρ | {z}.ρ ⊆ Y.ρ} (3.1)

Equation (3.1) actually embodies the more intuitive paragraphs above. Y closure
consists of the union (∪) of all z in Y.ρ such that z.ρ is contained in Y.ρ. Readily, if
z ∈ Y then z.ρ ⊆ Y.ρ. We call ϕρ the experiential closure because it is determined
by the experiential operator ρ. Note that any relationship, ρ, of any type can
give rise to a closure operator, ϕρ, although it need not be unique. One can have
ϕρ1 = ϕρ2 , ρ1 6= ρ2. Moreover, one may have closures on the set of experiential
elements that are totally unrelated to ρ.

Proposition 3.1. ϕρ is a closure operator.

Proof. Readily, Y ⊆ Y.ϕρ by definition. Let X ⊆ Y and let z ∈ X.ϕρ. By (3.1)
z.ρ ⊆ X.ρ ⊆ Y.ρ hence z ∈ Y.ϕρ.
Now, suppose ∃z ∈ Y.ϕρ.ϕρ – Y.ϕρ. By (3.1) ∃X ⊆ Y.ϕρ such that z.ρ ⊆ X.ρ.
Since X ⊆ Y.ϕρ, z ∈ X.ρ ⊆ Y.ρ, so z ∈ Y.ρ. But, z 6∈ Y.ϕρ implying ∃w ∈ z.ρ, w 6∈
Y.ρ. However, w ∈ z.ρ ⊆ X.ρ contradicting our assumption that X ⊆ Y.ϕρ since
X.ρ 6⊆ Y.ρ. �

In the network of Figure 2, observe that {u} is closed, but {y} is not, because
{z}.ρ = {yz} ⊆ {wyz} = {y}.ρ, so {y}.ϕρ = {yz}. Neither is {w} closed, because
{w}.ϕρ = {uw}. So, singleton elements need not be closed.

Normally, we omit the subscript ρ from the closure symbol ϕ because most
results are valid for all closure operators. Only if some property of the relational
closure is required, will we use the symbol ϕρ.

3We sometimes elide the curly braces on sets when the meaning is clear; that is u.ρ = {u}.ρ.
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A set Y is said to be closed if Y.ϕ = Y . Because ϕ is expansive, U itself must be
closed. A well-known property of all closure systems is that, if X and Y are closed,
then their intersectionX∩Y must be closed; or equivalently, X.ϕ∩Y.ϕ = (X∩Y ).ϕ.

The concept of closure and closed sets is absolutely essential for this paper.
By a knowledge unit, Ki, we mean a set closed with respect to ϕρ in U . That is,

the elements of Ki are a tightly bound collection of related experiences that will
be regarded as a unit of knowledge awareness. In Figure 2, because {uw} is closed,
it is a knowledge set, K1. The set {uvw} is also closed, and thus also a knowledge
unit, K2. Here, K1 = {uw} ⊂ {uvw} = K2. We can think of increasing knowledge
awareness with increasing experience or capability.

There is a strong correlation between closed concepts and the nouns of a lan-
guage. The role of “naming things” in cognitive function has been remarked by
many. Vygotsky was an early proponent of the role of signs, or names, in facili-
tating memory, cognition and in problem solving. For example, he asserts that

“The role of language in perception is striking because of the op-
posing tendencies implicit in the nature of visual perception and
language. The independent elements in a visual field are simul-
taneously perceived; in this sense, visual perception is integral.
Speech, on the other hand, requires sequential processing. Each
element is separately labeled and then connected in a sentence
structure, making speech essentially analytical.” ([5], p. 33).

Typically, the nouns of a language denote closed knowledge units. However, the
converse need not be true. Closed knowledge units need not have names.

3.1. Examples of experiential closure

The formal definition of relationship-defined closure, ϕρ, as well as the more general
definition with respect to expansive, monotonicity, and idempotency, conveys little
intuitive sense of its being. Here we will examine some examples and tie them into
knowledge acquisition.

Two more common relationships, ρ, in the human experience are spatial and
temporal co-occurance, not an arbitrary graph such as Figure 2. Consider the
retina of the eye, where the close packing of cells (frequently called “pixels”, and
here shown as hexagonal, even though the retina is never quite so regular) endows
each receptive cell with 6 neighbors. Figure 3(a) illustrates a portion of the retinal
structure with 13 excited cells (black dots) which we will denote by Y . We seek
the spatial closure of Y . Readily, the quiescent cell labeled “a” belongs to Y.ϕ,
since {a}.ρ ⊆ Y . The quiescent cells labeled “b”, “c” and “d” are also elements of
Y.ϕ since {b}.ρ ⊆ Y.ρ, as are {c}.ρ, and {d}.ρ, as can be seen by comparing their
neighborhoods (dashed lines) with that of Y ′s neighborhood in Figure 3(b). The
black dots denote Y.ϕ.

The spatial operator, ρ, need not be limited to just the immediate neighbors.
Figure 3(c) illustrates the situation when the radius of expansion is 2. Now cells
“x” and “y” are included in the closure. It was shown in [30] that this spatial
closure operator can be implemented in parallel by “expanding” each stimulated
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Figure 3. Closures of the pattern Y in (a).

element in Y by n steps, then expanding its complement by n steps, thus contract-
ing Y . As n becomes large, this begins to approximate a convex hull operator.4

Since it is assumed that virtually all processing of information passing back from
the retina to the visual cortex occurs in parallel; that spatial retinal relationships
are preserved in this visual pathway; and that this pathway consists of alternating
odd/even cell layers [33], it is plausible to regard this example as an actual, but
vastly oversimplified, cognitive process.

Whether or not this closure operator mimics one actually found in nature,
it does illustrate how a closure operator can extract “identifiable” objects from
a pattern.

In the preceding example the spatial relationship, ρ, was uniform with respect
to all axes. It need not be. The following example is a bit more complex.

It is known that there exist specialized orientation-specific cells, often called
“Hubel-Wiesel cells”, in the retinal layer [15,43]. Let Y denote a set of stimulated
uni-directional cells as shown in Figure 4(a), and let the spatial relation, ρ, consist
of 4 distinct regions, ρ1, ρ2, ρ3, ρ4 as shown in Figure 4(b).
The closure operator, ϕ∗, will be defined by5

x ∈ Y.ϕ∗ if and only if x ∈ Y , or
(a) {x}.ρ1 ∩ Y 6= Ø and {x}.ρ2 ∩ Y 6= Ø,
(b) {x}.ρ3 ∩ Y = Ø and {x}.ρ4 = Ø.

where Ø denotes the “empty set” consisting of no elements.
The application of ϕ∗ to Figure 4(a) is illustrated in Figure 5. There is an

evident gap in the middle of the resulting “line”, L. Smoothing operators, such as
our previous example, can eliminate these small omissions and eliminate isolated
signals. Elongating the regions ρ1 and ρ2 can support identification of occluded
lines.

4Readily, as n grows large, Y.ϕ more closely resembles the hexagonal convex hull of Y . But,

it is not hard to create counter examples where the intersection of two closures X.ϕ and Y.ϕ will

be closed, but will not be convex hulls. In particular, the “convex hull” of two distinct points,
{x, y}.ϕ need not be a connected “line”.

5The concept of “experiential closure”, ϕρ, defined by 3.1 in the preceding section has the
virtue of being a closure operator regardless of the relational operator ρ. Other closure operators,

such as ϕ∗ can be defined; but proof of the closure properties must be given on an individual,

case by case basis. In the case of ϕ∗, (a) ensures that x must lie “between” elements of Y , and
(b) ensures that x is not “beside” other elements of Y . So ϕ∗ is idempotent.
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Figure 4. (a) A scattering of excited orientation sensitive Hubel-Wiesel cells, (b) a 4 part spatial

neighborhood.

Figure 5. Closure of Figure 4(a) using ϕ∗ based on ρ of Figure 4(b).

Readily, ϕ∗ extracts “lines” from the raw input of individual directional edge
detector cells. This illustrates, in a rather primitive example, the potential of clo-
sure to designate, or “name”, higher level constructs from lower level experiential
data. This can be one step in “the main question of vision: how to arrive at
a global interpretation of a scene from the local, atomic information contained in
an image?” [41].
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These two examples of closure operators have been set within the context of
visual cognition. They do not necessarily imply that these black and white “car-
toon” examples mimic actual visual processes. Real visual cognition can be far
more complex, for example, we see in certain multiple frequencies (color). But,
it does establish that closure concepts are compatible with known aspects of vi-
sual physiology. Similarly, we believe closure concepts are compatible with the
cognitive behaviors observed by Vygotsky, and others.

4. Generators and knowledge lattices

If K is a closed knowledge unit there exists at least one set Y ⊆ K such that
Y.ϕ = K. (It may be K itself.) Y is said to be a generator of K. A reasonable
interpretation of generating sets is that these are a set of features of K that serve
to characterize K.

Readily, any set Y is a generator of Y.ϕ, as is any set Z, Y ⊂ Z ⊆ Y.ϕ. If
for some X ⊂ Y , X.ϕ ⊂ Y.ϕ = K then Y is said to be a minimal generator of
K.6 In general, a closed set K may have several minimal generating sets, denoted
K.Γ = {Y1, . . . Ym} where Yi.ϕ = K, 1 ≤ i ≤ m. For example, in Figure 2,
{uy, uz, wy,wx,wz, xy, xz} are all minimal generators of {uwxyz} ⊂ {uvwxyz}.

While linguistic nouns normally correspond to closed knowledge units, genera-
tors are often described by adjectives, or collections of adjectives.

4.1. Knowledge lattices

It is assumed that our knowledge is structured. One way of doing this is to
partially order the knowledge units by containment to form a lattice.7 Because
U itself must be closed (ϕ is expansive) and because X ∩ Y must be closed, any
collection of closed sets can be partially ordered by containment to form a lattice.
We call them knowledge lattices, denoted Lρ. Figure 6 illustrates the knowledge
lattice, Lρ, associated with the experiential operator, ρ, of Figure 2. Doignon and
Falmange called such lattices “knowledge spaces” [7, 8]. This idea of knowledge
spaces has generated a considerable amount of psychological literature.8 Ganter
and Wille [11] regard a lattice of closed sets as a “concept lattice”. In both theories
the lattice structure is central; for us, it will be important, but ancillary.

A closed set Km in Lϕ is said to cover Ki if Ki ⊂ Km and there exists no
set Kj such that Ki ⊂ Kj ⊂ Km. That is, Km is the next set above Ki in the
lattice.9 We can think of the difference, Km – Ki, as being the skill/experience set
differentiating an individual with knowledge unit Ki from one with Km. In Figure
6, {uwxyz} – {yz} = {uwx} which is not a closed set, and {uvw} – {uv} = {w}.
Explicitly showing the set differences as we have done in 3 instances in Figure 6
can be an aid to understanding Proposition 4.1 which follows.

6If for all closed sets K, there is a unique minimal generating set, the closure operator is said

to be antimatroid. While antimatroid knowledge systems, such as [8] and [11], are mathematically
most interesting, they seem, in practice, to be most rare.

7Set containment, ⊆ is a “partial order”. Because X ⊆ Y and Y ⊆ Z implies X ⊆ Z, it is an
ordering; but because we may have X 6⊆ Y and Y 6⊆ X, it is only partial.

8Over 400 references can be found at the web site <cord.hockemeyer@uni-graz.at>.
9Because U is discrete, there is a “next” set above Ki in L, unless Ki = U .
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Figure 6. Closed set lattice of Figure 2.

There is a key relationship between the structure of the closed knowledge units
in a knowledge lattice and their generators. The generators of a knowledge unit
are precisely those features which differentiate it from other knowledge units in
the lattice, or . . .

Proposition 4.1. If a closed set K covers the closed sets K1, . . . ,Km in Lρ,
then X is a generator of K if and only if X ∩ (K – Ki) 6= Ø for all 1 ≤ i ≤ m.

Proof. A rigorous proof can be found in [16], here we present a more intuitive
argument.
A knowledge unit is the smallest closed set containing some set, X, of experiences.
Suppose X is a generator of K. Now, if X does not embrace at least one element
from K – Ki, then X.ϕ = Ki, not K.
Conversely, K contains a number of knowledge units, Ki, and if X includes at least
one experience that differentiates each one from K, then X must characterize K;
it must be a generator. �

This means that, if one knows the generators of a closed knowledge unit, one
knows the closed sets it covers and, conversely, given the lattice of closed sets, one
can determine all the minimal generators. It is worthwhile convincing oneself of
this unusual result by actual trial. In Figure 6, {uwxyz} covers {uw}, {ux} and
{yz} with respective differences being {xyz}, {wyz} and {uwx}. Using Figure 2,
convince yourself that each of the sets {uy}, {uz}, {wx}, {wy}, {wz}, {xy}, and
{xz} each of which intersect all three set differences are actually generators of
{uwxyz}.

Suppose U consists of visual stimuli. If X generates K, a closed set of related
stimuli, constituting a visual object, then X consists of those visual attributes
that characterize the object; and differentiate it from other similar objects, Ki.
On the other hand, if K represents an ability level in high-school algebra, as in [8],
then X represents those skills necessary to advance from lesser sets of abilities, Ki

to K. Finally, if K represents knowledge of the Napoleonic wars, then questions
embodying the facts in a generator, X, would comprise an excellent test of the
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student’s knowledge. The concept of generators resonates with many educational
themes depending on the network granularity.

Experiential networks are real. The neural networks of the mind are real; our
social networks are real; the related collections of facts we call knowledge are real.
Our rendition of these real networks by ρ may be an oversimplification; but it is
an abstract depiction of real phenomena. In contrast, these knowledge lattices are
not real. They have no existential counterpart that we know of. They are purely
a mathematical construct designed to help us understand the organization and
structure of real networks; and in the next section, to help us understand how
their structure can change under dynamic transformation. This is an important
distinction. While in this section, and the next, we may seem to be fixated on these
knowledge lattices, we are really most concerned about the underlying network of
experiential relationships.

Do the concepts of closure and generators correspond to real phenomena? Even
though we have no compelling proof, we believe they do. It seems clear that our
minds are capable of identifying and labeling, in some fashion, related collections
of experiential input. Replacing a cluster of primitive experiential elements with
a single label can optimize neuron use because it facilitates the internal representa-
tion at a coarser granularity. It is necessary for “abstract” thought. It permits the
creation of a network based on a new relation, say ρ̄, between closed, identifiable
clusters. Vygotsky asserts that “the very essence of human memory consists in the
fact that human beings actively remember with the help of signs” ([5] p. 51). He
describes signs as a key tool for the “internalization of higher psychological func-
tions” ([5], chapter 4). The concept of “closure” appears to be a somewhat formal
abstraction of what appears to be, in practice, an important labeling process.

Similarly, it seems apparent that the mind, on many levels, apprehends objects
and abstractions of the real world by abbreviated collections of salient features.
This, too, represents an economical use of neurons — which must be important
to all organisms. Whether generators exactly model this phenomenon is unclear;
but surely they represent an abstraction of this capability.

Our imposition of a formal lattice structure as a mathematical device to com-
prehend the organization of experiential networks may be a major contribution of
this paper. In the following sections we will see where this leads us.

5. Transformation as learning

The notion of transformation is a familiar one in educational psychology; for ex-
ample, the process of internalization has been described as a “series of transfor-
mations” [5]. In this section we will develop the idea of transformation as a math-
ematical function. Most are familiar with polynomial functions, which describe
numerical change — the speed of a falling object is a quadratic function of its time
of flight. But now a transformation will be a function that describes a change of
structure. It requires a different mathematical mindset. It is one reason why we
use suffix notation.

By a transformation, U
f−→ U ′, we mean a function f which, to every set

Y ⊆ U assigns a set Y.f = Y ′ ⊆ U ′. (We use Y ′ to denote the image of Y in U ′).
Of most interest will be the effect, K.f , of transforming closed knowledge units,
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and how the transformation will affect their relationship with other knowledge
units, Ki.f . The importance of using a power set as the domain and codomain
of a transformation is that elements, y and z, can be functionally removed from
the system. For example, consider the transformation f depicted by Figure 7,
which simply deletes the elements y and z from the network of Figure 2. Here,
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Figure 7. A transformation U
f−→ U ′ that removes y and z from the network of Figure 2.

U ′ = U – {yz} in Figure 7(b). Consequently, {yz}.f = Ø so, by monotonicity,
{y}.f = {z}.f = Ø, as well. Thus, f is defined by Y.f = Y ′ = Y – {y, z} for all
sets Y ⊂ U .

In the mathematics of the real line, the behavior of functions is typically vi-
sualized by the familiar graph plotting the value y = f(x) for all x along the
x-axis. When the function is defined on sets of discrete elements, a different ap-
proach must be taken. We prefer to illustrate its behavior by what happens to
the closed set/knowledge lattice. Although f is defined for all sets, Y ⊆ U , we
use only these closed sets, or knowledge units, to visualize the process. Figure

7(a)
f−→ (b) shows how the experiential network is affected. Figure 7(c)

f−→
(d) illustrates its behavior with respect to the knowledge lattice. Here we have
circled those closed sets which map on to the same set in Lρ′ . For example, the
closed sets {{uvwxyz}, {uvw}, {uvx}, {uv}} all map onto {u′v′w′x′} in Lρ′ . This
transformation, f , is a classic example of a smooth, well-behaved lattice morphism.

Learning is more often associated with the acquisition of additional experiential
awareness. Because transformations are defined over 2U , not U itself, the empty
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set, Ø can also map to a non-empty set. This provides a functional way of ex-
panding the experiential network, and thus knowledge structures. It is basic to
our model of “learning”.

Consider the transformation U
g−→ U ′ where U ′ = U ∪ {t′}. Here we have

Ø.g = {t′}, and {uvw} in Lρ corresponds to {t′u′v′w′} in Lρ′ . These pairs of new

g

g

u’ v’ z’

u’v’x’

y’z’

Ø

t’u’v’w’ t’u’v’x’

t’u’v’

u’x’

t‘

t’v’y’z’

t’v’ u’w’ u’v’ t’z’

u’w’x’y’z’

u’v’w’

u’v’w’x’y’z’

t’u’v’w’x’y’z’

v’y’z’

w’ z’t’w z

v

u’ x’xu

y v’ y’

(a)

(b)

(c)

uvwxyz

vyz

u v z

Ø

uvuw ux

uvw uvx

uwxyz

yz

(d)

Figure 8. A transformation g that adds t to the system of Figures 2 and 6.

sets are enclosed with dashed lines in Figure 8(d). Notice that the presence of t′

in U ′ with its connections to u′ and v′ enlarges the closure structure of U ′; but it
seems to “slide” in gracefully.

A transformation U
f−→ U ′ is said to be monotone if, for all sets X,Y in U ,

X ⊆ Y implies X.f ⊆ Y.f . Monotonicity is essential throughout the following
mathematical approach.10 Observe that the transformations f and g are both
monotone in that Ki ⊆ Km in Lϕ implies Ki.f ⊆ Km.f in L′ϕ. These are
well-behaved lattice morphisms. Not all monotone transformations need be well-
behaved. In Figure 9, the element t′ is once again added to create U ′, but it is
embedded differently with respect to the connections of ρ′. It is still monotone,
but something seems to be wrong with the corresponding lattice morphism, h. The
closed sets in Lρ′ seem to be augmented with {t′u′}, not {t′} as expected. They
have been circled because they appear to be relevant, but they are not consistent

10In artificial intelligence (A.I.), learning is said to be “monotonic” if no new piece of infor-
mation can invalidate any existing “knowledge” as represented by a set of rules. That concept of

knowledge involves a notion of logical contradiction, not just the simple inclusion or deletion of

experiential input. There is an abundance of literature about A.I. architectures which support
both monotonic and non-monotonic reasoning [1,23,32]. Our use of the term is rather different.
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Figure 9. An ill-behaved transformation U
h−→ U ′ of Figure 2.

throughout. For example, why do the sets {t′u′v′w′} and {t′u′v′x′} suddenly
appear. Figure 8 illustrates a regularity that Figure 9 does not. We will develop
this theme in the following section.

5.1. Continuous transformations

In high school we are told that a “continuous” function, f(x), is one whose graph
can be drawn without lifting one’s pencil from the paper. The more precise defini-
tion encountered in real analysis is quite analogous to the definition that follows.11

A discrete transformation, U
f−→ U ′, is said to be continuous if, for all Y ⊆ U ,

Y.ϕ.f ⊆ Y.f.ϕ′

This is the traditional definition of continuity for functions on discrete spaces
[18,19,21,36,37]. Yet, this short equation conveys little intuitive sense of its import.
The transformations f and g of figures 7 and 8 are continuous; they are “smooth”.

The “ ill-behaved” transformation U
h−→ U ′ of Figure 9 is not continuous because

{x}.ϕ.f = {uwx}.f = {u′w′x′} 6⊆ {x′} = {x}.f.ϕ′. We say that h is discontinuous.
Continuity takes on additional importance when viewed as a function on knowledge
lattices. It effectively asserts that, if a learning transformation is continuous, it
only expands the knowledge units of an individuals experiential awareness. That
is, if K = Y.ϕ then K.f ⊆ Y.f.ϕρ′ = K ′.

11A real function y = f(x) is said to be continuous if, for any open set Oy containing y,

there exists an open set Ox containing x such that f(Ox) ⊆ Oy = Of(x), or using suffix notation

x.O.f ⊆ y.f.O′.
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Before considering more fully what comprises continuous transformations in
a cognitive context, it can be valuable to examine the purely formal characteristics
of continuity. For example, a sequence of continuous transformations will, itself,
be continuous, or . . .

Proposition 5.1. Let (U,ϕ)
f−→ (U ′, ϕ′), (U ′, ϕ′)

g−→ (U ′′, ϕ′′) be monotone

transformations. If both f and g are continuous, then so is U
f.g−→ U ′′.

Proof. We have X.ϕ.f ⊆ X.f.ϕ′ for any X ∈ U and Y.ϕ′.g ⊆ Y.g.ϕ′′ for any
Y ∈ U ′. Consequently, as g is monotone, X.ϕ.f.g ⊆ X.f.ϕ′.g ⊆ X.f.g.ϕ′′. Thus,
f ·g is continuous. �

If a portion of a closed knowledge unit, K, maps onto a closed knowledge unit,
K ′, under a continuous transformation, f , then the entire knowledge unit maps
onto K ′, or . . .

Proposition 5.2. Let (U,ϕ)
f−→ (U ′, ϕ′) be monotone, continuous and let

Y.f = Y ′ be closed. Then, Y.ϕ.f = Y ′.

Proof. Let Y.f be closed in U ′. Because f is continuous Y.ϕ.f ⊆ Y.f.ϕ′ = Y.f ,
since Y.f is closed. By monotonicity, Y.f ⊆ Y.ϕ.f , so Y.ϕ.f = Y.f . �

If X is a generator of a closed knowledge unit K, then X.f is a generator of
K.f.ϕ′, or . . .

Proposition 5.3. Let (U,ϕ)
f−→ (U ′, ϕ′) be monotone. Then, f is continuous

if and only if X.ϕ = Y.ϕ implies X.f.ϕ′ = Y.f.ϕ′.

Proof. Let f be continuous, and let X.ϕ = Y.ϕ. By monotonicity and continu-
ity, X.f ⊆ X.ϕ.f = Y.ϕ.f ⊆ Y.f.ϕ′. Similarly, Y.f ⊆ X.f.ϕ′. Since Y.f.ϕ′ is the
smallest closed set containing X.f and X.f.ϕ′ is the smallest closed set containing
Y.f , X.f.ϕ′ = Y.f.ϕ′.
Conversely, assume f is not continuous. So there exists Y with Y.ϕ.f 6⊆ Y.f.ϕ′

There exists X ∈ Y.ϕ−1. X.f ⊆ X.ϕ.f = Y.ϕ.f 6⊆ Y.f.ϕ′, so X.f.ϕ′ 6= Y.f.ϕ′,
contradicting the condition. �

Corollary 5.4. If (U,ϕ)
f−→ (U ′, ϕ′) is a monotone, continuous transforma-

tion and X generates K (X.ϕ = K), then X.f generates K.f.ϕ′.

Note that, even though f is monotone and continuous, and K is closed with respect
to ϕ, K.f need not be closed with respect to ϕ′. However, by Corollary 5.4, K.f
must be a generating set of K.f.ϕ′.

Continuous transformations are very well-behaved with other demonstrable
properties, cf. [21]. It is our conjecture that a continuous transformation of a hu-
man’s experiential network (as exemplified by ρ) corresponds to our “natural”
reaction to new experience and stimuli. It is an, almost automatic, response to
novel experiences. It is what Vygotsky would consider development. As a corollary,
we conjecture that a proper role of education is to create experiential connections
that lead to a discontinuous restructuring of our knowledge structure, regard-
less of its actual formation. Vygotsky called this neoformation as distinct from
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development. We believe that properly directed education can change connections
between knowledge units in a discontinuous manner that would not occur natu-
rally. However, for now, let us focus on the nature of those transformations that
occur continuously, or “naturally”.

5.2. Visual continuity

Persistence is important in visual perception. It is a form of continuity with respect
to time. Let us assume that a line Lt0 such as shown in Figure 5 has been identified
within the visual cortex, (and possibly “enlarged” to include adjacent cells/pixels
to account for “jitter”). Let Lt1 denote the same closed line as identified some
nano-seconds later. If Lt1 ⊆ Lt0 then ϕ∗ is continuous and L can be regarded
a persistent. Note that, since ϕ∗ is a closure operator, if the image is persistent and
thus continuous, then all the preceding propositions are true here. In particular,
the set X of edge detection cells that generated Lt0 must still generate Lt1 .

5.3. Small incremental change

As is evident from Figures 8 and 9, the key to continuous learning is not just
exposure to new experience, but how that new experience is integrated with other
related experience. It has been suggested that new experience, new stimuli, is
integrated into our memory, or knowledge structure, as we sleep. Apparently this
occurs through the creation of new axons and synaptic connections [2, 6]. Some
researchers believe that the elimination of connections may be equally important
as creating new ones [38]. The following three propositions present necessary and
sufficient conditions for creating, or deleting, a single link in ρ to be continuous.

It was shown in [25] that, if a discontinuity exists, it will manifest itself at
a single experiential event, or...

Proposition 5.5. If there exists Y such that Y.ϕ.f 6⊆ Y.f.ϕ′, then there exists
a singleton set {y} ⊆ Y.ρ such that {y}.ϕ.f 6⊆ {y}.f.ϕ′.

This makes testing for continuity viable.
The following two propositions characterize continuous transformations that

add, or delete, edges/relationships within a symmetric network. In both Proposi-
tions 5.6 and 5.7, we assume that U ′ = U and that f is the identity function on Lρ,
and that y′ = {y}.f denotes the same node, but within the new structure of Lρ′ .
In the statement of these propositions, we use the term x.η. By Y.η, which we call
the neighborhood of Y , we mean the set Y.η = Y.ρ – Y , that is, the immediate
neighbors of Y with respect to ρ.12

In Proposition 5.6 we show that new links can be continuously created be-
tween two experiential events x and z if there already exists a reasonably close
relationship. Granovetter [13], and many other sociologists have observed this
phenomenon.

Proposition 5.6. Let U
f−→ U ′ be the identity transformation. If f adds an

edge (x′, z′) to create a network ρ′, it will be continuous at x if and only if for all
y ∈ x.η, if x ∈ y.ϕ then z ∈ y.ρ.

12Note that the η operator is normally neither expansive nor monotone.
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Proof. Assume that ∃y ∈ x.η, x ∈ y.ϕ, but z 6∈ y.η. Since x ∈ y.ϕ, x.η ⊆ y.ρ.
But, because z 6∈ y.η, x′.η′ 6⊆ y′.ρ′ and y.ϕ.f 6⊆ y.f.ϕ′.
Conversely, assume f is discontinuous. First, we observe that x.ϕ.f ⊆ x.f.ϕ′

since the addition of an edge (x′, z′) cannot reduce the closure x′.ϕ′. So, f must
be discontinuous at y ∈ x.η; that is, ∃w ∈ y.ϕ such that w′ 6∈ y′.ϕ′ because
w′.η 6⊆ y′.ρ′. Readily, w′ = x′ (or z′). After adding the edge (x′, z′), x′.η′ 6⊆ y′.ρ′

only if z′ 6∈ y′.η, that is, z 6∈ y.η. �

We say that f is “discontinuous at x” even though the actual discontinuity may
occur at y ∈ {x}.η ⊆ {x}.ρ as noted in Proposition 5.5. This slight abuse of
terminology allows us to focus on the structure surrounding the node x before
(x′, z′) is created. Note that, for f to be continuous, f must be continuous at both
x and z.

Next we show that a link between two experiential events x and z can be
continuously deleted if they are not too closely connected, or . . .

Proposition 5.7. Let U
f−→ U ′ be the identity transformation. If f deletes an

edge (x, z) from ρ′, it will be discontinuous at x if and only if either
(a) z ∈ x.ϕ and z.ϕ 6= x.ϕ or
(b) there exists y ∈ x.ϕ, with z ∈ y.η.

Proof. Suppose (a), z ∈ x.ϕ. Since (x, z) is being deleted z′ 6∈ x′.η′. Conse-
quently, {x}.ϕ.f 6⊆ {x′}.f.ϕ′.
The last conjunct x.ϕ 6= z.ϕ of condition (a) covers the special case illustrated in
Figure 10. The closure structure is the same whether the edge (x, z) exists or not.
Suppose (b) that ∃y ∈ x.ϕ and z ∈ y.η. {y′} ⊆ x.ϕ.f , but z′ 6∈ x′.η′ implies
that y′.η′ 6⊆ x′.η′, hence, y′ 6∈ x′.ϕ′ = x.f.ϕ′. Now, {x}.ϕ.f 6⊆ {x}.f.ϕ′, and f is
discontinuous.
Conversely, suppose f is not continuous at x. Then, by Prop. 5.5, either (1)
{x}.ϕ.f 6⊆ {x}.f.ϕ′ or (2) for some y ∈ {x}.η, {y}.ϕ.f 6⊆ {y}.f.ϕ′.
Assume the former, then there exists some w ∈ {x}.ϕ such that w′ = w.f 6∈
{x}.f.ϕ′. Since (x, z) is the only edge being deleted, w must be z.
Now assume the latter. If y ∈ {x}.ϕ, then y.η ⊆ x.ρ. If z 6∈ y.η, then {y}.ϕ.f ⊆
{y}.f.ϕ′; but f is assumed to be discontinuous, so z ∈ y.η. �

Figure 10 illustrates a special case which forces the last conjunct x.ϕ 6= z.ϕ in
condition (a). Addition, or deletion, of the dashed edge (x, z) can make no change

y
2

x

y
1

z

Figure 10. Two points where x.ϕ = z.ϕ.

in the closed set structure whatever, in particular, deletion will not create a dis-
continuity even though z ∈ {x}.ϕ.

If f and g are both continuous single edge additions or deletions, then, by
Proposition 5.1, their composition f ·g is as well. It would be mathematically
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satisfying, if, conversely, every continuous restructuring of ρ could be decomposed
into primitive single edge transformations; but in [25], it is shown that this need
not be true.

5.4. Continuous evolution

We have suggested that continuous transformation of our network of experiences
is analogous to “natural” learning. The author has conducted an experiment that
seems to support this contention [26].

We first generated random networks on n elements by creating m symmetric
relationships, y = x.ρ. Then, we permuted the network by adding and deleting
randomly chosen relationships, provided the transformation would be continuous,
as defined by Propositions 5.6 and 5.7. In this way the density, m/n, of the
relationship, ρ, was kept constant. Depending on the original size, n, of the
network, this perturbation was iterated between 50 to 1,000 times. In all cases,
the organizational structure of the network was markedly increased, as shown by
a significantly greater number of embedded triangles, a traditional measure of
network structure [13, 35], and a decrease in the length of embedded chordless
cycles. The details of these experiments can be found in [26].

It is our contention that these random processes mimic, to some extent, the neu-
ral processes that occur during sleep [2,6], including the conjecture [38] that neural
connections must be broken, or weakened, as well as created, or strengthened to
maintain a constant neuronal density. The increase in organizational structure
can only be due to the continuity constraint because all else is random. Note that
a simple increase in the total number of neuronal relationships, ρ, such as will
occur in the mental growth of young children must also increase the number of
embedded triangles and decrease the length of chordless cycles.

6. Large experiential networks

Networks such as Figure 2 abound in the human existence. Their granularity can
range from the neural networks of our mind to social networks of our international
friends and associates. On the other hand, as we pointed out at the end of Section
3, lattices such as Figure 6 have no reality. They are purely formal mathemat-
ical constructs created to understand network structure and behavior. How else
could we have seen the distinction between the transformations g (Figure 8) and
h (Figure 9), both of which simply add a new element t′ to an existing network.

Using these closed set lattices to understand the behavior of the underlying
network structure only works so long as we consider small, unrealistic, experiential
networks and knowledge units. As the size of a network grows, the size of its closure
lattice tends to explode. They are just too big for visual comprehension.

Relational networks can also become too large to be retained by a finite neural
network. There must be both mathematical and psychological tools to cope with
large networks.
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6.1. Relative closure

One effective tool is the idea of using a window to restrict our view to just a portion
of the entire network and its lattice. This is sometimes called “focusing one’s
attention”. Let (U, ϕ) be any closure space and let W ⊆ U. By the restriction of
ϕ to W, denoted ϕ|W , we mean X.ϕ|W = X.ϕ ∩ W for all X ⊆W,X ∩ W 6= Ø.
This is also known as relative closure. Proposition 6.1(a) tells us that, if X is
closed in U , it will still be closed in the smaller window W . Proposition 6.1(b)
and (c) give us sufficient conditions to assume that what we see in the smaller
window, W , can be extrapolated to the larger universe, U .

Proposition 6.1.
(a) X closed with respect to ϕ implies X ∩W is closed with respect to ϕ|W .
(b) If W is closed with respect to ϕ and X ⊆ W , then X is closed with respect

to ϕ|W implies X is closed with respect to ϕ.
(c) If X is closed with respect to ϕ|W and (X.ϕ−X) ∩ (U−W ) = Ø, then X

is closed with respect to ϕ.

Proof. (a) If X is closed with respect to ϕ, then X.ϕ = X and (X ∩
W ).ϕ|W ⊆ X.ϕ|w ∩W.ϕ|W = X.ϕ ∩W ∩W = X ∩W .

(b) X closed with respect to ϕ|W implies X.ϕ ∩W = X. But X ⊆W and W
closed imply X.ϕ ⊆W , so X.ϕ ∩W = X.ϕ = X.

(c) If X is not closed with respect to ϕ, then (X.ϕ−X) = ∆. Let X be closed
with respect to ϕ|W so Ø = X.ϕ|W−X = (X.ϕ∩W )−X = (X.ϕ−X)∩W .
Consequently, ∆ ⊆ U−W , and (X.ϕ−X) ∩ (U−W ) 6= Ø.

�

Thus, subject to reasonable constraints, we can focus in on smaller regions without
distortion.

6.2. Reduction and chordless cycles

Relative closure supports close examination of local structure. Often we are more
interested in its global understanding, which can be facilitated by collapsing much
of the local detail and retaining only a “broad brush” representation of its struc-
ture. We can “reduce” large networks by iteratively deleting any node z for
which z ∈ {y}.ϕ. It is not hard to show that removing z (and all its connec-
tions) will be continuous. Hence, by Proposition 5.1, the entire transformation

(U,ϕ)
ω−→ (U ′, ϕ′) is continuous. The actual computer process, ω, is presented in

some detail in [24,25,27].
The extent of the reduction can be quite variable, depending on the structure

of the network. Tightly structured networks (with many triangles) seem to show
the largest degree of reduction. In Figure 11, we have the 65 node reduction of
Newman’s 379 node collaboration network that we had illustrated as Figure 1. In
the node symbols, < n >, of this figure, n denotes the number of original elements
that were reduced to this single element. Each such cluster can be reconstructed,
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Figure 11. The reduced 65 node version of Newman’s collaboration network.

if desired. This reduction process is fast and efficient.13 In [25], we illustrate
the reduction of a 1421 node network depicting relationships between Norwegian
boards of directors to just 103 nodes. This kind of reductive performance seems
representative.

Reduction is a useful tool for understanding networks of all kinds. The reduced
network has a number of interesting properties [27]. For example,

Proposition 6.2. Let (U.ρ)
ω−→ (U ′, ρ′). There exists a path from x to z in

(U, ρ) if and only if there exists a path from x′ = x.ω to z′ = z.ω in (U ′, ρ′).

Proof. This is a rather long, tedious proof. See [27]. �

Perhaps equally important, it has been shown that all remaining nodes in the
reduced network lie on a chordless cycle of k ≥ 4 nodes, or a unique path joining
two such cycles. A cycle < x0, x1, . . . xk = x0 > where xi ρ xi+1 is chordless if
there exists no edge, or relationship, xi ρ xi±m where m ≥ 2. These chordless
cycles represent the somewhat tenuous connections that exist between the more
tightly related clusters typically seen in social networks. Granovetter [13] speaks
of the strength of “weak connections”. In Figure 11, the cluster of individuals
denoted by < 15 > is part of a chordless cycle that connects < 18 > and < 9 >.

Chordless cycles are easily broken by continuous transformation (Proposition
5.7) and difficult to create (Proposition 5.6). Reduction reveals the presence of
chordless cycles, but does not create them. For this reason, it is conjectured
that, in knowledge networks, these chordless k-cycles can result from discontinuous
learning processes just as tight clusters and triangles may be the result of natural,
continuous development processes.

13Worst case performance is O(n2) where n denotes the size of the network, but expected
performance is O(n), which has been observed in practice.
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While the reduction code was written to simplify large social networks, the pro-
cess may mimic that of “natural abstraction” in cognitive development. Clusters
of experiential input can be replaced by a single descriptive node. Verbalization
and the role of signs is important to Vygotsky. Initially, he thinks, memory is
the recall of external events by means of specific attributes, as in a “grandmother
has a soft lap”. Or we might say, by the recall of generators. Later in childhood,
words are used to bind together “whole groups of visual things connected by visual
ties”. Finally, toward the end of childhood, the interfunctional relations involving
memory reverse their direction. For the young child, to think means to recall; but
for the adolescent, to recall means to think” ([5] pp. 50-51, italics his). The process
of “self talk”, frequently observed in young children when engaged in a problem,
may be a manifestation of a similar on-going abstraction process where the origi-
nal cluster of experiential stimuli is being replaced by a verbal representative. So
long as the abstraction process is continuous, it is, by Proposition 6.2, faithful to
reality.

7. Summary

Even though we have repeatedly shown parallels with concepts propounded by
Vygotsky, we are not proposing any particular model of knowledge in this pa-
per. Mathematics is only a language by which various ideas may be expressed
and tested. We could as well have chosen to illustrate some of these concepts
using the theories of Jean Piaget who describes a process of assimilation which
is the “integration of external elements into evolving or completed structures of
an organism” ([29] p.706). This he contrasts with accommodation, in which the
individual restructures his existing understanding of the world. This latter could
be interpreted in the light of continuous reduction and abstraction described in
Section 6.2, or it could be understood as a more discontinuous process. Similarly,
both the issue of peripheral-origins vs. central-origins explored by Spelke, Brein-
linger, Macomber and Jacobson [34], and the conjecture of Case regarding central
conceptual structures [3], could be accommodated within our closed set approach.
It favors none of them. But, it can provide an internal structure that could be
used, in turn, to test the consistency of these models.

Our real goal has been to explore whether properties of closure operators and
closed set systems can be relevant to modeling cognitive processes. We have pre-
sented ρ as an experiential operator. We have considered closed sets as units of
knowledge that can be characterized by their generators and partially ordered to
form a knowledge lattice. We have couched learning in terms of transformations.

Proposition 5.7 provides necessary and sufficient conditions for a specific kind
of transformation which removes a link in a relationship to be continuous. It
seems to be a widely held contention that learning involves the acquisition of
more experiences and more data. In early childhood when our neural capabilities
are growing this would seem so. But, even at an early age, children appear to
be condensing raw stimuli into abstract identifiable concepts. In the process of
learning, deletion seems to be as valuable as addition. In many forms of autism,
it is the inability to delete and control an overload of raw sensory images that is
problematic.
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We, and others, have said that discontinuous transformations may be essential
to our cognitive development. But, aside from Figure 9, we have otherwise said
very little about discontinuity. That is largely because discontinuity is difficult
to handle mathematically. Besides acknowledging its existence through example,
there is little one can prove about a discontinuous function, or transformation.
On the other hand, we have shown through the reduction process, ω, that certain
forms of major abstract restructuring are quite possible through continuous trans-
formation. So it is not clear to what extent discontinuity is a necessary feature
of cognitive development, or an artifact of external circumstance created by the
learning environment. Vygotsky cites an example of neoformation arising from
a rather disruptive external force [31]. This would be discontinuous.

We believe that we have made a strong case for regarding the cognitive process
as being an, as yet unknown, closure operator; and demonstrated that such closure
processes can actually be implemented in a neural network setting. Moreover,
dynamic changes to our cognitive awareness can be modeled in terms of continuous,
and discontinuous, processes. It will certainly take further refinement, including
consideration of multiple experiential relationships, and considerable experimental
testing to validate this claim.
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[21] J. L. Pfaltz and Josef Šlapal, Transformations of discrete closure systems, Acta Math. Hun-
gar. 138 (2013), 386–405.

[22] J. L. Pfaltz. Closure lattices, Discrete Math. 154 (1996), 217–236.

[23] J. L. Pfaltz, Establishing logical rules from empirical data, Int. J. Artif. Intell. T. 17 (2008),
985–1001.

[24] J. L. Pfaltz, Finding the mule in the network, in: R. Alhajj and B. Werner (eds.), In-

tern. Conf. on Advances in Social Network Analysis and Mining, ASONAM 2012, Istanbul,
Turkey, 2012, 667–672.

[25] J. L. Pfaltz, Mathematical continuity in dynamic social networks, Soc. Netw. Anal. Min. 3

(2013), 863–872.
[26] J. L. Pfaltz, Mathematical evolution in discrete networks, Math. Appl. 2 (2013), 153–167.

[27] J. L. Pfaltz, The irreducible spine(s) of discrete networks, in: X. Li, Y. Manolopoulos, D.
Srivastava and G. Huang (eds.), Web Information Systems Engineering – WISE 2013, LNCS

6984, Nanjing, PRC, 2013, 104–117.

[28] J. L. Pfaltz, Dominance and closure, arXiv, math-CO(1501.03072), 2015, 1–15, submitted
to J. Graph Theor.

[29] J. Piaget, Piaget’s theory, inn P. H. Mussen (ed.), Carmichael’s Manual of Child Psychology,

vol. 1, 3rd ed., 1970, 703–732.
[30] A. Rosenfeld and J. L. Pfaltz, Sequential operations in digital picture processing, J. ACM

13 (1966), 471–494.

[31] W. M. Roth, Neoformation: A Forgotten or Neglected Vygotskian Concept?, typescript,
2015.

[32] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 2003.
[33] A. Sarti, G. Citti and J. Petitot, Functional geometry of the horizontal connectivity in the

primary visual cortex, J. Physiol. – Paris 103 (2009), 37–45.

[34] E. S. Spelke, K. Breinlinger, J. Macomber and K. Jacobson, Origins of knowledge, Psychol.
Rev. 99 (1992), 605–632.

[35] S. Suri and S. Vassilvitskii, Counting triangles and the curse of the last reducer, in: WWW

2011, Hyderabad, India, 2011, 8 pp.
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