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ABSTRACT

This paper explains how very large network structures can
be reduced, or consolidated, to an assemblage of chordless
cycles (cyclic structures without cross connecting links), that
is called a trace, for storage and later retreival. After de-
veloping a basic mathematical framework, it illustrates the
reduction process using a most general (with directed and
undirected links) network.

A major theme of the paper is that this approach appears
to model actual biological memory, as well as offering an
attractive digital solution.

Keywords

Closure, biological memory, reduction, consolidation, recall,
trace, subgraph matching, directed graphs

1. INTRODUCTION

A central tenet of database theory is that it is the re-
lationships between various entities that constitute real in-
formation. It is the foundation of the relational model [7].
But, in those situations where there are millions of entities
and the relationships are relatively sparse, the familiar array
style representation of data simply won’t work. We turn to
graph, or network, type representations. In other situations,
such as social network analysis, the data is naturally graph
structured. In any case, we are concerned with the retreival
of specific “chunks” of the stored information.

We will contend that retrieval of information from a stor-
age medium is not a single, unified operation; that there are
at least two distinct phases. First the desired information
must be identified and located within the storage medium.
We call this “information access” and address it in Section
3. Then it must be read out or, in the case of biological
memory, reconstituted. This latter step we call “recall” and
discuss it in Section 4.

However, this paper is less concerned with actual retrieval
than discovering graph structures which facilitate this pro-
cess. In Section 2.3 we introduce the concept of “chordless
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cycles” which we believe play a prominent role in the rep-
resentation of biological information, and which we believe
can be exploited in computer applications as well. In Section
2.1 we sketch the mathematical foundations for this notion,
which is based on concepts of “closure”. In Section 2.2 we
present computer code that will reduce any network to its
constituent chordless cycles. Then in Section 2.3 we can de-
scribe the desirable properties of representing information
by these cycles and indicate their role in biological memory.

Our goal in this paper is to use some relatively abstract
graph-theoretic concepts to effectively model, and bring to-
gether, both biological and computer applications.

2. REPRESENTATION AND STORAGE OF
INFORMATION

Our basic understanding of the world, whether visual,
oral, or tactile, is neural in nature. The representation of
data in regular arrays is, to a large extent, an artifact of
computer architecture and the ease of algebraic manipula-
tion. So we begin with the assumption that all “information”
is a graph structure of some form.

To our knowledge, there has been no agreement as to what
neural configurations correspond to any specific empirical
sensations or mental concepts; but there have been many
studies documenting that all perception and cognition corre-
late with neural activity, even detailing its occurrence with
specific locations within the brain [11, 16, 15, 18, 21, 39,
40]. However, we are fairly confident that whatever neural
networks do correspond to specific sensations, concepts or
knowledge, they are very large — probably in the millions
of elements, or possibly even billions, as discussed in [43].
We are talking about a very large data space!

The most general mathematical model of neural activity
appears to be a directed graph. So the fundamental assump-
tion of this paper is that, at its most basic level, information
retrieval involves locating and obtaining rich directed graph
structures based on simpler representations which serve as
query keys. We are not retrieving array-type information to
display on a spread sheet.

For this paper we assume that the network structure is
the “information”, independent of any edge or node labels.

2.1 Information as Relationships

Information and knowledge are essentially relational. El-
ements, or neurons, are related to other elements. To our
knowledge, neurons are not “labeled”. In contrast, most sub-
graph matching algorithms assume their nodes, or elements,
are labeled [8, 24, 43]. These labels can be used to prune



in plain graph search procedures [8], or the basis for hash-
based join algorithms [41, 42]. Because we assume unlabeled
and unweighted edges, this paper can be regarded as an ex-
ercise in pure graph theory. However, we believe it provides
insights into both biological and computer retrieval.

There seem to be many different kinds of relationships;
however, we abstract them all by a single relational sym-
bol, n. By y.n we mean the set of all elements related to
y. For set valued operators, such as 7, we use a suffix no-
tation. It helps remind us that they are not scalar valued
functions. If we represent information as a network N, y.n
would denote the neighbors of y in A/. So one can read y.n
simply as y’s neighbors. (For mathematical convenience we
assume 7 is reflexive, so y € y.n.) Visually, n represents the
edges of the graph, or relational network. (We use the terms
node and element and graph and network interchangeably.)
It is unknown whether information networks are directed
or undirected. To assume a measure of generality we will
assume they are mixed, with some links being directed and
some undirected. While Figure 1 is far too small to be a real
information network, we will use it to illustrate concepts of
this paper. Arrow heads denote directed edges; if there are

\g 1/ /v/ \\E
\A/
\ m /

Figure 1: A representative “information network”.

none the link is bi-directional, or symmetric.

An important principle for interpreting information net-
works is the concept of “closure”. Closure is well defined in
mathematics [6, 26, 22]. There are many different kinds of
closure operators; the most intuitive is the convex hull of ge-
ometric figures [2]. We will use the fundamental relational
operator, 1, to define a closure operator, (. Specifically,

y.p = {z|lz.n Cy.n} (1)

that is, z is an element of y closure, y.p, if all elements
related to z are also related to y. (¢ can be extended to
arbitrary sets, Y, by Y.o = Uyey{y.¢}.) The concept of
neighborhood closure underlies the entire development of
this paper. In the network of Figure 1, c.o = {abc}, p.p =
{op} and g.p = {bgl}. It is worth convincing yourself why
this is so. For a more detailed development see [34, 37,
38], where it is shown that computing closure, ¢, is a local
operation.

2.2 Consolidation

As defined by (1), an element z in y closure, y.¢p, is rela-
tionally connected to no more elements than y itself. Con-
sequently, those elements within a network which are con-
tained in the closure of other elements contribute very little
to the information content conveyed by the network. They

can be combined with little loss of information. We say that
y has subsumed z, or equivalently that z belongs to y. By
y.0 we mean all nodes, z that belong to y, that is have been
combined. Readily y € y.8. The pseudo code for a process
we call “reduction”; and denote by w, is shown below in Fig-
ure 2. The outer loop terminates when every element y is

while there exist subsumable nodes
for_each y in N

get {y}.nbhd
for_each z in {y}.nbhd - {y}
{
if ({z}.nbhd contained_in {y}.nbhd
// z is subsumed by y
combine z with y
add z to {y}.beta
}

Figure 2: Pseudo code of the reduction, w, process.

itself a closed set. A network with this property is said to
be irreducible. A C* version of this code has been applied
to a variety of social networks [33, 34]. The actual code is
“set based” where constructs such as y.nbhd and y.beta are
implemented as bit strings. Thus operations are effectively
O(1). There is no apriori constraint on set size, but we have
not executed operations with sets of cardinality > 50, 000.
It can be rigorously demonstrated that the reduction of a
network, A/, which we denote by T = N .w is unique (upto
isomorphism). w is a well-defined function over the space of
all networks. We call T the trace of the network N.

Figure 3 illustrates the trace T of the network A/ of Figure
1. Emboldened solid links, or edges, connect the nodes that

Figure 3: A network N with mixed relational links.
Solid links represent those retained after reduction
by w.

remain in 7 after the reduction process; thiner dashed lines
connect the nodes that have been combined with others..
Dashed lines enclose the 7 non-trivial S-sets; for example
c¢.f={a,b,c} and z.8 = {v,y,2,D,C}.

Observe that a new link (f,c) was created to preserve
path connectivity through b. We also see that ¢ and 3 are
distinct operators since although c.o = ¢.3, g.p C g.8.

Of the original 32 nodes, only 17 remain after reduction



which represents a considerable storage compaction.

The reduction process, w, has a number of desirable com-
putational properties. Because the closure operator, ¢, is
local (it need only interrogate adjacent elements), it can be
executed as a parallel process. (The code of Figure 2 that
we have actually used is sequential® , but it is evident how
to convert the outer loop.) This is particularly important
for biological information storage and retrieval. The paral-
lel application of a similar closure based process within the
visual pathway is described in [36].

We have devoted considerable space to a description of w
because, in addition to preparing information for storage,
we believe it plays a prominent role in retrieval as described
in the next sections.

In the literature devoted to human “memory”; there has
been considerable research suggesting that there is a process
that converts short-term memory into long-term memory. It
is usually called “consolidation” [1, 4, 9, 25, 28]. It appears
to be quite similar to the reduction process described above,
whence the subsection heading is “consolidation”.

2.3 Chordless Cycles

A chordless cycle is most easily visualized as a string of
pearls with no cross connections. More precisely, a chord-
less cycle is a sequence < Yi,¥Y2,...,Yn,y1 > of elements
yi, 1 < i < n of length n > 4 where there exist no links
(chords) of the form (yi,yx) k # i £1, i,k # 1,n.% It is
better to just think of them as paths with no single edge
cross connections. In Figure 3, the sequence, or path, <
¢, g, m,i,d,c > is a chordless cycle of length 5 The sequence
<n,q,p,u,z,A, B,x,t,n > is a chordless cycle of length 9.

If the relation n between elements is symmetric, it can be
proven [34, 35] that if A is irreducible (i.e., every node is
a closed set) then every node y is either (1) isolated, (2)
an element of a chordless cycle of length > 4, or (3) an el-
ement on a path between two such chordless cycles. Thus
the trace (consolidation or reduction) of a symmetric rela-
tional network is a collection of interlinked chordless cycles.
In Granovetter’s analysis of social networks [19], these are
the “weak ties”.

When 7 is symmetric, w readily preserves path connectiv-
ity within 7. It also preserves the distance between elements
as measured by shortest paths [35], together with the center
of N as determined by distance which will be found in T,
as will those centers as defined by “betweenness” [5, 13, 14].

Symmetry of the relation 7 is a powerful property. But,
to better model real relationships we have relaxed this con-
straint throughout to allow directed (non-symmetric) con-
nections. Under these conditions the preceding characteriza-
tion of irreducible networks is no longer valid. For instance,
the node f in Figure 3 is not an element of a chordless cycle.

In the case of non-symmetric networks we must ensure
path connectivity through subsumed nodes. Let y subsume
z, t.e. z.n C y.n. For all x such that z € x.n we ensure
that y € x.n. This is always true when 7 is symmetric, but
required the creation of the edge (f,c) in Figure 3. In this
case, we can show [38] that if A is irreducible then for all
y, if there exists z € y.n,z # y, there must exist a path

It can be shown that worst case sequential behavior is
O(n?), but actual performance is much better with a maxi-
mum of 6 iterations to reduce 1,000 node real networks.

2A graph with no chordless cycles is said to be chordal.
There is an extensive literature on chordal graphs, e.g. [27]

through z terminating in a chordless cycle of length > 4.
Even when the relation is non-symmetric, chordless cycles
dominate the reduced representation.

Are chordless cycles really fundamental in the representa-
tion of biological information?

We can provide no definitive answer to that question. We
can point out that protein polymer molecules composed of
chordless cycles exist in every cell of our bodies [45]. One
example is a 154 node phenylalaninic-glycine-repeat (nuclear
pore protein), A/, which is shown in Figure 4. This is not at

Figure 4: A 3D rendering of a 154 node protein
polymer molecule.

all like the dense network of Figure 1. Nevertheless, one can
easily see the chordless loops, with various linear tendrils
attached to them. When these are removed by w, there
were 107 remaining elements involved in the chordless cycle
structure.

If we count [10, 23] the numbers of chordless cycles of
length n in the reduction of Figure 4, we obtain the distri-
bution of Figure 5. The average cycle length is 44.9 in this
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Figure 5: The distribution of chordless cycles in a
107 element network.

network; the modal length is 48; and the 4 longest chord-
less cycles have length 65. It is clear that the combinatorial
possibilities based on cycle lengths alone would permit the
representation of a considerable amount of information.
These are only indications that chordless cycle structures
might be an important component of relational information



representation. The following sections will show how they
can be involved with the retrieval process.

3. INFORMATION ACCESS

Information cannot be retrieved unless it is first identi-
fied and located within storage. Pointers and URLs identify
storage locations. But, lacking these, one must search based
on the “content” of the desired information. An early, and
still common, mechanism is to attach key words or hash
tags to the information, which are then used to create an
easily searchable index [3, 17, 30, 31], in the case of hashed
storage, to directly control the storage location [12] or to
perform hash-joins in relational databases [42].

As access speeds have increased so dramatically, both of
the preceding access techniques have often been superceded
by simple linear search and comparison.

But, this still presumes that the “content identification” is
based on specific terms, or tokens. If important information
is based on relationships, as we have asserted in Section 1,
then such token based search is rather limited.

Suppose we wish to retrieve within a relational network.
We may assume that the search key, I, is itself relational.
It might look like Figure 6, but very much larger!

A
N

N

5

Figure 6: A structural search key, K.

Reduction of K by w yields its trace K.w, as shown in
Figure 7. It is a simple cycle on the nodes < 4,3,6,7,4 >.

Figure 7: Its reduction, K.w.

Comparing Figure 7 with the trace of Figure 3, we see the
obvious subgraph matching: 3 < m, 4 < g, 6 < p and
7 <> k. In this small example there is only one possible
matching chordless cycle. In the kinds of large networks we
envision this is not so simple!

Imagine a 1,000 node seach key which reduces to a key
trace K.w, of say, 600 nodes. To find a matched subgraph
in a reduced network of several million nodes is a combina-
torialy impossible task. All subgraph matching algorithms,
known to the author, assume some form of node and/or
edge labeling to initiate the search location and to control
the expanding search [8, 24, 43]. Various forms of auxil-
liary indices provide direct access to graph elements match-
ing those labels. However, while the retrieval of informa-
tion from a graph structured data store implicitly assumes
a labeled graph, we have focused in this paper on the rela-
tionships embodied in the network itself. There are no data
labels.

Imagine “sliding” an unlabeled 600 irreducible subgraph
around over an irreducible million node network to find a
match, if one exists.

A method that we are beginning to explore involves the
network providing information about its own irreducible struc-
ture. To do this we label each edge with the length of the
“shortest” chordless cycle of which it is a member. This is
not an artificial data label, but an element of the network
representation itself. Thus, in the irreducible network of Fig-
ure 3, the edge (g, p) would be labeled with a 7 because it is
a member of the chordless 7-cycle < q,p, k, g,¢,d,i,m,q >.
This same edge is a member of longer cycles such as the
9-cycle, < q,p,u,z, A, B,z,t,n,q >, but we only label with
respect to the shortest.

The edge (m, q) would be labeled with a 4, as would the
edge (m,p). Each edge in the reduced search key, K.w, of
Figure 7 must be labeled with a 4.

Each edge label of the search key must be exactly equal
to the corresponding edge label in the larger network. So,
based solely on the edge labeling, the only possible matches
for this reduced key of Figure 7 in the reduced network of
Figure 3 are the 4-cycles < g,m,p, k,g >, < n,q,m,i,n >
and < w, A, B,x,w >.

Edge labeling with respect to shortest chordless cycle length
eliminates fruitless search expansion, but it can’t indicate
likely places to begin the comparison. The central retrieval
problem is identifying likely nodes within the larger network
to initiate the search comparison.

We believe that the solution lies with the imbedded “tri-
angles”. Even though they are not chordless cycles of length
> 4 of which an irreducible network is comprised, they do
exist, provided each edge is a member of a distinct chord-
less cycle of length > 4. In the reduced network of Figure 3
there is one embedded triangle, that is < q,p, m,q >, with
associated cycle labels < 7,4,4 >. There is no embedded
triangle in the reduced search key of Figure 7. This is un-
usual; but it is because the search key is “too small”. Our
observation is that most reduced networks of 20 nodes, or
more, have at least one embedded triangle. The network of
Figure 4 has five, with associated cycle lengths of < 8,6,4 >,
< 12,5,5 >, < 12,7,4 >, < 14,10,7 > and < 16,8,6 >. If
the reduced search key contains any embedded triangle, it
must match one of these.

In our JMC approach to information access, we 1) as-
sociate with each edge (functional relationship) in 7 the
length of the shortest chordless cycle to which it belongs;
and 2) create an external index of shortest length triples
corresponding to embedded triangles. Assuming the search
key is sufficently well specified to include an embedded tri-
angle, we first search this index of triples to identify one, or
more, plausible search regions within the multi-million node
reduced network constituting the data store.

This access mechanism is now being implemented, so its
actual efficency is still unknown. We believe it has consider-
able promise. More uncertain is whether the edge labeling
and triangle index can be maintained in real time as the
network changes dynamically [34]. Our hope is that if the
network changes are continuous [32], then there exist effec-
tive update procedures.

The approach described in this section seems quite ap-
propriate to biological recall as well. We see “Mary” in the
market. This is a visual experience involving many relation-
ships. A rapid, almost instantaneous, search through our



memory yields a much larger relational information struc-
ture, including her name, her age and the names of her 3
children. This is often called semantic memory in the liter-
ature [16].

4. RETRIEVAL OF RELATIONAL INFOR-
MATION

We suppose that a reduced trace, T = N .w, or a portion
of it, has been identified as in the preceding section. During
the reduction process, w, used to consolidate the network in-
formation we need not store only the resulting trace. We can
also represent various steps in the reduction process. Our
own code, for example, records y.5 for each retained node y.
Thus, if the trace of Figure 3 was accessed given the key of
Figure 7 then we would know that ¢.8 = {a, b, c}. Moreover,
we know the order in which a and b were subsumed by c.

From this, a very close approximation of the original net-
work of Figure 1 can be recreated. But, there will still be
some loss of information. For instance, the connection be-
tween f and b would be lost. More complete information
could be stored with each subsuming node, though at some
increased storage expense. Alternatively, the complete infor-
mation network, A/, could be stored, with the trace network,
T, separately stored as an easily searchable index.

It is our belief that with information structures of this
size, retrieval of close approximations, i.e. the trace itself,
will be sufficient for most applications.

4.1 Biological Recall

Biological recall is likely to be somewhat different from
a largely deterministic computer recall. There is some ev-
idence that biological organisms only store an abbreviated
trace and that the memory, as we experience it, is somehow
“recreated” [20]. This helps explain why human memories
can be distorted in specific detail, yet correct in their overall
structure.

In [38], the author describes a semi-random expansion pro-
cess, €, that fills in subsumed nodes to create a richer net-
work A, In many respects, € is an inverse operator to w.
Given a trace, T, T.w™* defines the collection of all networks
{N*} such that N*.w = T. € constructs a single network,
N, within this collection. Thus, given an initial network,
N, & will “retrieve” N’ which may, or may not, be (isomor-
phic to) N. However, we are assured that N".w = T = N .w,
or Nwew=Nw=T.

Such a semi-random “retrieval” process may be completely
inappropriate in computer applications, but it seems to model
biological recall rather well. Our memories often are con-
fused with respect to detail, even when they they are gener-
ally correct. It also supports the notion of “re-consolidation”
which asserts than long-term memories are repeatedly re-
written, unless deliberately distorted in our (semi)conscious
mind [28, 29, 44].

5. SUMMARY

The representation of complex networks by a trace com-
prised of chordless cycles has a firm, well defined basis. We
know that there exists an effective procedure w to reduce a
network N to its trace 7 by local and easily parallelizable
code, such as might be found in the visual pathway. It is also
known that such chordless cycle assemblages exist as protein
polymers in all the cells of the body, including synapses.

Clearly, there are significant advantages, in terms of many
fewer nodes and links, to representing network data in this
fashion. Readily, real information stores, whether computer
generated or biological, may have differentiated (i.e. labeled)
nodes and links. Nevertheless, this first treatment of the
problem as a purely abstract, graph theoretic issue has value.
It provides a theoretical basis for more applied work.

We have suggested that subsets of the stored informa-
tion can be identified and retreived by similarly reducing the
search key. Then, in Section 3, using graph-theoretic proper-
ties arising from the fact that irreducible networks consisting
of chordless cycles, we have sketched an access method that
might support retrieval based solely on relational structure.
In biological organisms, this or an associative memory ap-
proach may be used.

The next to last paragraph of Section 4.1 mentions a re-
construction process € which functions as a kind of inverse
operator to w. This may be the most important observa-
tion of the paper. We are just beginning to explore it. If
there is a way, given a trace T, to reconstruct a network
N’ which closely approximates the original network A/, this
could have profound implications for both computed and
biological applications.
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