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Abstract. The relative merits of performing local operations on ~ digitized picture in 
parallel or sequentially are discussed. Sequential local operations are described which l~bel the 
connected components of a given subset of the picture and compute u "distance" from every 
picture element to the subset. In terms of the "distance" function, ~ "skeleton" subset is de- 
fined which, in a certain sense, minimally determines the original subset. Some applications of 
the connected component and distance functions are also presented. 

1. Introduction 

Computer programs for processing digitized pictorial information have received 
increasing attention in recent years. Much of the work done in this field has in- 
volvcd performing "local" operations on picture "neighborhoods." As several in- 
vestigators have shown, a wide variety of picture processing transformations c~m be 
accomplished by applying such operations independently, or "in parallel," to each 
element of the given picture. 

In this paper it is suggested that local operations performed on picture elements 
taken in a definite sequence, using at each step the results obtained by operating on 
the preceding elements in the sequence, may be preferable to the parallel approach 
m some cases. It  is shown that the parallel and sequential approaches are mathe- 
matically equivalent, and that the latter should be competitive in processing time 
required if a sequential computer is used. 

"Sequential" local operations for performing two basic picture transformations 
are next described. The first of these labels the connected components of any given 
picture subset, while the second determines the "distance" (in a certain sense) from 

e v e r y  picture element to the nearest element of a given subset. In connection with 
t h e  latter transformation, a "skeleton" subset is defined which can be used in place 

Of the given subset to generate the same transformed picture by applying t}ie "re- 
;Verse" local operations sequentially. Examples of the outputs of sequential com- 
p u t e r  programs which perform these transformations are given. 

In the concluding sections of this paper, various applications of these basic 
picture transformations to the analysis of picture subsets are indicated. Programs 

a r e  described which construct the graphs corresponding to dissections of a picture 
i n t o  regions and which determine the orders of connectivity of the multiply con- 
n e c t e d  regions. Two approaches to the discrimination of elongated from non- 
i ~longated regions or parts of regions using the distance transformation are pre- 
Sen ted ,  one of them involving components of the skeleton subset. 

Sequential and Parallel Neighborhood Operations 

2.1. Operations on digitized pictures 
A digitized picture, for the purposes of this discussion, is a finite rectangular 

a r r a y  of "points" or elements, each of which has associated with it one of a dis- 

Computer Science Center. The research described in this paper was supported in part by 
~ A S A  Grant NsG-398 to the University of Maryland, and in part under NASA Contract 

NAS5-3461 with the Budd Company, McLean, Virginia. 

471 

Journal of the Association for Computing Machinery, Vol. 13, No. 4 (October, 1966), pp. 471-494 



~ 7 ~  AZRIEL ROSENFELD AND JOHN L. PFALTZ 

crete finite set of "va lues . "  I f  the array has  m rows and n columns, any  "poin t"  in 
it is specified by  a pair  of numbers  i, j (1 ~ i _-< m, 1 _-< j < n) denoting its row 
and column. The  picture can thus be represented as an m by  n matr ix  in which 
each entry a~j has one of the "values ,"  say vl,  • • • , vk. In  practice, m and n are 
usually not  greater  than  2 ~°, and k is rarely greater  than  2 8. We assume in what  
follows tha t  the values are nonnegative integers. 

B y  an operation on a digitized picture is mean t  a function which transforms a 
given picture matr ix  into another  one. A general function of this type  has m n  
numerical  arguments  (one for each position in the matr ix) ,  and is correspondingly 
difficult to handle computat ionally.  For  practical purposes, it is desirable to work 
with operat ions on digitized pictures which can be defined in terms of functions 
having considerably fewer arguments.  

B y  a local operation or neighborhood operation on a picture is meant  a function 
which defines a value for each element in the t ransformed picture in terms of the 
values of the corresponding element and a small set of its neighbors in the given 
picture. For  example, such operations can be defined using a neighborhood which 
consists of the given element and its eight immediate  neighbors; an operation of 
this type  has  only nine arguments  and is of the form 

a~,i = f(a~_~,j_~ , a~-~,i , a~_~,~+~ , a~,~_~ , a~,i , a~,j+~ , a~+~,j_~ , a~+z,i , a~+~,~+~). 

In  what  follows only operations of this type  are considered. ~ 
Local operations can also be used to define local properties of a picture. Iff :a~,j  --~ 

a~a" is a local operation, one can speak of the property that * a~,j --- v, where v is a 
picture element v~lue. 

I t  is sometimes convenient to consider operations which involve more than  one 
picture at  a time. Strictly speaking, however, this is no more general than  operat-  
ing on a single picture. In  fact, we have:  

LEMMA. Let  (au) ,  (b~]) be m by n pictures; then there exist an m by n picture 
(ci~) and two funct ions  g, h such that g(c~ i) = a~j , h(c~s) = b~ for  all i, j .  

PROOF. Let  co' - 2~°'3 b°', so tha t  cu is a positive integer; let g -- ¢2, h = ¢~, 
where ¢~, ¢3 are defined for positive integer x b y  

¢2(x) -- m a x / k  I ]~ nonnegative integer; 2 k divides x}, 

¢3(x) -- max  {/¢ ] k nonnegative integer; 3 ~ divides x}. 

COROLL~aV. Let  f be any funct ion which takes a pair  of m by n pictures into an m 
by n picture, say f (  (a~i), (b~i) ) = (d~]). Then there exist a picture (c~i) and a func-  

tion f*  such that f * ( c ~ )  = (d~) .  
PROOF. Take  (coO, g, h, as in the proof of the Lemma and define f*(c~.) = 

](g( c~), h( c~) ). 
Evident ly  this '~rgument generalizes immediately  to operations on any  number  

of pictures. Note  also tha t  if f is l oea l~ in  other words, if d~ depends only on a~_l,j_~, 

The function f is not defined for "border" picture elements which do not h~ve all eight 
neighbors. To avoid such exceptions, one can "~ugment" the picture m~trix by adding a 
zeroth row and column, an (m-~l)-st row and an (n+l)-st column, giving these fictitious ele- 
ments ~ value which does not occur in the "re~l" picture array, and defining the function ap- 
propriately when some of its arguments h~ve this v~lue. In many of the cases considered in 
what follows, one can avoid this complication by simply ~dding to the definition of f  the phrase 
"for whichever of these elements is defined," 
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• .- , a~+1.j+l and on b~-l.j-1, . • • , b~+ld+l--then f* is also local, since c~ depends 
only on a~j and b~.  

When processing a picture using local operations, it is often convenient to store 
the results of intermediate processing steps as auxiliary pictures. By the Lemma and 
the last remark, local operations involving such auxiliary pictures can be regarded 
as operations on a single picture. In Section 3 and in the Appendix repeated ad- 
vantage is taken of this convenience. 

2.2 Parallel operations 
M a n y  useful transformations of a given picture can be achieved by performing a 

single local operation, or at  most a few of them in succession, on each poi~lt of the 
picture. For example, a "noisy" picture can often be effectively "smoothed," or an 
"unsharp" picture "enhanced," by  a single neighborhood operation which takes a 
local average or computes a finite-difference Laplacian. Similarly, a picture which 
contains thick "roads" (lines or curves of points having given wflues) can be 
"thinned" by  iterating a "border element deletion" operation, perhaps alternated 
with a smoothing operation, where the number of iterations required is relatively 
small since the roads are narrow compared to the picture size. Transformations of 
these types  have been demonstrated by Dinueen [1], Kirsch [2], Unger [3], Nara- 
simhan [4] and others. These operations can also be used to define picture subsets 
consisting of points which have smooth or broken neighborhoods, lie on edges or 
roads, and so on. 

Each of the local operations used in the examples just given is performed inde- 
pendently on every point of the picture. The ~rguments (a~_.~,~--~, . . .  , a~+~.j+~) 
~re always the original picture matrix values; the new values alj = f (ai- ld-1,  
. . .  , a~+~.:'+l) are stored, but  are not used until the operation has been performed 
for every (i, j ) ,  when they then become arguments for the next operation (if any).  
Since the sequence in which the points are processed is thus entirely irrelevant, the 
operation can be thought of as being performed "in parallel," simultaneously for 
every picture point. Extensive consideration has in fact been given to the design 
of computers  which actually do perform identical operations simultaneously on 
each of a large number of stored quantities. Even when processing digitized pic- 
tures on conventional sequential computers, many investigators have used pro- 
grams which simulate the operation of such "parallel" machines. 

The wide variety of picture transformations which can be performed using local 
operations applied in parallel has given rise to the widespread belief that this ap- 
proach is optimum for local picture processing in general. In this paper the counter- 
suggestion is made that an alternative type of processing, in which sequential appli- 
cation of local operations plays a crucial role, is equally general in scope, and may 
even have significant advantages, particularly when processing is being done on a 
sequential computer. 

The concept of a sequentially applied neighborhood operation will be defined in 
what follows, ~nd the relative merits of the parallel and sequential approaches 
considered. 

2.3 Sequential operations 
Suppose that a local operation is applied to the points of a digitized picture in 

some definite sequence. For simplicity, suppose that the points are processed row 
by row beginning at the upper lef t - - that  is, in the sequence an,  a~2, • . - ,  a~,,, 
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a 2 1 , . . . ,  a 2 , , . . .  , aml, " " ,  a ...... Unlike the cases described in Section 2.2, 
however, suppose that as soon as a point is processed, its new value rather tt~an, the 
original value is used in processing any succeeding points which have it as neighbor. 
If this is done, the general form of the operation becomes 

# g q: * g 
a i , j  = f(a¢-l,i-1, , a i - l , i  , a i - l , 5 + l  , a i ,  i -1  , a i , i  , a i , ] + t  , a i + i , j - i  , ai.q-l,j  ~ a i - 5 1 . j + l  ) 

since points ( i - 1 ,  j - - l ) ,  ( i - 1 ,  j ) ,  (i--1, jq-1) and (i, j - - l )  have already beerl 
processed, while the remaining points have not yet  been processed. Such aa opera- 
tion will be called sequential. 

The particular processing sequence just described will be called the (for,ava~'d) 
raster sequence. There will be occasion in the next {we sections to use other se- 
quences as well. 

At first glance, this type of operatioa seems more complex, and hence presumably 
less basic, than the "parallel" type, which uniformly uses "old" values u~ltil the 
entire picture has been processed. However, it is easily shown that the two types 
of operation are entirely equivalent in the sense of the following. 

THEOREM. Any picture tran.sformation that can be accomplished by a series of paral- 
lel local operations can also be accomplished by a series of sequential local operations, 
and conversely. 

A proof of this Theorem is given in Appendix A. 
In the proof, it is shown that any parallel local operation is equivalent to just 

two sequential local operations; but to guarantee that  a sequential local operation 
is matched by parallel local operations, a long sequence of the latter may be re- 
quired. In t)ractice, one can often obtain the result of a sequential operation using 
relatively few parallel operations which produce the result without following the 
stepwise progress of the sequential operation. However, it at least appears pla~usibtc 
that  there exist picture transformations which are more efficiently performed using 
sequentially applied operations, particularly if a sequent, ial computer must be used. 

As an illustration, consider the distance transformation defined in Section 4. 
I t  (;an be performed by two sequentially applied local operations, involving a total 
of 2ran individual local operations. On the other hand, it is easily verified that this 
transformation can also be accomplished by applying the local operation 

f(a<~) = rain (ai-Li,  a~+t.i, a<i-1, a<i+1) q- 1 if aid ¢ 0, f (0)  = 0, 

m + n  times in parallel to every picture element. If  this is done on a sequential com- 
puter, it involves ran(re+n) individual local operations--that is, (m~-n) /2  times 
as many as required by the method of Section 4. Note, however, that if a paralM 
computer is awtilable, it need perfor:m only m + n  local operations on the picture in 
parallel, a saving by a factor of 2 m n / ( m ÷ n )  over the method of Section 4. Thus 
if m = n, parallel processing on a parallel computer is n times faster than sequen- 
tial processing on a sequential computer; but this in turn is n times faster than 
parallel processing on a sequential computer even when this efficient paralM 
method of performing the transformation is used. 

3. Sequential Operations for Connected Camponent Discrimination 

A set of sequentially applied local operations which "labels" the connected com- 
ponents of any given picture subset is described in this section. For simplicity, it is 
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a s s u m e d  th.tt the given subset consists of picture elements which have value 0, 
w h i l e  every other etelaent has value 1. The results (;an be immediately extended to 
s u b s e t s  eo~sisting of eleme~ts whic]~ have any given property; it suffices to first 
) t r ans form the picture usit~g the characteristic function of the complementary 
p roper ty .  

3.1 
A subset of a digitized picture is called connected if for any two points P and Q 

of  the subset there exists a sequence of points P = P0, P~, P~, " "  , P,~-~, P,  = Q 
: O f  the subset su('.h that  P~ is a neighbor of P i - t ,  1 < i < n. In Figure l(a), the set 
: o f  s and the set of blank points are both connected; in Figure l(b), the a's are con- 
: ne t t ed  but, the blanks are not; in Figure 1@), the blanks are connected but the 

' S  are r~ot. For these examples, the definition agrees with the intuitive concept of 
On the other hand, both the x's and blanks in Figure l (d )  are con- 

) :neeted, which runs counter to intuition. This results from the fact that  a point is 
; connected to any of its eight neighbors, including the diagonal ones. If  connec- 

t iv i ty  were redefined to require that  P4 be one of the four horizontal and verticM 
neighbors of P~_,, both the x's and blanks in Figure 1 d would become disconnected, 

w h i c h  is still not consistent with intuition. The "paradox" of Figure l d  can be 
as follows: If the "curve" of shaded points is connected ("gapless"), 

does not disconnect its interior from its exterior; if it is totally disconnected, it 
disconnect them. This is of course not a mathematical paradox, but it is un- 

satisfying intuitively; nevertheless, connectivity is still a useful concept. I t  should 
b e  noted that,if  a digitized picture is defined as an array of hexagonal, rather than 
: s q u a r e ,  elements, the paradox disappears; this is because in the hexagonal case an 
e l e m e n t  has an edge in common with every one of its six neighbors. 

In general, a subset of a picture (say the subset of "0" points) consists of a sum- 
: her  of connected parts or components. ~ The problem of distinguishing among these 
i eompone~ts is now to be considered. Specifically, it is desired to construct a truss- 

picture in which the 0 points have new values v~, .. • , v~ (positive integers 
greater than 1), two points having the same value if and only if they belong 

the same connected component of 0 points on the original picture. 
Neighborhood operations lend themselves naturally to the study of connectivity, 

it is defined in terms of neighbors. If the operations are applied in parallel, 
i t  is not easy to distinguish among connected components, since the parallel opera- 
tions treat every point of the given set identically. Using sequentially applied 
operations, however, one can "track" each connected region, assigning a value to 
each point of it as the tracking proceeds. If two of the tracked regions merge, a 

2 Formally,  these components are the equivalence classes of picture points defined by the 
relation "is connected to"  ( tha t  is: " is  a neighbor of ~ n e i g h b o r . . ,  of a neighbor of") ,  which 
is evidently an equivalence relation. 

i 
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special value is assigned. Further processing is then applied to these special values 
so as to eliminate redundant values from the picture. 

In Section 3.2 a set of sequential Meal operations is defined which assigns to evew 
point of each connected region on the picture a value which labels the region. In 
Section 3.3 a computer program is described which generally follows this sequence 
of operations but which does not adhere strictly to the requirement that  only local 
operations are permitted, and which in consequence is considerably more efficient. 

3.2 Sequential operations for determining connected components of a picture 
Let f be the local operation which takes a~,~ into a~.~ defined by: 
(a) If  a~.~ = 1, then ai,i, = 1. , 
(b) If  a<i = 0, and a~_,.j-1 = a~-l.i = a~-t,i+l = a~, j_l  = 1, t h e n  a'i, ] = ~)k, 

where vk is one of a set of as yet unused labels. (This indicates that a~,j is possibly the 
start of a new connected component of O's. If  it is not desired to allow an operation 
which can draw on a set of labels in this way, one can simply use 2~3 i as the tabel; 
these labels are automatically distinct for all i, j .)  

/ I ? 
(c) If  ai.j = 0 and each of a'~_l.j._~, a~-1,i, a~_1.¢+~ and ai,j_l is either 1 or some 

vk (but not all of them are 1), then a~o' is the smallest of the vk's. (If there is only 
one vk, this indicates that a'~,i belongs to that  same component. I f  there is more 
than one, it indicates that two or more components were actually parts of the 
same component.) 

Furthermore, let f also create an auxiliary picture (b.~i) in which b~.j = 1 when 
more than one v~ is involved in case (c), and b.z,i = 0 otherwise. (These l ' s  thus 
label points at which two or more components have "merged." I t  is clear that  (b~j) 
could be combined with (a'o'), if desired, by the method of the Lemma in Section 
2.1.) When f is applied to a binary picture sequentially, e.g., in forward raster se- 
quence, it labels the O's in such a way that  O's which get the same label must belong 
to the same connected component; note, however, that  the O's in a given component 
may have several labels. 

To complete the task of labeling the connected components, it remains only to 
eliminate all labels which have merged with other ones. For ex~'mlple, if v~ has 
"met" v, ,  where v~ < v~, one should replace all the v,'s prior to the meeting point 
with v,'s. 

If one were not restricted to performing only local operations on the picture, it 
would be fairly easy to eliminate the redundant labels by processing a list of the 
redundant pairs. A method for doing this is described in Section 4. In the remainder 
of this section, elimination of redundancies using local operations only is described. 

After f has been performed, the redundancies are identified by l 's  in (b~i) at the 
points where they were detected. To eliminate a redundancy, say of v~ with v~, 
using only local operations, it is necessary to convey the information that  v~ "equals" 
v~ to the neighborhood of every point (i, j )  of the picture, so that  if a'~ .5 has value 
v~, it can be replaced by v~. This is done for one redundancy at a time by proceed- 
ing as follows. 

(1) Pick the first redundancy not yet processed. This can be done by applying a 
localoperation to (bli) inzigzag sequence (1, 1), . . .  , (1,n), (2,n), . . .  , (2, 1), (3, 1), 
• . . , ( 3 ,  n ) , . . . , ( m ,  1 ) , . . . , ( m , n ) i f m i s o d d ;  . . . , ( m , n ) , . . . , ( m ,  1 ) i f m  
is even. This operation g takes (b~j) into (b~j), and also generates an auxiliary pie- 
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lure (¢~j), such that  b'l,~ .... cL~ = 0 and the suee~eeding etements  are defin<.v:l as 
follows: 

1;'or (i, j )  > (1, 1 ), let (i ' ,  j ' )  denote the predeeesvsor of (i, j )  in the zigzag 
sequence. 

If  c~,j, = be0 = 0, then b{,j" = c~i =: 0. 
If  c~,,r = 0 and b~,j = 1, then b~,j = 0 and c{,j = 1. 
If  c~..r = 1 or 2, then b$~j = b<j and ce,~ = 2. 

Thus  g "erases"  ~he first 1 in (b~j) (" f i rs t"  in 0~e se~se of the zigzag s~.~.lue~ee) 
and stores a 1. in the corresponding position in (c~),  (No~:.e that, the flint, I in (b~.) 
cannot be in the first row, since components  cmmo{> yet,, have merged; hence sett ing 
b~,1 = c,.~ = 0 is safe.) As soon as it has done ~,his, it st, ores 2% in (cq) thereafter;  
this keeps it from mistaking subsequent  1% in (b~a~) for '~fi~>t." The  rea~)n for 
using the zigzag sequence is m ensure ~i~at. ( i ' ,  f )  is Mw'ays a neighbor of (*/:, j ) ,  so 
tha t  g is local. 

(2) "75"ar~sw~it" the :i~f(yrmaI&n abe~t thi;s redu~&mc~ to ~,t'ergJ FolnL Le~ e ~  ..... 1, 

express the fae~ that  the labels ~'v, v, ,  v~ are m be replaced by s~. This  can be do~e 
by using the integer v .... 2~"<Y'~5~"T ~'* as a label, since gtfis integer ean%s the values 
v~, vq, v~, v., iu retr ievable ferns, as weil as indicating w}deh of them is to rc, Dlaee 
the others. To  get this infom~ation to every" point, (m.e cens tmcts  an auxilia.ry 
picture every element of which hag value v. Specifically, one defines the local opera- 
tion ht ,  taking (c~) int.o (&~) such tha t  d~a ~ 0 and: 

If  & ' . r  = 0 and c~,s ¢ t ,  ttmn d<~ = 0. 
If  & , , ,  == 0 and c<i = 1, ~hen d<~ = v, where s is defined N terms of the  ele- 

ments  o,~..a.~.-:~, c~_~.,~, a~_~,~+:~ and a<~_~ as described just  above. 
I f  d;,~, -~ ~', then d;,l = v. 

Thus  k~, applied in zigzag sequence, cons~rnc~s a pictm~'~ (d,~t) in which every 
element af ter  the t in (c~i) is v. ( In  particular,  d ...... = v.) T o  mf~ke the ~ma in ing  
elements v's, one need only apply  a simple local operation ha~ in re~,erse aigzag 

( , '  j ' , )  sequence. Let. j , denote the predecessor of (i, ;j) in this seq~:mnce, and let 
h~ take (d,j) into (d/~.) such tha t  d ...... = d~,,~.,~ = 'e, an~. di ~ = v whenever d r  .~ . . . .  s. 

(3) Use ~his #@)rm(tgou~ go correct the rd~n&mc;q. Ig remains oMy to define the 

function h by 

h(a{,~) = s ,  if a~ ,  = v ~ , v ~ o r s ~ ,  

h,((~,~) = a'~,j oa~erwise. 

This  is a local opera t ion-- indeed,  it operates  only on a single (i, j )  ag a ~ime-.- 
since (d,::~) has brought  these v's to e v e w  (i, j ) ; i g  can be applied in: any sequence. 

' rcplaee:~ oy ~ , and is The  resulting t.ransfom~ of (a,~) has all its v~'s, v / s  and v,'s ~ d ~',, v ' s  
otherwise the g tme as g4j • 

We now repeat the process described in (1).-(a), but  s tar t ing with ~he new (a'~y) 
and with (b}~). Application of (a in. zigzag sequence now erases aim first I in (b~), 
say b~.,, (which was the second 1 in (b<~)), and  leaves ~he rest  of ig unchanged; ig 
Mso constructs  a new (cq) with a 1 in the (z, w) position. Application of h~ and h~ 

]* then yields a new (c;~) with appropr ia te  label v (not the same as the previous v), 
It is quite possible that the redundancy ag (z, w) invoNed only v~,, vv, v, or va, 
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and is now eliminated; in this case the new v reduces to 2 *~', and application of h 
does nothing to (a~i), In any event, this second cycle of (1 ) - (3)  yields an (a'~i) in 
which further possible redundancies have been eliminated. 

Let this entire process be repeated as many times as necessary. (One can, of 
course, stop when there are no more l 's in (b~j), but  if only local operations are in- 
volved, this can only be detected by performing a couJ:~ting operation o~ (b~j) 
after each iteration. Certainly mn repetitiorts--in fact, eonsiderabIy fewer--will 
suffice to clear up all the redundancies in (a~i).) 

In summary: Given (a~i) in which every element is 0 or 1, one can construct 
(a~i) in which every connected component of 0's has a unique label by proceeding as 
follows: 

(a) Apply f to (ao) in (e.g.) raster sequence (zigzag would do just as well). 
(b) I terate  the following sequence mn times: (g in zigzag sequence; h~ in 

zigzag sequence; h~ in reverse zigzag sequence; h in any sequence). 

3.3 P r o g r a m r r d r ~ g  c o n s i d e r a t i o n ~  

A practical computer program for determining connected components along the 
lines described above rmed not be as elaborate, since it need not restrict i~self to 
local operations alone. Some immediate shortcuts, once other types of operatio~ts are 
permitted, include the following: 

(a) The "redundancies" can be stored as a t a b l e  "outside" the picture; this 
greatly reduces storage requirements, a 

(b) Elimim~tion of redundancies can be performed by processing this table. 
When this has been done, the redundant picture element labels can be "translated" 
into irredundant ones as the very last step, by making one scan of the picture, 
"looking up" each value in the processed table and substituting the equivalent, 
irredundant value if different from the given value. 

(e) The table can be processed in many fewer steps than are required to process 
redundancies within the picture, since (1) the table is in general much smaller; 
(2) when a redundancy is being "reduced," it need not be " c a r r i e d "  through the 
t~ble, since processing is not constrained to neighborhoods within l:!m table; (3) it 
is easy to stop the processing when the table is exhausted, r,tt;her than blindly 
repe~tting it m n  times. 

In the light of these simplifications, a program for labeling connected components 
can proceed as follows: 

(1) Apply f as described in Section 3.2; but rather than generating an auxiliary picture (b~s), 
simply store the redundant labels in the first unused place in a table T. The ith entry in 
this table thus has the form (vv~ , vqi , v~  , v~ ) ,  where v~,~ < Vql -<= v~  < v~ . 

(2) To process the table: 
(a) Order the entries lexicographically (in order of increasing first value; for each of these, 
in order of increasing second value; and so on). 
(b) Store (v~ , vq~, vr,, v~) in a second table T'. In the remaining entries, replace every 
vq~, vr~ and vn by vm • Reorder each entry (if necessary) to re-establish v~ < vq~ =< vr~ < 
v~ ; if all terms are equal, erase the entry. 

3 Since auxiliary tables which contain stored information about the picture are used in this 
and the following steps, the operations performed are no longer local; the table makes avail- 
able information about picture elements which are not neighbors of the element being proc- 
essed. 
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Repeat steps (a) and (b) until every entry has been erased or stored in T'. When this is 
finished, 7 '1 consists of a set of entries in lexicographic order. The first term of each entry 
is t.he sm'dlest representative of an equivalence class of redundant values; the remaining 
terms of tile entries which have first term v are the remaining elements of its equivalence 
class. 

(3) Scan the pier.are in any sequence, comparing the value of each element with the entries in 
T'. Whenever a value is found to be in T', but noi; as a first term, replace it by the corre- 
spondil~g first term. (If desired, gaps in the sequence of labels can be "closed up" before 
output.) 

No te  that  this program consists basically of a single sequentially applied local 
operatiol~ (step (1), except that  the redundancies are stored outside the picture 
t o  simplify the reinaining steps), followed by sequential processing of the table and 
sequent ia l  rclabeling of the picture. The approach is still essentially sequential, 
e~ren though for simplicity the restriction to "pure"  neighborhood operations has 
b e e n  relaxed. 

An IB M 7090/94 program along these lines has been written and tested. The 
p rogram,  originally written in the FAP symbolic assembly language, has been 
~,dapted so that  it can be called as a FOm'R~N subroutine. I t  accepts as input a 
d ig i t a l  picture on magnetic tape. Each record on the tape contains information 
~ b o u t  one row of the picture. A picture element can have any value from 0 to 2 ~ -  1, 
a n d  each row can consist of up to 2,000 elements. The number of rows is limited 
Only  by the capacity of the tape. 

The  program selects any prespecified rectangular subpicture (rows r through 
f - t -u ,  cohlmns s through s-I-v, for example). I t  slices the picture elenlent values 
be t we e n  any two prespecified levels t l ,  te (0 N h < t~ < 2 6 -1 ) ,  treating all 
v a l u e s  between h and t2 as 0 and all values outside the range as 1. The program then 
proceeds  to label the connected components of the set of O's essentially as described 
above .  The  labels used for processing are simply the integers. For printout purposes, 
o n l y  the 46 distinct labels 

ABCDEFGttIJKLMNOPQRSTUVWXYZ123456789-t-- / = I.) $,,( 

a r e  used, in that  order. If  there are more than 46 connected components, these 
symbols  are used over and over again, as many times as necessary. The output is a 
m a t r i x  of alphanumerics in which the symbol printed at each 0 point is the label 
o f  the connected component which contains the point; 1 points are left blank. A 
labe led  version of the picture is also written on tape for input to succeeding process- 
i n g  routines. 

An example of a simple picture input to the program is shown as Figure 2 (1 --- 
b lack,  0 --= white). The corresponding output  for this picture is shown as Figure 3. 
I n  this picture, the component labeled I, for example, had three labels in the original 
processing, since it was detected as a possible "new" component at each of the 
t h r e e  elements which are circled in the figure. Component D obviously had many 
labels  originally, while components A and C had unique labels throughout the 
processing. 

4. Sequential Operations for Distance Determinatwn 

Several investigators over the past decade have considered picture transforma- 
t ions  in which a given subset is "propagated"  over the picture, or dually in which the 
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F~G. 2. Picture input to 
processing programs 

a ~ = ~  e e e ~ e e  e ~ .  CCC¢CCCCCC 0000000000000000000000000 O000eo0o 
• ~ a ~  e e e e e e e  e ~  CCCCCCCCCCC oo0000000000oooooooo00co ooo~o~0 
~ e ~  ee~  CCCCCCCCCC O0000000000~O000pO00000 o00000 
~ & m a  ~EE~EE BBBB C~CGCCCCC OO~OOOO000 DODDOOOODOD FF~FFFFFF 0OOODD 
&kAAAP~a eeeeeeeeE eeee ccccccccc oooooooo~ ooooDoooo FFeFFFFFFF~FF  ~o0~0 
• ~ Eeeee~ee ee~e~ CCCCCCCCCC OODOOOODO OOOOODD FFFFFFFFFFFFF O0~o 
a ~  eee~eEee ~e~e CCCCCCCCC ODOODOOOD ~0 CO00000 FFFFF~FF~FFFF~  OD~O 
~ e~eeeeee~ eeeee CCCC¢¢¢¢¢ oooooooo 00o oooooo F~¢~ ;F~P~  0o0o0 
~=~ ~ee~eeeee ee~ee CCCCCCCCC 00ooo0o ~ OODOOO F6F~FFFgFFFFFF O00cmo 

~ eEEe~ee  ~e~ee  CCCCECCC DOODO G~&~ ~DDDDO F~FFFF~FFFFFFFFP O~O00m 
~ E~(~ ( (~e  ~8e~8  CCCCCCCC O00DO ~ 0 ~ ¢ ~  O0+DO000 FFFFFFFFFF~FFFF ODO0~ 

~e~E~  ~8B~B~ CCCCCCC 000000 GGGGG~ O0:ODODD FFFFFFFFFFFFFFF 00000 
~ ( ~  eeeeo  CCCCCC ooooooo GG~G~ O00DOODD FFFFFF~FFFFFFF oooo0 

ee~eee~+e~ ~e~e~ CCCCC Ooocoo0 ¢00000  000.0o0~ ~ ; ~ r ~  00~0 
EEE~EEEE~ eBeBEBB CCCCC O00.DODDO GGGGG DDO~OOOOOD FFFFFFFFFFFF OOOD 

eEee~eeee  eeeeee~  ((CC OOCO000OO0 OOGG O00000000oo EF~FF~FFFFF ODO0 H 
eee~e~ee eee~e~ ccccc ooooocoooov ~ oooooo.ooooooo ~F~F~F~  00~0 ~:~ 

e~e~e~ee  ee~eeee  CCCC OODOCO~ODDO~O O00000~DODODOD FFFFFFFFF OOOO 
~eeeee~e eeeee~s~e CCCCC 000000000000000 00oo00o000000000 ~F~FF~  0 0 0 0 ~  
~e~ee~ e~eeeee~e CCCC ooooooo.ooooo~ooo oooo~o00oo00~ooooa F~FF~r  o~oo 
eeeee eseeee~e~ CCC COOOOOCO~OOOO000000000~O00000000O.OO0 ~rF~ 0oo0 ~,~, 
ee~  eBeeee~e~  ocooooooo~ooooooooooooo~oooooooooooo ~ F ~  uoooo ~ ,~+  
eee eeeeeeee~ ~ OOCOO0OOO00000000000000000000000000,OO FFFFFFF Ooooo HH~'~ 
EE eeeeeeeeee Z~] OCOCCO000000000OOOODOOOOOOOOOOO~OOOOOD FFFFFFF 00000 ~PH:~  
e eeeeeeee~  NIl CCCCCO000COCO000©ODOOOOOOOOOOOOOODO~O FFFFFFF OOOO0 ~H~, 

Beeeeeeese IIIII COCO~OODOOOOODOOOOODOOOODOOOUODO0000~O FFFFFF OQO00 HH~HH~H 
s ~ e e e e ~ e ~  iHtl 00000000000000 00000000000000000~ ~F~  ooo~n ~+<~,~ 

eeaBeeeeeee x l zx  OCOCOCOODOO0 O00OO00OO0000000 m FFFF~ 00~o00  HHHHPHHH 
8es~eeeeeee l I I ] I  OCOCOCOOOO O000eOOOOO0000o ~FF  ~oooo H,H~H~H 
8~BBs~eet~e I l Z l i l  oooooooooo &Jaa  ODOOOOOODODDO ~FF O00OQ HHHH~H 
eeeeeee~e  lllllll OOO00DOOO JJ3J~JJ$  O00OOOOO00 FFF o00000 ~HHH~H~H 
es~seB~  ilXl~l% OOOCO~Ofl JJa&JaaJJ : JJ  OO00000OO FF DOOO00 HH~IH~HHH~H 
~ t~85  ~ ( [ I I ~ ] I  CGCOOOCO 4JdJJ4J4JSJ3J  OOOOOOOO0 FPP 0009000 Hi4HH~HM~HHH 
B$888e  I J IH I~ I I  COOCC0C JSJJJJJJJJJSJJJJ  OO000000 ODOD00D0 ~HH~HHHHPrH 
81SB8  ll41llJlll OOO0OO0 J~JJJJJJ , JJJ~JJJJ  0DODDOOOD O0000OOO H~HHHHpeH 
BSB~ lllllIllll CO00OO JJ~JJJJJJJJJSJJ4J3  DO000000~ ~O000~OO0 ~HHHHH~) ,H  
85 I I ] l l l l l l ¢  COOCD JJJJJJJJJJJJJ ,  dJJJJ  OOOO00D~OOODOOOOOODOC9 HH~HH~  
8~ l i ] ] ] J I l I l |  OCO000 JJJ~JJJJJJJJJ3JJJJJ  OOODOODDODOOO~OODOODD HHHH~H 
B IIIIZI~IIlII OOCO00~ JJJbJJJJJJJJJJJaJJJ DOOOOODOOOCO~O~Q~O HHHHH~HH 
8 JN I I | I [ [ I I i |  00C0CO JJJJJJJSJJJJJJJJJ$~  0000000000000000D0O00  HHH~,~  

[N l l [ ~ l [ l l ] l  O~C~  JJJJJJJJJJJJJJJJJJJJ  0000OO0000000~0900OOO K H~HIZH 
[ [ ~ I IN | | ~ IH I  OOCO00 JJJJJJJJJSJJJJJJJJJJ  DDgODOODOOOODOOODDDO ~K H~ 

I ~ I~ I ] I I I I [H I  ~DOODDO JJJJJJJ~JJJJJJJJJ~  Oooooo00000000Ooooo0 ~ HH~(  
li[|llll~llll] O00CO00C JJJJJJJ~JJJJJJJJ  OOODOOODOOOD~OOODODBD KKKK H~  

I J [ JHNIZ l [ ] ]  ~00£C~CCO JJJJJJaJJJJJ  0000~9000000~00~0000~ ~K~KK 0 ~H~¢ 
lZllllllllllll DCOOCOCC00O JJJJ~JJJJ  OCDBODDDOOOOOOD~OOOD K ~ X K  o ~H~H 

t I l l l l l t X l l Z l [  CVOOOO0000+O JdJ+  O090OO0000OOOO00++09OO KKKk~ D H.~H  
I I [ l l l l l ( l l l l i  C~DOCCCOCO¢©O J CO0000DODOOOOOOOOOOCOODD K~KK D ~H 
Zz l JZZ l l Z l | I l i  O~O0~OCOOO~OO0 O00000000000000000000pODDD ~K~K 0 ~H 
Z l t l l l l l l l l l l l l  O~OOCOOCOOODO00 O0000000OODOOOODOOOOOOOOO~OOD X~KK~ DO +HH~ 
l l l l l l l l l l l l l l l  O00COOCO000OO00 O,O00OOODO000000000000OOOOOOODO KKKKt l  D ~ !  
[ l [ l l l l l l l l l l l l l  ~CCOCOCQC~COOOCOCO~I0~ODDOD DDOOO~OODO000OO0~O0 K~KRRK o HHHMH 
I l l l l l l l l l l l l l l $1  OOCCOOCOCgOO0000~DDDOOODO ~DOOOOlOObO00000~O0 X~XXKK ; ~ 
I l l l l l l l l l l l ] l l Z l [  OCO0000ODDOOO00D00ODO~O OOOOOOOOOOOO00~OO ~KKKK~ 0 i.HH~iH 

I l l l l l l ~ l l l l l l l l l l l  OCOEOCOOO00C0OOC00OO I I  I ~OCOOOO000OO0~O0 IIIII O ~IH~HHH 
I l l l l l l l l l l l l l l l l l l l  O0000©O00000¢O00pO0 I l l  OOOOOOOOOODO~D I I : IX  ~ H~H.H+i 
I l l l l l l l l l l l t l l l l i l l l  00CO00000~00©0DOPO0 I 1111  0000000P0~PO0 ~ I x l  D~ H~+'HHH 
I I I I I I I I I I I I IN IT I I I I I  0000~O000000DO+000 1111 t l i  ODOOD000BDOD KKKm ++ HHH~H+, 
l l l l l l l l l l l l l l l l l l l l l l  00C00000+000¢00000 I I I I 1111  0+000000OOD m~mm 0+o. >++++++++++ 
I I I I I l l l l l l l l l l l l l l l i l  OODCOOOOOOOmO00 I I I 11111  00~000000 KKKKK o++ +H+H++~ 
I l l l l l l l l l l l l l l l l l l l l l ~  O000000000000& I I I I I I I I 1  0000000000 K~kKK~ O0 +mH~+<++ 

I I I I 11111111111111 t l i 111  ~DCOOOOOODO I I I I I 11111  ooooooo  KKKK~K~ DOO b . , , ~ t ¢~ l  
111111111111 I I I I ! 111 I I I 1  O00000000b I I 11 I I I 1111  000000o K K K ~ I  00o HHHHHHH 
I l l l l l l l l l l l l l l l l l I l l l I l  CO0Oo00 I 11111111111  ooo0ooo ~ K K X K ~  DO HWlH~HH,It 
I I 111111111 I I 111111111 I I  0 I I I I 111111111  ~GOODO KI~K~ (K~  DO ,HHt l I+ ,H t l  
l l l l l l l i l l l l l l l l l i l i l l l i l  I 111111111111  ~ 0 0  IKKKK IKK~  000  ~HHH~HTH 
I I I I I I I I I I I I I I I I I IN I I I I I I I I I I  I l I l l l l l l l i l l l  00oo0oo KKKKKKKK O0 HHHHHHHH 
111111111111111111111111111 {1111  ~111111 |11111111  000DO0~ K~KKKKK ODO0 ~HHHHHHH~! 
I I I 11111111 I I I 11111111 [ [ 1111111111111111111111 I I 111  OD~C~DD ~KKKKKK 0~  HHHHHH~4~H 
I l l l l l l l l l l l l l l I I l l l l l l l l l l I l l l l l l l l l l l l l l l l l l l l l l l l  00000  K~ I I IK  O00D ~, .~t lHH~H.~.  

I l l l l l l l l l l l I l l l l l l l l l l l l l l ~ l l l l l l l l l l l l l l l l l l l i l l l l  00~D ~KK~ I  D~O I+H~ . . t + .H . . *+  
l l l l l l l l l l l l l l l l l l l l l l l l l l l [ l l l l l l l l l l l l l l l l l l l i l l l  DO0~ ~KK~  0~0  H~HHHH~HHHHIH 
I l l l l l l l l l l l l l l l I I l l l l ~ l l I I I l l l l l l l l l t l l l l l l l l l l l l  BOOD IK~K~K  BBD H .~ .H  ~mt :H  
l l l l l l l l l l l lH I I I I I l l l l l l l l l l l l l l l i l l l l l l l l l l ; l l l l  O000D KK~K IX~  0~ H~IH#I~ ~lt~l 
l l l l l l l l l l l l l l l l l l l l l l l i l l l l l l l l l l l l l l l l l l l l l l l l l  00ooo KKK~XKKK POD HH~H~+ ++++ 
I I I I I 11111 ]1 I i i 1111111 I  l l l l l l l l l l l l l l l l l  I l l l l l i  OODO+ KK~XmKK 000 HH~+t L ++ 
I I I I I I 111111111111111 I  I 1~ I11111111111  I 11 I I  OODO K~KK t~  09~0 H~t l  LL ~t 

11111111111111111111  I i l 11111111111  11 0~o0o KI lK I I t  0000 t!ttH~I ~ t C  
I l l I l l l l l l l l l l l l l l l  I I I 1111111111  o0o00  KKKKKKI  DD000 t 11~  LL {L  
I 1 [ 1111111111111111  111111111111  DQ DO0000 KKKKX 00000  NHItH LLLLL  

l l l l l i l i l l l l l l [ l l  O I I I I ] I I I I I I I  000000~O~O00BO I IKK  ~DDO HW~HH tL tLL  

I l l t l l l l l l l l l l l l  0o0 I I i l 1 [  0o0ooooooooo0oo KKK O00COD HHI~t~ LLL 
111111111111111  0000 I 111  00000000000000000 K 009000 HHH 'H  LLLL  

O I I I  I I I I I I I I  ~oooo OO0000000000000000 ~00000 HH+¢HHH Ll~ +I 
0 I I I  I I  000000 0000000000000000000o~0 O000BDO HHH~HH ~L~L ~ 
oo [ o~oooo00 OOO0DOOO00O0OO00OO0000000 000000 HHHH~+HH LLL~  HHH 
O00 0 ~ODDOO00ODO00OOOOD00OOODOOOOOOO0nOODOOO~O0000 HMHHHMH~ 1LL MHH 
~00 0 000000~00~00000000000000000000000000000000000~O000 HHHHHHHH ~LL ~ 
O00OO00CO00000OO00OOO~O00O~O O~000o0oooooo~o~o0o0ooooooo~ HHH~HHHH L +(~+~H 
C000000¢000¢0C0000~00000000 ¢0000o000o0000000~00000~7 HHHHH~HHH HH~HHH~ 
OOO~OO000CO0000O0OOO~OO00OO ooooo9oo~oooo~oo~0000000 HHH,HH~H,H HMHH.MII~I 

000ooo00000000©o©o00~0 nm~mMm~ ooooo000o0oo~ooo0000 ~HH~HH~HH~H~HHHHHHHHHH~H 
D00OOO00 DCO000000000  MNHM~M~ 0000000000~0000e0000  HH~HHHHH~H~HH~HHH~HHHHH~ 

O00+000©o0000+o mmnm.mmm~mm.~+mmm~.m 00OOO000000P x~ -~ ,~+ .m .x~ - ,~ i++m~ '~H .+Hn  

Fro. 3. ConnecLed componenL transform 
of Figure 2 

subset is examined by an expanding array of sensors. (For the latter approach soe 
Harmon [5] and Singer [6-8]; compare also Stevens [9].) In early work on digital 
picture proeessing (Kitsch [2]), a traasformation of this type was performed by a 
sequence of local operations performed in parallel; this approach requires two 
operations for each incremental propagation step. N[ore recent discussions of this 
type of transformation and its implications for shape description may be found in 
several papers by Blum [10-12] (see also Kotelly [13]), who also considers the pos- 
sible role of such transformations in visual form perception. 

"Propagating" a subset over a picture is tantamounB to finding the "distance," 
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in the sense of the propagation process, between the subset and each point  of the 
picture. In this section a simple "dis tance"  concept, appropriate to digitized pic- 
tures, is introduced, and a transformation is defined which determines the distance 
from every picture element to a given subset. 

4.1 Distance 
Let P and Q be any two distinct points in a digitized picture, and let d*(P, Q) 

be the smallest positive integer such tha t  there exists a sequence of distinct points 
P = P 0 ,  P i ,  " ' "  , P n  = Q with P~ a neighbor of Pi -1 ,  1 < i < n. This  d* is 
called the distance from P to Q; if P = Q, the  distance between them is defined as zero. 
The distance from P to a given subset S of the picture is defined as the smallest 
of the distances fl'om P to the points in S. 

Like connectivity, the distance concept is defined by iterating the proper ty  of 
being a neighbor. Here, however, the miifimum number  of iterations required to 
"reach" Q from P is of interest, whereas in the case of connectivity, the question 
considered was whether Q could be reached at all from P using only points in a 
given subset as intermediate points. As was pointed out for connectivity in Section 
3.1, a distance can also be defined using only horizontal and vertical neighbors 
as "steps." If  d(P, Q) is the distance from P to Q using this more restricted defini- 
tion, it is clear that d => d*. For  simplicity, the restricted definition is used in the 
remainder of this paper. 

Evidently, d(P, Q) (and similarly for d*) has all the properties of a metricJ I t  
should be emphasized, however, tha t  d is not  even approximately the Euclidean 
distance. In fact, the locus of points at  a given distance d > 0 from a given point  
P is a diagonally oriented square of side d +  1 centered at  P,  rather than a eircleJ 

4.2 Distance transformation 
Given a digitized picture whose elements have only the values 0 and 1, it is 

desired to construct a distance transform of the picture in which each element has an 
integer value equal to its distance from the set of O's. ( I t  is assumed that  the  set of 
O's is nonempty.)  Thus in particular, the O's remain unchanged, since they  are at 
zero distance fl'om themselves; the l ' s  which are horizontal  or vertical neighbors of 
O's also remain unchanged; the l ' s  which are horizontal or vertical neighbors of 
such l 's  become 2's; and so on, 

This transform can be performed using jus t  two sequentially applied local opera- 
tions as follows. Let 

fl(a~,~) = 0 if a~d = 0, 
= min (ai-l,i  -t- 1, a~,j_l -]- 1) if ( i , j )  ¢ (1, 1) 
= m + n  i f  ( i , j )  = ( 1 , 1 )  

f : (a id)  = rain (aid, ai+lj + 1, aij+t + 1). 

and a~,i = t, 
and a1,~ = 1, 

Since tie two points of the picture can be distance m-~n apart,  we know that  a1.1 
is at a distance less than town from the set of O's, if this set is nonempty;  thus the 

4 It is positive definite by definition, and is clearly symmetric (the reversal of a sequence 
from P to Q is a sequence from Q to P and vice versa). Moreover, since any two sequences 
from P to Q and Q to R, respectively, can be put end to end to give a sequence from P to R, 
it evidently satisfies the triangle inequality. 

5 For the metric d*, the corresponding locus is ar~ upright square of side 2 d+l  cei~tered 
at P. 
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final value of al,~ (or of any other element labeled m + n  by fl) will be the value 
assigned to it by f2. 

T~H~o~u~M. Let  C -- ( e~,i) be the picture which  results when  f l  is appl ied  to the pic- 
ture A -- ( a~,~) in  fo rward  raster sequence, fol lowed by f2 in  reverse raster sequence. 
T h e n  C is  the distance t rans form of A .  

PROOF. Note first tha t  if a,~.~ = 1 and ~ horizontal or vertical neighbor of a~,i 
is zero, evidently c~,~. = 1, and conversely. Suppose now that  c~,j is equal to the 
distance from the (i, j )  element to the closest zero element in A for M1 (i, j )  such 
tha t  this distance is less than/c.  Let B == (b~,j) be the picture which results from 
applying f~ in forward raster sequence to A. I f  c~,¢ = k, by  the induction hypothesis 
the distance h'om the (i, j )  element to the nearest zero must  be at least/c. I f  it is 
greater than k, by definition of distance it must  be at least/~ for each of the (i, j )  
element 's horizontal and vertical neighbors. In  particular, e~+~,~, and c~,j+~ each are 
greater than or equal to k, so that  c~,~. -- k implies b~,~- = k by definition of f~. 
But  then b~_~,~ or b~.j_~, say the former, must  be l c -  1 by definition of f~, so that 
c,_~,j < k - 1; contradiction. 

The distance transforms for a circle, two rectangles 6 and regions F, J and K of 
Figure 3 are shown as Figure 4. These transforms illustrate the output  of an IBl~I 
7090/94 program, written in FOX,ThAN, which accepts input  digital picture data 
as described in Section 3.3. For simplicity, only the odd distance values are printed 
out modulo 10, while the even values are left bbmk; the points with value zero are 
printed as X's.  

4.3 Distance  skeleton 
Blum has suggested [12] tha t  the locus of points at, which the propagation wave 

front "intersects itself" may  be perceptually important .  This locus defines a sort of 
"skeleton" (Blum: "medial  axis") for the original picture. In this subsection, a 
skeleton subset is defined for the distance transform introduced above, 7 and it is 
shown tha t  this skeleton is the smallest subset of the transform picture from which 
the entire transform picture can be reconstructed by  "reversing" the distance- 
measuring process, 

Define the local operations g~ and g~ by  

gl(a l , j )  = max (a~. j ,  a~,j_l -- i ,  a i - l , i  --  1), 

g=(a~.~) = max (a~,~, a~.~.+t -- 1, a~+,,i -- 1). 

Let  G f f P )  be the picture which results when gt is applied to P in forward raster 
sequence; G f f P ) ,  the result of applying g~ to P in backward raster sequence; and 

LF~MM~ 1. I f  A is  any  picture and  a ( A )  = (c,~), then all of l c~,¢ -- e~+~,~ I, 
I c~,~ --  e~,i+~ I, I e~,i -- c~-~,~l and  I c~.i - c~,i-~l which  are defined are less than or 

P~oo~. Let A = (a,~),  G~(A)  = (b~i). By  definition of g~, 

b~,i > b~,~_l - 1 and bi.~" > b~-~.i - 1, for all i, j ,  

The two rectangles actually have the same proI~)rtions; the difference between their shapes 
in the figure results from the unequal horizontal and vertical size of a character space. The : 
circle appears distorted for the same reason. 

' I t  should be emphasized that since the distance considered here is non-Euclidean, as 
i!i already pointed out, the resulting skeleton is not likely to have any special significance for 

visual form perception; however, it is still a useful picture proeessing tool. 
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Fro. 4a. Dis tance  transforms of Fro. 4b. Distance  transforms of components 
two rectangles and a circle F, J, K of Figure 3 
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so that  

b<~.+z > b~.i - 1 and  b~+z.s > b~,i - 1, for all i, ] .  

Similarly,  by  definition of  g~ we have  for any B = (b~i) and for M1 i, j ,  

c~,j _-> c~,i+l -- 1, c~,j >_- c~+l,j --  1, 

c~,j_~ > c~.j --  1, c~-z,j > c~.j - -  1, 

where  G2(B) = (cis). 
If  it can be  shown that  the above  relations on  the  b's remain true w h e n  the  b's 

are replaced by  c's ( that  is, when  g2 is applied),  the assertion m a d e  in L e m m a  I will  
fol low immediate ly ,  s ince (e.g.)  c~,j-1 _-> c~,~ - 1 and c~,:. ~ c4.j_z - 1 are equiv- 
alent  to I c~,j. - c~,s-11 =< 1. 

Suppose  that  these relations hold  for all the c's through the (i,  j ) - t h  in the  sense 
of the  backward raster sequence.  Since g2 can never  decrease the va lue  of a picture 
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element, we have b~,j_l < b~,~. + 1 < c~,~. + 1. By  the induction hypothesis, 
ci+ld-1 - 1 < ei+l,~, and by  the relations on the c's, this is less than or equal to 
c~,~. + 1. Hence 

ci,~-i = max (bx,i-t, ci.j - 1, ei+l,j-1 - -  1) <~ Ci,j -~ 1, 

proving tile induction step. Finally, 

c . . . .  , = max (b . . . . .  1, c ..... - 1) -< max (b,~,~ + 1, c~,,,~ + 1) = c~,~ + 1, 

and similarly cm-l,, <= c ..... + 1. This completes the proof. 

LEMMA 2. Let A be a picture such that a~,i >= a~,i-~ -- 1 and a~,j >= a~-l,j -- 1 
for all i, j ;  then GI (A)  = A .  Similarly,  i f  A is such that a~,i >= a~.i+~ -- 1 and 
a~,i >= a~+l,~ -- 1 for all i, j ,  then G2( A ) = A .  

PROOF. Clearly gl(a,t) = a11. If  GI(A)  = A for all elements up to the i, j t h  
(in the sense of the forward raster sequence), then 

gl(ai,~) = max (a i , i ,  gl(a~d-t) - 1, gl(ai-l,i) - 1) 

= max (a~.i, a~,i-~ -- 1, a~_~,j - 1) 

by induction hypothesis, and this equals a~,i by the original assumption about  A. 
The proof of the second part  is exactly analogous. 

Co~oLLAnY. GI(G~(A))  = G~(A),  G2(G~(A)) = G2(A) and G ( G ( A ) )  = 
G(A  ) for all A .  

PROOF. By  the proof of Lemma 1, G~(A) has the properties of the first part  of 
Lemma 2, so that  GI(GI (A) )  = GI(A); similarly for G2(A).  By Lemma 1, G ( A )  
has the properties of both parts of Lemma 2; hence by  Lemma 2 G ( G ( A ) )  : 

= a , ( a ( A ) )  = G ( A ) .  

g E ~ u i  3. The distance transform of any picture has the property of L e m m a  1. 
PRooF. By  the Theorem of Section 4.2, in such a picture each element value 

is equal to the distance from the element to a zero-valued element, and clearly 
di,or 1 

ConoLLinY. I f  T is any distance transform picture, G( T)  = T 
,roo  0o.o   r, Proof. 

LngMi  4. Let A = ( a i i ) ,  B = (bi~) be pictures such that al,j <= b~,i for all i, j .  
Let G ( A )  = (c~),  G(B)  = (di~), and let a~,~ = b~,~ = d~,~ for some h, k. Then 
ah,k = Ch,k .  

Pnoo~. Evident ly  we must  have c~,i _-< d~,~. for all i, j ,  so tha t  c~.~ _-< d,,~ = 
aa,~. But  G never decreases the value of a picture element; hence aa.~ =< ct,,~. 

If  P = (P,i) is any picture, P '  = (p;~.) will he called a partial picture of P if 
t 

p~.~ = pi.~ or 0 for all i, j .  
COrOLlARY. Let T be any distance transform picture, T '  any partial picture of T. 

Then all the elements of T'  which are equal to the corresponding elements of T are in-  
variant under G. 

PROOF. Take A = T', B = T in Lemma 4. By  Lemma 3, b~,i = d~.i for all 
i, j ;  hence for all a~.~ such tha t  ah,~ = b~,~ we have ah,~ = c~,~ as required. 

LEMM~_ 5. Let A = (ai~) be a picture, G ( A )  = (cli),  and let a~,~ < V; let 
ca_~.~ , ch,~_l , c~+~,~ , c~,~+1 all be less than or equal to V.  Then c~.~ < V. 

PROOf. Let  Gt (A)  = (b~j). Since G~ never decreases the value of an element, 
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we ht~ve bp~_l,~ < ch-l.~ -<_ V, b1~,~_1 < c~,.k_l < V, so that  

bh,e = max (aha, bh-l.k -- 1, bh,~_~ -- 1) < V, 

and 

cl~,k = max (bh.k, bf~+1.k -- 1, bh,~+l -- 1) < V. 

If 7 ' =  (t~j') is a distance transform picture, the part.ial picture T* = (h*~) 
defined by t~*j = t~,~, if none of ti-~,j, h+l.i, ti,~-i, h,i+l is t<~. + l ;  0, otherwise, 
will be called the slceleton of T. In  order words, T* is the set of local maxima of the 
distance transform. We assume that T is not the trivial picture every element of 
which has value m+n.  

T[IEOREM. G( T*) = T, and if T' is any partial picture of T such that G( T')  = 
T, then T* is a partial picture of T'. In other words, T* is the partial picture of T 
with fewest nonzero elements such that  G(T*) = T. 

PROOF. If P is any picture with integer-vMued elements, let Pk be the set of 
dements of P which have value k. Let N be the highest vahle of any element of T; 
then by definition, (T*)~ = 5/'~, so that  by the Corollary to Lernma 4, G(T*)N = 
T~r. Suppose that  G(T*)~,+~ = T~+I. By definition, T* contains every element of 
value M which has no element of value M + I  as a neighbor in T (or equivalently, 
in G(T*)), and by the Corollary to Lemma 4, G(T*) still contains these elements. 
On the other hand, if t~.k = M and has a neighbor in G(T*) with value M + I ,  
then by definition of G, the (h, /~) element in G(G(T*)) has value at least M. 
But G(G(T*))  = G(T*) (Corollary to Lemma 2), and by the proof of Lemma 4, 
the (h, k) element in G(T*) can have value at  most that  of the (h, Ic) element in 
G(T)  = 7' (Corollary to Lemma 3); hence every such element has value M in 
G(T*),  proving that G ( T * ) .  = T,u. This induction argument proves G(T*)k = 
Tk for all k ( =  N, N - 1, . . .  , 1, 0), so that  G(T*) = T. Conversely, let T' be 
any par~iM picture of T such that  G(T' )  = T, and let t~,,~ be an element of T of 
value M > 0 which has no neighbor in T of vMue M + I  and which fails to be in T'. 
Then the values of its neighbors in G(T' )  = T are less than or equal to M (Lemma 
1), while its vMue in T' is 0 < M, so that  by Lemma 5 its value in G(T')  is still 
less than M, contradicting G(T')  = T. Thus T' must contain every element of 
T* of value greater than 0; this completes the proof. 

Skeletons for the pictures of Figure 4 are shown as Figure 5. In this figure, the 
nonzero skeleton point values are printed out modulo 10. As the two rectangles in 
Figure 5 show, the skeleton is not invariant under rotation. Note also that the Eu- 
clidean skeleton for a circle would evidently be just the point at its center, unlike 
the skeleton shown for the circle in Figure 5. 

5. Applications: Connectivity and Proximity 

The connectivity transformation described in Section 3 has several immediate 
applications. Once a label has been assigned to each connected component of a 
picture, it. is triviM to count the number of such components by simply counting 
the number of labels which were used. (A special-purpose version of the connected 
component program can be written which only counts the components but does not 
label each element of each component; see Nuttall [14] and Sabbagh [15, pp. 43-48]. 
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F~a. 5a. Skeletons for Figure 4a 

x~x x×~× xx a .  xxxxx  xxx~ x~ 
xx x~x x x x x x x x  xx ~ xxxx xx~x x~xx x x ~  

. . . . . . . . . . . . . . . .  xx~ xx× ×x~x~x xx xx 
x ~ x x  x x ~  x x x ~  

x ~  x x ~  x x x x x x x ~  x x x x x x x x  x x x  ~ x x ×  x x x ~  x x x  
x ~ ×  x ~ x ~ x x x ~ x ~  x x ~ x ~  x x x  x × ~ x  ~ x ~  x x x  
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I l X I X ~  1 1  x 1 1 ~  

XXXX ~ X I  XXX ~ 

X~lX~ xxx 
I I I X  X X l  I ~ I I  X l l l  

Fro. 5b. Skeletons for Figure 4b 

It is also possible to perform this blob-counting operation by a process of succes- 
sively deleting from each component border elements which do not disconnect the 
component until only one element per component remainsS; for this approach, 
which is easily implemented using parallel local operations, see Kirseh [2], Minor 
[16] and Izzo [17, 18]. A closely related approach, using accretion rather than dele- 
tion, has been implemented by yon Foerster and his colleagues [19-21].) One can 
also measure the area of any given component by counting the number of times its 
label occurs. 

5.1 Adjacency and order of connectivity 
Two somewhat less trivial problems which can be solved with the aid of the basic 

8 Provided that the components are simply connected; if  they have "holes" in them, a more 
complicated procedure is necessary. 
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TABLE iI  

Region Order of 
Connectivity 

1 Boundary of picture 10 
2 Boundary of regioll F 2 
3 Boundary of region G 2 
4 Boundary of region J 2 

D 4 

appropriate positions in an incidence matrix whenever such a subpicture contains 
points which have two or more different labels. The graph of Figure 3, constructed 
in this way by a FOaTRAN program and output by a tape-controlled plotter, is 
shown in Figure 6. 

Once the graph has been constructed, it is easy to solve the second problem posed 
earlier. It is easily seen that the order of connectivity of a connected component is 
equal to the number of nonadjacent "pieces" into which the picture is divided if the 
given component is deleted. Evidently, this is just the number of connected com- 
ponents into which the graph is divided if the corresponding node and the ares 
emanating from it are deleted. This number can be determined by examining the 
ineidetxee matrix of the graph after deleting the corresponding row and column. 9 A 
FORTRAN program which performs this analysis has been written; its output for 
Figure 3 is shown in Table II. 

5.2 Proximity 
Closely related to the two problems just discussed is the question of defining a 

"graph" for a picture such as Figure 3 ignoring the unlabeled "borders," and con- 
sidering two of the labeled regions as being "adjacent" if they are separated only 
by a border. Intuitively, region I on Figure 3 is adjacent in this sense to regions B, 
C and D, but region B is not adjacent to region D. The graph for the labeled regions 
and "exterior region" of Figure 3 corresponding to this notion of adjacency is shown 
as Figure 7. 

The concept of adjacency in the intuitive definition just given requires careful 
consideration. If the borders beUween regions in a picture all have approximately 
the same thickness, the adjacency of two regions in this sense essentially reflects 
their degree of proximity; regions are adjacent provided they approach one another 
within a distance just greater than the border thickness. TM As in the ease of true 
adjacency, this can be determined by examining all possible subpictures of the ap- 
propriate size and entering l 's in the incidence matrix whenever points with two or 
more labels are contained within such a subpicture. The graph in Figure 7 was 
drawn by a FOItTaAN program which analyzed 4 by 4 subpietures of Figure 3 in this 
manner. 

9 This number could be determined directly from the picture as follows: Temporarily label 
the points of the given component 1, the points of its complement 0, whether these points were 
1 or 0 in the original picture. Apply the connected component labeling program to this new 
set of 0's and simply count the number of its components. However, it is much simpler and 
faster to determine the orders of connectivity from the graph, once this has been constructed 

~o One should certainly not  define two regions as being adjacent if it is merely possible to go 
from one to the other by moving through border elements only; by this criterion, regions A 
and B, B and D of Figure 3 would be adjacent, and K would be adjacent to the picture exterior. 
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A more dillicult problem is presented if the borders between regions are of varying 
thickness. Even in this case, however, one might proceed by determining the degree 
and direction of the elonc/ation of any segment of border (see Section 6.2). Adjacent 
could then be defined as "separated by a segment of border which is tangentially 
elongated." This definition would be consistent with the intuitive concept of ad- 
jacency for the labeled regions of Figure 3. 

It should be pointed out that the intuitive definitions of adjacency suggested in 
the last three paragraphs are of more limited usefulness than the mathematicM 
definition. For example, one cannot in general determine the order of connectivity 
of a region from a graph based on such a definitiom Examination of the graph in 
Figure 7 does indeed show, in agreement with intuition, that all the regions except 
D are simply c, onnected, while D has order of connectivity 4. However, suppose 
that in Figure 3 the six D's to the right of the top row of F's are replaced by blanks, 
making a "cut" in region D. This does not change the graph of the figure (region D 
is still connected, and region F still not adjacent, in the intuitive sense, to the pic- 
ture exterior) ; but region D now has order of connectivity only 3. *~ 

6. Applications: Shape (Elongation) 

The distance transform can be used to obtain a variety of information about the 
shapes of regions on a picture. In this section, two applications of this transform to 
the definition of elongation are discussed. The elongation considered here is an in- 
trinsic sh.~pe property; a snake is considered to be elongated even when it is coiled. 
It  is difficult to define this property in conventional geometrical terms, in spite of 
its evident intuitive sigllifieance. 

Since the connected component transformation provides the ability to single out 
any component of a picture for analysis of its shape, it will be assumed in what 
follows that the given picture contains only a single connected region ("figure") 
consisting of l's, and that the remainder of the picture consists of O's. 

6.1 Elongation as the proportion of a figure which lies close to its boundary 
In his original papers [10-11] on the propagation concept, Blum suggested that 

the successive wavefronts--that is, the sets of points which are at a given distance 
from the original figure boundary--could provide useful information about the 
shape of the figure. For example, if the figure is a square, the wavefronts are con- 
centric squares, and the numbers of points in them decrease linearly to zero. (See 
the solid curve in Figure 8(a)). On the other hand, if the figure is a very elongated 
rectangle (Figure 8(b)), the number of points in a wavefront decreases linearly until 
the center line of the rectangle is reached, when it drops abruptly to zero. Analogous 
plots of number of points vs. number of steps for three irregular figures of approxi- 
mately equal area (regions F, J and K of Figure 3) are shown in Figures 8(c)-(e). 

As the solid curves in Figure 8, especially parts (a) mid (b), indicate, the manner 
in which waveh'ont perimeter decreases provides a measure of the elongation of a 
given figure. This measure represents the degree to which the interior of the figure 
lies close to its boundary, which is iI~tuitively related to the intrinsic elongation of 
the figure. 

~t Note  t h a t  making  this  out does change the  graph  in F igure  6, since i t  combines  the "bo rde r  
o[ F" region with the "picture border" region. The modified graph does in f~ct reflect the 
orders of connectivity which result from m~king the cut. 
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Fro. 8. Wavefront perimeter and boundary-touching square plots for (a) a square; (b) ~m 

elongated rectangle; (c) component K of Figure 3 (elongated); (d) component F of 
Figure 3 (partly elongated); (e) component J of Figure 3 (roughly circular) 

A shape descriptor closely allied to wuvefront perimeter is the number of different 
squares of a given size which are contained within a given figure and touch its 
boundary. For simplicity, only squares whose sides are parallel to the sides of the 
picture will be considered. These numbers carl be computed by systema'ti(.ally erect- 
ing all possible squares on the cross-sections of the figure by the rows of the picture. 
Art IBM 7090/94 progr~Lm for doing this has beret written in FAP. In Figure 8, tile 
numbers of boundary-touching squares are plotted as dashed curves for comparison 
with the wavefront perimetersJ 2 

The measure of elongation provided by these shape descriptors is relatively crude, 
since they are computed over the entire figure. A much more sensitive measure of 
elongation is defined in Section 6,2, using the distance skeleton concept introduced 
in Sect ion 4.3. 

12 The wavefront and enclosed squares descriptors are conceptually related, but not equiva- 
lent, to the "Buffon needle" shape descriptor proposed by Tenery [22-23], which involves the 
probability that a line segment of given length randomly dropped on a figure with one end 
inside the figure also has the other end inside. 
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6.2 Elongated parts of a figure 
The skeleton subset introduced in Section 4.3 can be used to define a variety of 

useful shape properties. In this section it is applied, in combination with proximity 
analysis (see Section 5.2), to the problem of determining elongated parts of a given 
figure. The approach described in what follows is based on the intuitively appealing 
idea that any elongated figure part should give rise to a skeleton subset similar to 
that of an elongated rectangle. Such a skeleton should contain a large number of 
adjacent or proximate points located a relatively short distance away from the 
figure border. If the "reverse" distance transformation (Section 4.3) is applied to 
this set o~ points, the elongated part of the original figure should be regenerated. 

Consider as an example the fictitious "hydrogTaphy" of Figure 9(a), in which the 
X's are water and the blanks land. Intuitively, the river, %ribu~aries and creeks are 
elongated, but the lake and bay are not. Figure 9(b) shows the corresponding skele- 
ton:locus modulo 10, where the land points have been treated as O's, the water 
points as l's. In this figure the components of the points with values 5 or less, de- 
fined by a proximity criterion using a 3 by 3 subpicture, have been circled. 13 The 
large components (25 elements or more) evidently correspond to elongated portions 
of the hydrography, the one at the lower right to the elongated loop of lake around 
the island. In Figure 9(c) these elongated pieces have been regenerated by applying 
the reverse distance transform starting with these large components only. The re- 
generated parts are represented by E's, the remaining original water points by dots. 

~3 The number 5 is an arbitrary threshold, not necessarily optimum. Skeleton points con- 
tained in the same 3 by 3 subpietnre were considered to belong to the same component only if 
their values differed by two or less. 
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This example suggests the following general procedure :for determining elongated 
parts  of a figure: 

1. Apply the distance transform to the figure and determine the skeleton locus. 
2. For each k = 2, 3, ... , up to half the picture diameter if necessary, consider the set &~ of 

skeleton points which have values less than or equal to k. 
3. Determine "proximity components" of each Sk, and count the number of points in each 

component. 
4. Select those components, if any, which have more than tk points. A reasonable value for tk is 

in the range 5/c-10k, ~4 corresponding to a set of proximate skeleton points whose "length" 
is at least 2½ times the "width" of the piece of figure which gave rise to it. 

5. Apply the reverse distance transform to these componeni~s to reconstruct the elongated 
parts of the original figure. 

Appendix .  Proof of the Equivalence of Parallel and Sequential Local 
Operations 

I t  must  be shown that  any local operation applied in parallel is equivalent to a 
series of local operations applied sequentially, and vice versa. 

Note first tha t  if the local operation f is applied to each element of the picture A, 
and the results are stored in another picture B, rather than  modifying A, then it 
makes no difference whether f is applied to A in parallel or sequentially, since the 
arguments  of f are always the original elements of A. Hence if f applied in parallel 
takes A into A*, then f applied in any sequence, using B for storage of the results, 
yields B = A*. By the Lemma of Section 2.1, it is known tha t  if necessary, this 
procedure can be re-expressed in terms of A %lone (for example, one could trans- 
form A in such a way as to "keep"  the original element values as exponents of 2, 
while storing the transformed values as exponents of 3). I t  has thus  been shown 
tha t  the result of any parallel local operation can be obtained by  applying ~ local 
operation sequentially. (Strictly speaking, an additional operation of "erasing" A 
and "replacing" it by  B = A* should also be  performed; this operation does not 
even involve neighbors, and can be performed either sequentially or in parallel. In  
the example using exponents given just  above, this operation is s imply Ca (see Sec- 
tion 2.1).) 

Conversely, let f be ~ local operation which takes A into A* when applied se- 
quentially. Let  A = (a~s), A* * = (ai~'), 1 < i =< m, 1 =<j <= n, ~nddefine 
ao,j = a,,+~.j = a~,o = a~,n+~ = v, 1 =< i =< m, 1 =< j =< n, where v is different 

from every a~,~ and * ai , j ,  1 _<- i=< m, 1 -<_j_-< n. Nowdefine:  

(1) fl(a<1) = f ( a ~ - l d - l , ' " ,  a~+l,j+l), if a ¢ - l , j  = a<~'-I = v; 

=a~,i otherwise; 1 =<i <= m, 1 =<j =< n. 

(Since ai-l,~ = a~,i-~ = v is equivalent to ( i , j )  = (1, 1), applying this f ,  in parallel 
to all of A is equivalent to applying f to a~.l only.) At the same time, let f t  generate 
an auxiliary picture (b~s) such tha t  

b~,¢ = w if  a i - l j  = a i , j - 1  = Y / 

(i.e., if ( i , j )  = O, 1 ) ) ~ ,  1 < i  < m, 1 < j  < n, 
= a~,s otherwise J 

~4 This uncertainty can be reduced if the skeleton locus is "thinned" before this step is pe> 
formed. 
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where w is different from every a~,j and a* • ,.~ as well as from v. 

(2) f 2 ( a ~ . j )  = f ( a i - l j - 1 ,  ' ' '  , a i+ l , j+ l )  1 
ifa~_l,j = v and b~.i-~= w | 

= a~.jotherwise ~,  1 _ - _ i < m ,  1 ~ j  <=n. 
f 2 ( b ~ . j )  = w if a i - l . i  = v and bl,j-1 = w ) 

= b~.3 otherwise 

(If fl has been applied to A, the unique (i, j )  s~tisfying a~-l,j = v and bi,~-i = w is 
(1, 2). Thus applying f2 in parallel to f l (A)  is equivalent to applying f to al,2. Ap- 
plication of f2 also puts a w in the (1, 2) position; hence if it is applied a g a i n ,  the 
unique (i, j )  satisfying the conditions is now (1, 3). Hence repetition of fe n--1  
t i m e s  is equivalent to applying f sequentially to a~,~, • • • , a~.,,.) 

(3) f 3 ( a l , i )  = f ( a i - l , j - 1 ,  " ' "  , ai+l,j+l) 
if a~-1.i = v) and a~,j_l = v 

= a~,~.otherwise , 1 < i < m ,  1 <j-<__n. 
f 3 ( b i , j )  = w if b i - l . j  = w and ai.j-1 = v 

= b~.j otherwise 

(If fl has been applied, these conditions are satisfied by (i, j )  = (2, 1) only. Hence 
applyiI~gf3 afterf~ and n -  1 f2's have been applied has the same effect as applying f 
to a2.1 after having npplied it to a l a ,  "" • , al,~ .) 

(4) f4(a~,~') = f ( a ~ - l . ~ - i  , " "  , a i + t . j + l )  
if bi_~,j  = b~.~_~ = w 

= a~.j otherwise , 1 -<_i < m ,  1 =<j_-_ n. 
f4(b~,~) = w if b~_~.~ = b~.j_l = w 

= b~.j otherwise 

(Readily, after fx, n - 1  f~'s and fs have been applied, this f4 singles out the (2, 2) 
element; and repeating it a total of n - 1  times singles out the (2, 3), . . .  , (2, n) 
elements, successively. Moreover, after this has been done, application of fa again 
will single out the (3, 1) element; successive applications of f~ after this will pick 
the (3, 2), . . .  , (3, n) elements; and so on.) 

In summary: Applying f to A sequentially is equivalent to applying the following 
series of parallel local operations to A : 

f ~ ; f ~ , . . . , f ~ ,  ( n - - l t i m e s ) ;  [ f a ; f 4 , " ' , f 4 ,  ( n - l t i m e s ) ] ,  

with the bracketed series of operations repeated u total of m--1 times, giving a 
totM of m n  parallel operations. 
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