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Classes of "phrase-structure grammars" are defined whose "languages" consist, not
of strings of symbols, but of directed graphs with symbols at their vertices ("webs").
Examples of such "web grammars" are given, having languages consisting of trees, of
two-terminal series-parallel networks, and of "triangular" networks. It is shown that
if the graphs permitted in a "context-sensitive" web grammar are required to be
acyclic, and the parsing rules are assumed to be graph homomorphisms, then any sub-
graph which is parsed by a rule must be "convex", and any rule is a composite of rules
each of which parses a subgraph having just two points.

Foreword

Since the early 1960's, considerable
effort has been devoted to the problem of
developing formal "picture languages"
whose "sentences" are pictures of various
types. This work (see” for a recent sur-
vey) can be thought of as generalizing
the concepts and methods of mathematical
linguistics from conventional languages,
in which sentences are strings formed by
concatenating symbols, to "languages" in
which "sentences" are formed by combining
symbols in more general ways. The pre-
sent paper describes a method of defining
"languages" whose "sentences" are
directed graphs with symbols at their
vertices. The writers are indebted to
R. A. Kirsch and D. E. Knuth for suggest-
ing this area of research. The support
of the Information Systems Branch, Office
of Naval Research, under Contract
Nonr-5144(00),

Graphs and Webs

A directed graph G is an ordered
pair {Pg,Eg}, where

Pg is a finite set, whose ele-
ments (denoted by lower-case
lettars) are c¢alled the points
of G

is a finite set of ordered
pairs of elements of Pg, which
are called the edges of G.

is gratefully acknowledged.

We say that there is an edge from p to gq
if (p,q) is in Eg; we say that there is a
loop at p if (p,p) is in E;. A string
(ar...,an) can be regarded as a directed
graph, in which the set of points is
{al....,an}, and the set of edges is
{(alaaz) ’ (azia3) Frreey {an_lcan) }-

H = (Py,Eg) is called a subgraph of
G = (Pg,Eg) if

Py is a subset of Pg

Ey consists of just those pairs
in E; whose terms are both in
H

Thus any subset P of P; defines a unigue
subgraph, which we call the subgraph on P.

Two points p,q of the graph G are
gaid to be connected if there exists a
sequence of points p = Py.Ple+s.4Py = 4
such that either (p;_,.p;) or (py.Pj.1} is
in Eg, 1 £ 1 £ n, A subgraph is called
connected if every pair of its points is
connected. The set of points of G which
are connected to any given point of G is
called a connected component of G, Readi-
ly, the connected subgraphs of a string
are just ite substrings; these are the
subgraphas defined on sets of consecutive
points of the string.

By a path of length n {where n 2 0)
from p to g in the graph G is meant a
sequence of points p = Pg+Pyre--sPp =
such that Pj.1 o py and {pi_l.pi) Es in
Egr 1 £1sn, [Note that, in contrast
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to the definition of "connected”, here the
edges must all go in the same direction:;
the requirement that consecutive points be
distinct is needed in order to be able to
speak meaaningfully about the length of the
path. A sequence in which the edges need
not be in the same direction is sometimes
called a walk.] A path of length 22 from
a point to itself is called a cycle; note
that by this definition, a loop is not a
cycle, A graph in which there exist no
cycles is called acyclic. Readily, any
string is acyclic.

A point of a directed graph is called
a least point, if there is a path from it
to every other point; a greatest point, if
there is a path from every other point to
it, A point is called minimal, if there
is no path from any other point to it;
maximal, if there is no path from it to
any other point. Readily, in an acyclic
graph there can be at most one least
point and one greatest point, since if
there were two, they would be on a cycle,

The terminology "least", “greatest",
"minimal" and "maximal" can be justified
if we lock at graphs from the point of
view of relations. 1In any graph G, the
set of edges Eg can be thought of as
defining a relation on the set of points
Pg (indeed, by definition, a relation R
on a set 5 is just a set of ordered pairs
of elements of S}, By the trangitive
closure R of the relation R is meant the
set of pairs (x,y) of elements of S guch
that there exist x = XgeXireosrXy = Y,

n z 0, for which (x;_3;,%;) is in R,

1 £1isn, Note that if n = 0, the last
part of the regquirement is vacupous -- in
other worde, if y = x, we automatically
have (x,x) in K, so that K is always
reflexive; and readily, K is trangitive,
i.e. if (x,y) and (y,z) are in K, so is
{x,z).

Given any graph G, let fig be the
relation on Pg consisting of the set of
pairs (p,q) for which there is a path
from p to q. Readily, [z is just the
transitive closure of Eg. Moreover, let
G be acyclic; it is easily seen that thie
iz equivalent to saying that for any p.q
in Pg, if there are paths from both p to
g and q to p, then we must have p = qg.

In other wordse, G is acyclic if and only

if the relation g is weakly antisymmetric

and since it is reflexive and transjitive,

this makes it a partial order relation.
{In particular, if G is a string, lig is

& total order relation, since for every
pair of diatinct points (ai.a } we
evidently have either (ai,a-) DY (aj,a
in Mg, depending on whether™i < j of

j < i, This last cobservation shows that
acyclic graphs are a natural generaliza-
tion of strings.]

i)

Let V be a finite set, which we shal)
call the vocabulary (or "alphabet"): the
elements of V will be called symbols,

By a V-labelling of the graph G will be
meant a function A from Py into V. By a
web W over the vocabulary V will be meant
an ordered pair (G,A), where G is a graph
apnd A is a V-labelling of G. Note that
since a string is a special case of a
graph, a2 string of symbols from V is a
specia)l case of a web over V.

If G* is a subgraph of G and A is a
V-labelling of G, then the restriction
A' of A to G' is a V-labelling of G'; we
say that W' = (G',A') is a subweb of
W= (G,A).

Web Grammars

In a conventional phrase-structure
"string grammar”, rewriting rules of the
form ¢ := 8 are used to replace one
string by another. 5Such a rule is com-
pletely determined by specifying the
pair of strings (g,8); any string
w = pot¥ which contains ¢ as a substring
can then be immediately rewritten as
pBY¥. The definition of “rewriting rules"
for webs is more complicated; if we want
to replace the subweb « of the web w by
another subweb P, it is necesgsary to
specify how to "embed” 8 in w in place of
o, This can be done in many different
ways; for example, one can specify that
there be edges between given points of §
and any points of @ - o having various
properties (e.g., having given labels,
having given numbers of incoming or out-
going edges, being on edges to or from
particular points of « in the original w,
etc. ete.) Any such specification of the
edges between B and its "host web" will
be called an smbedding of B.

Formally, we can now define a web
rewriting rule as a triple (o,8,E),
where o« and § are webs, and E is an
embadding of p. It is important to
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emphasize that the definition of an
embedding must not depend on the host
web w, Bince we want to be able to re-
place o by B in any web containing o as a
subweb. Thus any properties of points of
the host web which are used in defining
the embedding must be well defined for

an arbitrary w. Note that in string
grammars, the same (implicit) embedding
is used for all rewriting rulees o := 8,
namely "Put 'edges' from the symbol of
the hest string which just preceded ¢ to
the leftmost aymbol of £, and from the
rightmost symbol of 8 to the symbol of
the host string which just followed &".

By a web grammar § we shall mean a
triple of the form (V,I,R), where V is a
vocabulaxy; I is a set of "initial"
webs; and R is a set of web rewriting
rules, As usual, we assume that V con-
gists of two disjoint parts, a "non-
terminal vocabulary® Vy and a "terminal
vocabulary" Vp. By the language SQ of
the web grammar  we mean the set of wehs
which can be derived from the initial
webs by repeated application of the
rewriting rules, and whose labels all
belong to Vg.

The following is a very simple
example of a web grammar:

v = {A,a,b,c} {(where we have
dencted the elements of Vy
by capital letters, those of
Vp by lower case letters);

I consists of the one-point web
with label Ar

R consists of the following

rules:
b
1) | == <::
A a c
o]
2) . o= OA
A a
c

where for both rules, the
embedding is E = { (p,a) | {p,A)
an edge in the host web].

It is easily verified that the language
of this grammar is just the set of all
webs of the form
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Some less trivial examples will he given
in later sections.

An important special case of a web
grammar is that in which the terminal
vocabulary consists of only a single
symbol, In this case, every point of
every web in the language has the same
label, so that we can ignore the labels
and identify the webs with their undex-
lying graphs. This type of web grammar
will be called a graph grammar, and its
language will be called a graph language.
[In the string case too one can restrict
consideration to strings involving only a
single symbel; this is still a nontrivial
case, since not every set of natural
numbers can be the set of lengths of the
strings in a one-symbol string language
if the sets I and R are required to be
finite, ]

The general definitions of a web
rewriting rule and a web grammar which
have been given above are too broad to
be of much practical use {just as,
analogously, there is little that one can
say about string grammars in which arbi-
trary string rewriting rules are allowed).
However, one can define special types of
web grammars which are analogous to the
varjous important types of string
grammars -- in particular, to context-
sensitive and context-free string
grammars,

We shall call the web rewriting rule
{a,B8,E) context-sensitive if there exists
a point a of ¢ such that 4 - {a] is a
subweb of 8 -- in other words, the rule
"rewrites" only a single point of o --
and all edges between points of the host
web and points of o - {2l are in E. In
particular, the rule («,8,E) will be
called context-free if » has only a sin-
gle point; note that in this case the
definition of a context-sensitive rule is
trivially satisfied, smince ¢ - {a] is
empty. It iE readily verified that
context-sensitive (-free) string
rewriting rules, if we regard them as web
rewriting rules, satipgfy these defini-
tions.




A web grammar will be called context-
sensitive (-free) if all its rewriting
rules are context-sensitive (-free). The
simple example of a web grammar which was
given above is context-free, since only
one-point webs are rewritten. Other
examples of both context-free and context-
sensitive web grammars will be given in
the next two sections.

It is instructive to compare our
definition of a web grammar with the
definition of a "plex grammar" given by
Feder’. We can think of Feder's NAPEs
("n-attaching-point entities") as webs in
which one point is labelled with the name

of the NAPE, and the others with the
identifiers of its attaching points.
Feder's "joint lists", which describe how

sets of NAPEs are interconnected, corre-
pond to the edges (which need not be
directed) internal to the subwebs a and 8
in a web rewriting rule; while his "tie
point list" corresponds to the embedding
E of B in the host web. (He also makes
use of a "tie point list" for a, so that
he can allow the rewriting rule to be
applied only if the edges between a and
the host web satisfy given conditions.)
Feder's system can be regarded as a
generalization of Shaw's (e.g.,1); Shaw
deals only with entities having just two
attaching points ("head" and "tail").
Thus the web grammars defined in this
paper — if their webs are regarded as
embedded in the plane — can be thought
of as equivalent to a general class of
"picture grammars".

Examples of Context-Free Web Languages:
Trees and Two-Terminal
Series-Parallel Networks

In this section we give context-free
graph grammars for two important classes
of directed graphs: directed trees with
least points, and directed two-terminal
series-parallel networks (without multiple
edges)-

By a directed tree is meant a con-
nected directed graph whose number of

edges is just one less than its number of
points. It can be shown that a directed
graph with least point is a directed tree
if and only if there is a unique path
from the least point to each point.

Theorem 3.1 The following context-frae
graph grammar has as its languags the
set of all directed trees which have
least elementa:

v = [a,a)
=2, N

R consists of the following rules:

‘Rl) ? = ?_:}

E = {(p,a)|(p,A) an edge in
the host web]

A
(Rzl ? = A

E = {(p,a)|{p,A) an edge in
the host web}
(ry) *.=2

E = [(p,a) | (p,A) an edge in
the host web}

Proof; We first verify that the webs
generated by this grammar all have
least point and all have one fewer
edges than points. This is cleat if
the initial web was ? , since none of
the rules apply to it. Similarly, the
initial web a._A has these properties;
we proceed by induction on the number
of times that the rules are applied to
it. Readily, under any application of
a rule, the "a" in the initial web
remains the least point, since if there
was a path from it to every point before
the rule was applied, the definition of
the embedding insures that there is
still a path from it to every point
afterwards. Finally, it is easily
verified that each rule always adds the
same number of edges as it does points,
so that the former number always re-
mains one less than the latter.

we shall show that any
least point can be

Note first
is a point

Conversely,
directed tree G with
generated by the grammar.
that in any such G, if t
such that the path from the least point
to t is as long as possible, then t is
maximal, so that G always has a maximal
point. We shall show that, given any
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maximal point p, G can be generated in
such a way that the last rule used is
Ry, applied to p to change its label
from A to a. This is clear if G has
only one or two points; we proceed by
induction on the number of its points.

Let r e a point of G such that
the path from the least point to it is
as long as possible, and let g be the
next-to-last point on this path, so
that {(g,r) is an edge, Suppose first
that there is no 5 # r such that {g,s}
is alsc an edge; then in the subgraph
of G from which r has been omitted, g
is a maximal element, so that by induc-
tion hypothesis this subgraph can be
generated by the grammar in such a way
that the last rule used is R3, applied
to change the label of g from A to a.
But then we can obtain G itself by
first applying Ry to g to "attach" r to
it, and then applying R3 %to change the
label of r from A to a.

Finally, suppose that there are
other points r = 1, X2,004+FKks k=2,
such that (g,rj} is an edge. Then by
induction hypothesis, we can generate
the subgraph from which these points
have been omitted, and in which g is
evidently a maximal element. To
obtain G, we then simply replace the
final application of Ry to q by an
application of Ry, followed by k - 1
applications of R,;, followed by k
applications of R3.//

It is not difficult to show that if
we replace I in the above grammar by {3},
we obtain as language the set of all
"forests" of such trees -- in other
words, directed graphs each of whose
connected components is such a tree.

It is well known that trees
have a natural string repre-
sentation as nests of paren-
theses., Now the string
language coneisting of nests of
parentheses can be accepted by
a pushdown automaton, but not
by a finite-state automaton;
thus its grammar is context-

auvtomata which would be "equiv-
alent" to the various classes
of web grammars -- context-free,
context-sensitive, etc, ==
considered in this paper.

The set of directed two-terminal

a)

b)

series-parallel networks can be defined
as the set of directed graphs having

least and greatest points which can be
"derived" from the graph ¥_ Y by repeated-
ly performing the following operations:

Serial composition: Let &G; and

G, be TTSPN's with least and
greatest points x;,y; and Kp,¥oe
respectively; then their serjia
composition is the graph G_ for
which s

= Po UPn —-1X
6,YFq,~{x2]

o)
9]
I

- E61UE62—{{x2,z)l(xz,z}EEGz]
U{ (yl: 2} i {xzrz) EEG2}

In short: Gg is obtained by
identifying x5 with y;. Readily,
Gg has x; as least point and vy,

as greatest point.

Parallel composition: Similarly,

the parallel compositioh Gp of
Gy and G, is defined by

Pn = P UPg —~{%,,¥5]
a Gy V76,72 Yo

o]
|

e = EGlust-tlxz.z}ltxz,Z)EEG;

-{ {zlyz) l (Z-Y2] 6532}

Ul (xq,2) | (x5,2) GEG23
U[ {sz]_) ‘ (z'YL)} GEGZ]

In short: G, is obtained by
identifying x, with x, and y,
with y,; readily, it has x; and
Yy, as ieast and greateat points.

free, but not finite-state,

In contrast, the simple
context-free grammar given in
Section 2 evidently is finite-
state, It would be of interest

to define and study classes of

It can be shown that a directed graph G
with distinct least and greatest points
x,y is a TTSPN if and only if any two
given points p and g of G always appear
in the same order on any walk (="undi-
rected path") from x to y which passes
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through them,

A directed graph is called a hasig
graph if whenever (r,s) and (s,t) are
edges, (r,t) is not an edge. It is
called semi-transitive if whenever (r,t)
is an edge, then {r,s}) and (s,t) are
edges for any point B on any path from r
to t. (In both of these definitions, we
asgume that r,s,t are all distinct.) wWe
shall call G basgic if it is both a bhasis
graph and semi-transitive, Readily, G
is basic if and only if whenever there is
a path of length 22 from p to g, there is
no edge from p to gq. All of these pro-
perties evidently pass to subgraphs.

Theorem 3.2 The following context-free
graph grammar has as its language the
set of all basic TTSPN's:

Vv = {A,al

a A a

a a
I‘{-—-‘- ’ o e

R consists of the rules

E = EP:A(I Y| (p.B) an edge
in the host web}
V{(A(3).p) | (A, ) an edge in
the host web}

.

(r) R

A

E = {{p,A) | (p.A) an edge in
the hoet web}

U{{A.p) | (A,p} an edge in
the host web}

A ._a
3) L -

E same as in (Rz)

(R

tWa have attached subscripts to the two
A's to avold having to write "E is the
set of edges from p to the point of B
which is the first term of an edge, for
all p such that there was an edge from p
to the sole point of ¥ in the host wab,
together with the met of edges to p from
the point of 8 which ..."s the A's are
gtill the same label.

Proof: It ias easily verified, usming
induction, that any web generated by
this grammar is basic, has least and
greatest points and has the "unigue
order" property, making it a basic
TPSPN. Conversely, if G is a basic
TTSPN having six or fewer points, it is
readily generated by the grammar; we
proceed by induction on the number
n = 7 of points in G.

Since G is a TTSPN, it is the com-
pesition (serial or parallel) of two
TTSPN's, call them Gy and G,, which are
basic since they are subgraphs of G,
and at least one of which, say Gy, has
ny; 2 4 peints. By induction hypothe-
ais, G, is generated by the grammar:
and since each application of a
rewriting rule adds at most one point,
there is a step G) in a "derivation" of
G, from §_+§_q5 at which there are
eXactly n; - 123 points.. By the
first part of the proof, G; is a basic
TTSPN. Let G' be the web obtained by
composing G, (rather than Gy) with Gy;
thus G' is a TTSPN, and readily it is
basic since G is. Since G' has n - 1
points, by induction hypothesis it is
generated by the grammar; and if we now
apply to it the same sequence of
rewriting rules which was used to get
Gy from Gi, we clearly obtain G.//

Context-Sengitive Web Languages:
"Triangles"

In this section we describe a
context-sansitive web grammar which gen-
erates "directed triangles" of the form

O ¥ X X x

(Note that these are directed graphs, not
really triangles; but there is a natural
way of "embedding" them in the plane --
as in the above picture -- so that the
pointa of the graph coincide with the
points ¢f a triangle, The grammar given
below should be compared to the
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right-triangle grammar given by Kirsch3.}

v = {B,Z,.2° . Ww,Ww,X,a,b,c,w. X, v, 2}

c
.4.”
a b

a

-

a 2 z Zor B

R consists of the rules

(Rl} w w W
z z 2 z z 2%

{where the embedding of the
"new" vertex, labhelled W, is
as shown; the other vertices
in the rewritten web are
attached in the same way as
were the corresponding
vertices before the
rewriting -- and similarly
in the remaining rules)

(R2_3} w w
or or
Z:y_.. ZZ '
w w W w ow W
or or
b Y
(R,) y
= ::‘
Yy W Yy w
(RS) w w
w W w W

(i.e., W is simply
relabeled w)
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6~7 “’: “’:
z z* z z ZorB
(RS w w X
z z B z z b
(R9-10) w
or
W ory y X
w ow X w W X
or or
Y Y
(R ) <
—_— 45:
Yy X y x
Readily, at any stage in the deriva-
tion of 2 terminal web using this gram-
mar, exactly one of the rules can be
applied. The grammar changes the initial
2 to 2%, and builds up a "column* of W''s
topped by a W, "on top" of it, When the

column reaches the proper height, its top
and next-to-top goints become labelled y
and w, and the W 's are then successively
changed to w's until the bottom is
reached, At this point, the zZ* can be
changed to a z and a new Z (or a B}

added "to the right" of it, If a Z is
added, the process repeats; if a B (or if
we started with the initial web having
the B instead of the Z}, the grammar
changes it to a b and builds up a column
of x's, topped by an X, on top of it,
until the preoper height is reached, at
which the label ¢ is used. Note that in
each of these rules, only a single vertex
is rewritten, sp that this is indeed a
context-sensitive web grammar,

The following interesting variation
on the above grammar generates truncated
"Pascal's triangles" having the binomial
coefficiente as labels. [This grammar
requires an “unbounded" vocabulary, and
makesa use of rules in which the label of
a "new" point is obtained by adding up
the labels of neighboring “old" points. ]



V= [B.Z,z*, positive integers, Here again, starred integers are built up
primed positive integers, and on top of the B {or Z), topped by a
starred poaitive integers} primed integer, until the proper height
{(where the primed and starred is reached, at which point the stars are
integers are understood to be successively removed and the B changed to
nonterminal} a2 1 (or the Z changed to 1 and another

Z added).
1 1
‘1 , In both of the above grammars, "con-
I = i' . . I texts" are used which involve more than
1 1 1 1 2 just the immediate "neighbors" of the
point being rewritten -~ that is, more
R consists of the following rules than just the pointa having edges between
{(where the letters h,i,j,k,m,n,r, them and the rewritten point. We can
s,t stand for arbitrary positive obtain a grammar using only such “imme-
integers) : diate contexts" if we "hang" an extra
peint from the "bottoms" of the triangles
(Rl) m m (m+l) ' {(which, incidentally makes the "triangles"
. TTSPN's). For concisenesa, we use the
: following notation in describing the
11 z 11 z¥ors® embeddinga: L(x) = the set of points
joined by edgea to x; R(x} = the set of
[Rz) k k  {i+k)! points to which x is joined by an edge,
L. = . v={T,7,AB,C,t, and positive
h i j! h i j integers with subsecripts a,b, or
cl
{provided i ¥ 1)
(R,) 1 1
3 . la 13 a
* i 1 1
L t t
SIS s S S
(R4) s 8 lb lb >
i = : b
r t* r t
(RS) n n R consists of the following rules
.o {(where we have described, rather
* than drawing, the contexts of the
1 2* 1 1 2 points which are rewritten):
n n
(R,) 1 . :
I 2 1 1
Rule Contextual condition Embedding
t
(R) ¢ = - HONE L{t) = L(T)
T ™ T . .
{Rz) U £ Y L(T) contains no points having non- L(T*') = L{(T)
terminal labels
(R3) .1a NONE L{A) = L(T")
T 3= L(1y) = {1} < nirh)



Rule

Contextual condition

Embedding

[Note: In rules {R3—R9), Ri{X) = T for all X in the right members]
(R4} n L{A) contains at least two points L{A} = L{A) = {i_}
A = * whose labels have "a" subscripts; L(na) = {ia'ja} a
. . here n, is the sum of the two smal-
A legt o? these labels, call them i,
and j,, where i, < j_
(R5] n, L(A} contains just one point i, whose L(C) = L(A) - [ia}
A e label has an "a" subscript, and a L(n,) = {ia.ja}
. . point j  whose label has a "c" sub-
c ecript; here n, =1, + Jo
(RG) n, L(A) containz juat one point i L(B} = L(a) - [ia}
A o ' whose label has an "a" subscript, and Lin ) = {i .jb}
. . no point whose label has a "c¢" sub- © a
B script; here n_ is the sum of i_ and
the largest lagel Jp of a point in
L{A) having a "b" aubscript
(R,) n, NONE; n_ is the sum of the two larg- L(B} = L{C) - {jp!}
A . est labéls < jp in L{€) having 'b" L(nb} = ib'jb}
c . subscripts
B
(Rs} n, L(B) contains at least two points L(B) = L(B} - {jbl
_ " whose labels have "b" subscripts; Lin) = (i ,3.1
B := . b b
N . ia the sum of the two largest of
B :ﬁese, call them ib < jb
(Rg} B := L, L(B) = {1} L(l,) = L(B)

Acyclic Web Langquages

In all of the examples given
earlier, the web languages consist
entirely of acyclic webs., [As indicated
earlier, from the point of view of rela-
tions, acyclic graphs are a natural
generalization of strings, since the
"path" relation on a string is a total
order relation, while on an acyclic
graph it is a partial order relation. ]
In this section we show that for such
languages, if we impose a certain
natural restriction on the types of
embeddings which are allowed, we can give
a simple graph~-theoretic characterization
of the subwebs which can result from
rewriting a single point. We can also
show that any such subweb can be ob-
tained by repeatedly rewriting one-point
subwebs as one- por two-point subwebs;
note that all the rewriting rules in our
examples were indeed of this form,

The subgraph H of the graph G is
called® convex in G if any path between
two points of H lies completely in H.

Proposition 5.1 G is acyclic if and only
if every gubgraph on a single poeint is

convex_in G.

Procf: Evidently, in any graph, a sub-
graph on a single point is convex if
the point does not lie on a cycle,//

Readily, the convex subgraphs of a string
are just ite substrings.

Let G and G' be graphs. A mapping ¢
from PG onto Pay is called a graph

homomorphism if

1) (p.q) in E, implies

2) (p',q') in Eg implies (a,b)
in Eu for some a,b such that
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pla) = p' and ¢(b)} = q',

Proposition 5.2 A homomorphic preimage

of a convex subqraph is convex.

Proof: Let g: Pg « Pg' be a homomor-
phism, let H' be convex in G', and
suppose that there were a path in G
between two points p +Pp of ¢'1(H')
which contained a po}nt q not in
9~1(H'}. Then there would be a path in
G' between the points o(p;} and (p,)
of H' containing the point g¢(q), which
ia not in H', contradicting the convex-

ity of H'.//

Readily, a homomorphic image or preimage
of a string need not be a string.

Let ZAT := ES8T be a context-
sensitive string rewriting rule which
"expands" the single point A into the
substring B. When we use this rule in
reverse, to "parse" sentences in the
string language, we are "contracting"” the
substring 8 into a single point. It is
easily verified that if we regard the
strings in question as graphs, this
"contraction" defines a graph homomor-
phism of the original string onto the
rewritten string., This cobservation
suggests that in context-sensitive web
grammars too, where the rewriting rules
expand points into subwebs, it is natural
to require that the corresponding
"contractions" be graph homomorphisms.

If we impose this reguirement, and also
reguire that the web be acyclic both
before and after the contraction -- which
is certainly true in the string case --
we shall show immediately below that the
subwebs into which points are expanded
must always be convex.

To see what is implied when we
require that the contraction of a sub-
graph onto a point be a graph homomor-
rhism, let G be a graph, and define the
left {right) neighborhgod of the subgraph
H of ¢ as the set of pointa of G not in H
from (to) which there is an edge to
(from) a point of H, Let ¢ be a function
from G onte G' which is one-to-one, and
edge-praserving cutside H, and which maps
H onto a single point p' (where if there
is an edge in H, there is a2 loop at p').
Then readily, ¢ is a howomorphism if and
only if it preserves left and right
neighborhoods -- in other words, if the
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neighborhoods of the subgraph on {p'} in
G' are just the images of the neighbor-
hoods of R in G. [Note that if G is
acyclic, the left and right neighborhcods
of any cone=point subgraph must be dis-
joint., 1In the string case, the left
(right) neighborhood of a substring is
evidently just the point immediately to
the left (right) of its leftmost
{rightmost) element.] Thue requiring
that the reverse of a web rewriting rule
be a homomorphism ia equivalent to
requiring that the embedding part of the
rule be neighborhood-preserving.

We shall call the subgraph H of the
acyclic graph G contractable if there
exists a homomorphiam ¢ of G onto an
acyclic graph G' which maps H onto a
single point, and is one-to- me on the
rest of G; any such ¢ will be called a
contraction of H.

Theorem 5.3 H is contractable if and on-
ly if it is convex.

Proof: Let ¢ be a contraction of H onto
the vertex y'. Since G' is acyclic,
the subgraph of y' is convex: hence by
Proposition 5.2, so is its preimage H.

Conversely, let H be convex, let
v be a homomorphism of G which takes H
onto a single vertex y' and is one-to-
one on the rest of G, and suppose that
G' were not acyclic. If there were a
cycle in G' not passing through y',
then since ¢ is cone-to-one outside H,
this cycle would be the image of a
cycle in G, contradicting the fact that
G is acyclic. On the other hand, let
?{Pg)},....¢{p ) be a cycle in G' with
:p(pj) = yl: tﬂen tp(p?_l) and qJ(pj.'_l)
are different from y', so that p;_ ; and
Pj,1 are not in H. But there is an edge
flom Py.; to a vertex r; of H and from
a vertéx sy of H to py41., 8o that the
path 2.,P +1;-¢ocpn = pOlplo.o-ipj_lfrj
contraaic 8 the convexity of H.//

We recall that a subgraph of a string
is convex if and only if it is connected.
Thus weé are still dealing here with a
generalization of the situation which is
usually considered in string grammars --
namely, that the point a can be rewritten
only ae a connected (="continuous") sub-
string; “discontinuous constituent®
grammars are usually not allowed,



By Theorem 5.3, if we want to “"parse" an
acyclic graph to determine whether it
could have been generated by our grammar,
we need only examine its convex subgraphs.

Proposition %.4 Let G be an acylic
graph, and let H be a convex subgraph
of G which has at least two points:
then there exist points p,g in H such
that the subgraph on {p,g} is convex
in G.

Progf: This is clear if H has just two
points; we preoceed by induction. Let
r be a maximal point of H; then the
subgraph on P, - {r} is readily convex
in G, so thatHby induction hypothesis
we can choose the required p,q from

Py - {r}.//

Proposition 5.5 A contraction of H takes
convex subgraphs containing H into
convex subgraphs.

Proof: This follows immediately from the
definition of convexity and the fact
that & contraction is one-to-one out-
side H.//

These two propositions combine to give us

Thegrem 5.6 Any contraction is a compos-
its of contractions each of which
contracts a subgraph having exactly

two Eoints.

Proof: To contract the convex subgraph
H, first choose two points from it such
that the subgraph on them is convex
{Proposition 5.4), and contract thia
subgraph; the image of H under this
"partial contraction" is still convex
{Proposition 5.5), so that we can
repeat the process until all of H has
been contracted.//

A pimilar argument can be used to
show that any homomorphism of an acyclic
graph onto an acyclic graph is a compos-
ite of such "two-point" contractions.
These results suggest that it may be
poaaible to prove, for context-sensitive
waeb grammars, an analog of Kurcda's
resultd that any context-sensitive string
grammar is equivalent to cone whose
rewriting rules involve only strings of
lengths <2.

£1]

(2]

3]

[4]
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