
Graph Structures

JOHN L. PFALTZ

University of Virginia, Charlottesville, Virginia

ABSTRACT. The concept of a graph structure So in which a tree-like assemblage of subgraphs
is used to represent a directed graph G is developed. This is directly analogous to the represen-
tation of lists by list structures. It is shown that with suitable restrictions, given So , G can
be uniquely determined, and conversely, given G, So can be effectively constructed. A com-
puter implementation which minimizes storage to represent G is presented, together with
algorithms that illustrate the utility of graph structures, in particular, one that efficiently
determines the existence of paths in G.

KEY WORDS AND PHRASES: data structures, directed graphs, list structures, path finding,
graph homomorphism

CR CATEGORIES: 5 .32 , 3 .74

1. Introduction

A simple list is a finite set of points (or items) t ha t can be to ta l ly ordered. Such
simple lists have a s t ra ight forward compute r representa t ion as a simply linked
chain of cells, each of which represents a single point. The list concept becomes more
interesting if we admi t the abil i ty to identify all the points of some subsequence
and t rea t t hem as if t h e y were a single item. Thus a more common definition is: a
list is a finite sequence of elements in which each element may be either a point or
itself a list (called a sublist) . C o m p u t e r representat ions of this more general concept
are called list s t ructures. As before, an individual list may be a simple linked chain
of cells, bu t now those cells which represent sublist elements must contain an addi-
tional link to the sublist itself.

T he ut i l i ty of these tree-like list s t ructures is well documented in the literature.
One immed ia t e ly considers generalizing this approach to the case of a set of points (or
items of informat ion) where the relat ion between them is other t han a tota l order-
i n g - i n short , to a rb i t r a ry directed graphs. Thus we would be led to define a directed
graph as a relat ion on a set of elements, each of which is either a point or itself a
directed graph. And, in effect, given an original finite graph G, we would be identify-
ing a rb i t ra ry subgraphs H of G and t rea t ing them as single subgraph elements.

Unfo r tuna te ly this appealing idea s imply doesn ' t work in general. Given a sublist
in a list s t ructure , we know how to reinsert it into its higher level list, so tha t by a
simple t raversal of the list s t ruc ture tree we can reconstruct the original list of

Copyright © 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of this material is granted,
provided that reference is made to this publication, to its date of issue, and to the fact that
reprinting privileges were granted by permission of the Association for Computing Machinery.
Author's address: Department of Applied Mathematics and Computer Science, Thornton Hall,
University of Virginia, Charlottesville, VA 22901. This research was supported in part by
National Science Foundation grant GJ-31626.

Journal of the Association for Computing Machinery, Vol. 19, No. 3, Ju ly 1972, pp. 411-422.

4 1 2 J . L . PFALTZ

points. But given that H is a subgraph of G, how do we know how H is to be "re-
inserted" into G? We have lost the very valuable property of reconstructibility that
is present with list structures.

We will show, however, tha t by suitably restricting the kinds of graph G to be
considered, and by restricting the kinds of subgraph H to be identified as subgraph
elements, a workable and useful concept of a "graph structure" can be developed
which is directly analogous to tha t of a "list s t ructure."

First we will review the graph notation to be used, and will establish precisely
what we mean when we "identify" a subgraph H of a graph G, and what we mean
by "reconstructibili ty." We will prove several results about graphs, which we will
use in Section 3 to show that graph structures actually have the properties we want
and that they can be effectively constructed. Graph structures themselves are de-
fined in Section 3. Finally, we will illustrate the utility of graph structures by pre-
senting algorithms that operate on them, and will suggest various modifications of
the concept.

2. ~ and v Contractions

A simple directed graph G is a relation E (or set of ordered pairs) on a set of points
P, denoted G = (P, E) . A subgraph H of G is E restricted to a subset P , c P.
With this definition of subgraph, one of several encountered in the literature, a sub-
graph is completely determined by its point set. Consequently we will often let H
denote both the point set and the subgraph, trusting that context will make the
precise meaning clear. For example, G ~ H could denote the set of points in G but
not H, together with the subgraph on these points.

In general, the relation E (for edge) is neither transitive nor reflexive. We can,
however, let E induce another relation p (for path) on P which has both these
properties. We say there is a path from p to q, denoted p(p, q), if there exists a
sequence of points x0, xl , . . . , xn E P with n > 0 such that (1) (xi-1, xi) E E;
(2) x~-i ~ x l , for 1 < i < n; and (3) x0 = p, xn = q. The path from p to q is
said to have length n, denoted]p(p, q) I = n. Transit ivity and reflexivity are
evident; in particular, for all p E P there exists p(p, p) of length zero. If, in addi-
tion, p is a partial order relation on P (that is, weakly antisymmetric), then G is
said to be an acyclic graph.

If H is any subgraph of G, then by the left context of H, denoted L (H) , we mean
the set {p ~ H] (p, q) E E for some q E H}. The right context is similarly defined,
R (H) = {r ~ H I (q, r) E E for some q E H}.

By the set of minimal points of H, denoted mx , and maximal points, denoted
M , , we mean the sets {q E H [for all p E H, p(p, q) implies p = q} and {q E H I
for all r E H, p(q, r) implies q = r} respectively.

Let R denote any relation on a set P and suppose we have, in addition, an equiva-
lence relation Z on P. I t is natural to call ~ an R-congruence on P if (Pl , ql) E R
implies (p2, q2) E R whenever (1) (p l , p2), (q~, q2) E 2, and (2) (p~, q~) ~ Z.
(The usual definition of a congruence relative to a binary operator would omit con-
dition (2), but this seems too restrictive in the case of most relations.) Thus an R-
congruence preserves the relation R between elements of distinct congruence classes.

Now given any subgraph H, it, together with the singleton sets {P~I for all
p~ E G ~ H, defines a parti t ion on P and hence an equivalence. The natural ques-

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

Graph Structures 413

tion to ask is, when does such a subgraph H induce an E-congruence? It turns out
that this is too stringent a requirement for our intended application so we instead
ask, when does such a subgraph H induce a p-congruence? These H have the prop-
erty that for any p E G ~ H, if p(p, q~) for some qi E H, then p(p, qi) for all
q~E H.

By a homomorphism of G = (P, E) onto G' = (P', E ') , denoted ~p:G --~ G', we
mean a simple point function ~: P ~ P' with the properties: (1) (p, q) E E implies
(~(p), ~p(q)) E E' ; and (2) (p', q') E E' implies that for some x E - l (p ,) , Y C
- l (q ,) we have (x, y) C E. We will use primes to denote points, edges, and paths
in a homomorphic image of G. Note that G and the point function ~ alone define a
unique homomorphic image G' on ~ (P) , and that G and G' are isomorphic if and
only if ~ is one to one. A homomorphic mapping ~:G --~ G' is called a contraction
if G' is acyclic.

PROPOSITION 1. I f G is acyclic, then any p-congruence ~ induces a contraction
~:G ~ G'.

PROOF. Define ~ by ¢(p) = ~(q) iff (p, q) E Z. I t is now straightforward but
tedious to show that if G' is not acyclic, then G cannot have been acyclic either
[4].

The converse to this proposition does not hold; we may have contractions
whose pre-image parti t ion is not a p-congruence.

A simple contraction ¢H: G ~ G' is one where H is a nonempty subgraph of G, and
(1) ~(q~) = q' for all q~ E H, and (2) ¢ is an isomorphism of G ~ H onto G' ~ {q'}.
Because ~H is a homormophism we have in addition, (3) (p, q~) or (qi, r) E E,
where p, r E G ~ H implies (~(p) , q') or (q', ~(r)) E E' . In effect then, a simple
contraction ¢ , on G maps the entire subgraph H onto a single point, where q' is its
new identifier, while acting as the identity map on the rest of G. Clearly, if the
subgraph H induces a p-congruence on G, then tH is a simple contraction. Also, any
contraction ~ can be regarded as a composition of simple contractions tu~, • • • , ~ . .
where Hi = - l (p ,) .

We have observed that given G and any homomorphism ~, G' is completely de-
termined. Of prime concern now are those contractions ~,, with the property that
H, G', and q' E G' completely characterize G. Since H is given and G ~ H ~ G'
{q'}, all that is necessary to complete the characterization is to be able to reconstruct
those edges between H and its left and right contexts. L (H) and R (H) themselves
are known since they correspond to L(q') and R(q') , respectively. Contractions
~ which have this property we call reconstructable.

In many computer applications, such as the representation of transitive implica-
tions in a semantic model, accessibility in a directory, or task dependence in a PERT
network, it is redundant to store tha t information which can be inferred from
transitivity. Regarding the relations as a directed graph G, the most compact
representation would have the property that]p(p, q) I >_ 2 implies (p, q) ~ E.
Such graphs are said to be basic. (Conversely, the most redundant representation of
G would be by its transitive closure G t in which p(p, q) implies (p, q) E E.) Now
suppose the subgraph H induces a p-congruence on G; then clearly ~H preserves all
the path information contained in G. We next show that if G is basic, ~pH also pre-
serves the edge structure of G, in that we can reconstruct the missing edges, even
though H does not in general induce an E-congruence.

PROPOSITION 2. I f a subgraph H induces a p-congruence on a basic acyclic graph
G, then H has the property that for any q E H and any p, s E G ~ H,

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

4 1 4 z . L . PFALTZ

(1) (p ,q) E Eimpl i e sq E m a a n d f o r a l l r E m , , (p ,r) E E, and
(2) (q,s) E Eimpl iesq E MBand fora l l r E MH, (r,s) E E.
PRooF. Suppose q ~ mH ; then since G is acyclic, there exists r E mH such that

pl(r, q) of length ~_ 1. Since H is a p-congruence class, p(p, q) implies tha t p2(p, r)
of length > 1. Now by transitivity pl and p2 imply I p3(p, q) I >- 2 which, together
with (p, q) E E, contradicts G basic. So q E m . . Now let r E m . be any minimal
point. As before, we know p(p, r). Suppose I P(P, r) I ~- 2, implying there exists
xl E p, Xl ~ H (since r is minimal). Again, since H is a p-congruence class, we have
p(xl , q) of length >_ 1, yielding I P(P, q) I >_ 2, which with (p, q) E E again con-
tradicts G basic. So I P(P, r) I = 1. The proof of assertion (2) is similar.

In effect then, every edge between the left context L(H) and H is between L(H)
and its set of minimal points mH. Further, for all p E L(H) , q E m r , we have
(p, q) E E, and similarly for the right context. For this reason, subgraphs H which
exhibit the two properties of the preceding proposition will be called m-M subgraphs.
I t is now readily apparent (1) that G is reconstructible from H, G', and q' E G'
provided H is a m-M subgraph; (2) that in a graph G (not necessarily acyclic or
basic), any m-M subgraph H induces a p-congruence on G; and (3) if H induces a
p-congruence on a basic acyclic graph G, then H must be an m-M subgraph (Proposi-
tion 2 above).

Now the question becomes, how does one discover such m-M subgraphs in a
practical sense; or equivalently, how does one discover simple contractions ~H for
which H is an m-M subgraph ?

In particular, we would like a method of deriving such ~ by combining contrac-
tions which are in some sense primitive, and which can themselves be discovered by
local search procedures. In [4] it is shown that for G acyclic,

PROPOSITION 3. l f ~ : G ~ G' is any contraction, then ~ can be represented as a
composition of simple contractions ~H~ where each Hi is a subgraph on exactly two
points.

In such two-point contractions, the contracted subgraph Hi is either the trivial
graph with no edge between the two points, or a linear string with exactly one edge
from one point to the other. This leads us to the following definitions. ~H is called a
r contraction if H is an m-M subgraph and H is the trivial graph. ~H is called a
contraction if H is an m-M subgraph and the points of H are totally ordered by p] . ,
that is, the path relation restricted to H. In these cases we will call H a 7- or (r sub-
graph, respectively, which simply denotes a special kind of m-M subgraph.

A graph G will be called irreducible if it contains no r or cr subgraphs. In Figure 1,
H = [d, e] c G is a r subgraph and 02~.~i:G ~ G' is a r contraction; H' = [b',
q'] c G' is a ~ subgraph and ~ib,.q,j:G' ~ G" is a ~ contraction; G" is irreducible.

We can make several observations from this example. First, given the reduced
graph G" and the contractions ~d.d , qEb'.q'l, we can reconstruct G. We will use this
observation as the key to defining graph structures. Also, the m-M subgraph [b, d, e]
in G can be represented as a composition of r and cr subgraphs, but the m-M sub-
graph [q",f", c", g"] in G" cannot. In particular, this shows that we cannot strengthen
Proposition 3 and assert t ha t if H is an m-M subgraph, then @H can be represented by
the composition of ~.~ where each Hi is an m-M subgraph on two points, even
though in many cases this does turn out to be possible. We can, however, show that:

PROPOSITION 4. I f G is basic and ~H is any r (or (r) contraction, then qg can be
represented as a composition of two-point r (or or) contractions.

PROOF. If H is a r subgraph, then evidently any subgraph H1 on two points

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

Graph Structures 415

d

G o . f

~.1 = ¢'P [d,e]b, q'

*, - ' " ~ . h'

¢P2 =~[b',q'J n
q

G" a " . ' J / ~ " ' ~ . f "

c " ' - - S
g

FIG. 1. E x a m p l e s of s imp le c o n t r a c t i o n s

contained in H is a r subgraph, as is H ~ H~ U {~(Hi) }. I f H = [q~, • • • , q,,] is a
subgraph, we let H~ = [ql, q2] or [qn-1, q.] for the same result. |
The requirement t ha t G be basic is shown necessary f rom the following example:

"o'-.

H = [a, b, c, d, el is readily a (r subgraph (it is an m - M subgraph total ly ordered by
p). However, no two-point subgraph H1 c H is a ~ subgraph.

PROPOSITION" 5. I f H i , H2 are both r (or o') subgraphs of G acyclic, and H1 f'l
H: ~ $2~, then Hi U He is a r (or o') subgraph.

PROOF. Suppose Hx and H2 are r subgraphs, so tha t L(p i) = L(p~) for all
pi, p j C H i , L(q l) = L(q¢) for all qi , q j ~ H~. Since H l f 3 H 2 ~ ~ , pi = qj
for some i , j , so t h a t L (r i) = L (r j) for all r~, rj C H1 U H2. Similarly R(r i) = R(r¢) .
Readily, E IH~U"~ = ~ , SO every point ri is bo th minimal and maximal , implying
H~ U H2 is an m - M subgraph, hence a r subgraph.

Now suppose H1 = [p~], H2 = [qi] are ~ subgraphs. Since G is acyclic, we may
assume wi thout loss of general i ty t ha t there exists no pa th from q~ to p~, and tha t
pi = qj • We can show tha t in the general c a s e H i U H 2 is the tota l ly ordered sub-
graph [p ~ , . . . , p ~ , q ¢ + t , " - , q ~] , where qi-k = pi-k for 0 < k < j - 1 and
pi+k = qi+k for 0 < k < m - i. To see this last assertion, suppose, for instance,
that qi-~ ¢ P~-~ ; then q¢_l E L(p~) implying qj_~ C L (H t) . Since H1 is an m - M
subgraph, p~ ~ m,~ , so p~ = p~. But now p(q t , qj_~) and (qi_t , p~) C E implies
p(q~, pl), a contradict ion to our original assumption. The full proof requires con-
sideration of several cases, all of which m a y be handled by this kind of argument .
I t is then easy t o show t h a t L (H 1 U H 2) = L(p~) = L(H~) a n d R (H ~ OHm) =
R(q ,) = R (H :) , so tha t H~ U H~ is a ~ subgraph. |

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

4 1 6 J . L . P F A L T Z

COROLLARY. If ¢H1 and ~2 are 7" (or ¢) contractions and H1 N H2 ~ ~ , then
,pH~[~H2(G)] = ~a,u~2(G) is a r (or ¢) contraction.

3. Implementation o/ Graph Structures
A graph structure S is an acyclic graph G~ on a set of elements, each of which is
either (1) a point, or (2) a graph structure G, which is a r (or ¢) subgraph of G~.
Generally, if a graph structure is derived from or represents a simple acyclic graph
G, we denote it by So. For example, the graph G of Figure 2 is represented by the

F I G . 2 .

i

e
Original graph corresponding to the graph structures of Figures 3 and 4

IO

1 o - J ' " ':,¢ G,o,8, I
r I J a 2 (" £ 7 9 t "\ \\ k •) I\

G2,t . ~ / r Gil ,lO// \..
Ii 3/C) [i I • \

~_J _ p__9., ~

G ? , e / \~G9,e) \-\

If / I I ~k ~" / G3,2/, ~ L e / ~G llo-

\ r L o p /

G (I ,4 *C

F I G . 3 . Graph structure So of the graph G of Figure 2

Point
Table

Fia. 4.

(Element in G O)
I:

Gt ,o: ¢ ~

G 2 1 : ~ ~ - ~ ,

:t ° s In ° =
to point f " to G4, 2
in table

Computer representation of a portion of Figure 3

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

Graph Structures 417

graph structure So of Figure 3. In both figures we use lowercase letters as arbitrary
point identifiers; integers are used to identify other elements.

Notice that the graph structure So is tree-like, with the irreducible graph Go
serving as its root. The integer identifier "1" denotes an element (or point) in Go,
but it also identifies the entire ~ subgraph on the two elements "a" and "2". This
cr subgraph we might call G1, but since G1 also serves as a single element of Go,
we use the symbolism G1,0. In a similar manner, the r subgraph on the elements
"c" and "d" which is a leaf of the tree structure we denote by Ga.4. In general
we will use the symbolism G,,0 to denote subgraph structures where a is both the
element and subgraph identifier and ~ identifies the graph of which this is an ele-
ment. Thus depending on context, G~.0 may be used to denote either a single element
c~ of the graph G¢, or the entire graph G~ itself.

Graph structures are particularly easy to represent in computer storage. In Figure
4 we illustrate one such representation of a small portion of Figure 3 using what is
essentially a ring structure. Here each subgraph G,.0 is represented by linearly
linking cells that denote all of its elements. The ring is completed by linking this
list circularly through a cell c~ that denotes the entire subgraph and which in turn
belongs to the ring of elements of Go • Here each primitive point has been treated as
a singleton subgraph; and these cells have been arranged as a linear symbol table
to permit easy entry into So using an external (or user) identifier for these points.
Other techniques of access, via hash coding or a directory, are equally possible.

Notice that it is unnecessary to explicitly represent any edges in any of the re-
duced portions of the graph, since these are implicitly indicated by the type of sub-
graph a (r or cr) and its position in Go. Elements that belong to the irreducible
graph Go must be handled differently, since here edges must be explicitly represented.
Standard techniques include the use of a binary adjacency matrix or linked chains of
edge pointers. The method of representing Go is omitted from Figure 4.

The ring structure of Figure 4 appears to be the most economical representation;
however, many variants are possible (see Knuth [2] for such alternatives). For
example, a header cell may be added to precede the list of elements in G,,0 and
the extra left field used to point directly to the header of Go • The inclusion of such
minimal redundancy greatly simplifies the design of algorithms to operate on
the graph structure, as well as improving their efficiency.

Whatever actual computer representation is used, it is now a fairly straightforward
procedure to write algorithms that find the left (or right) contexts of any specified
point (or higher level element), or that step forward (or backward) along paths
in the original graph G, even though no edges in any reducible portion of G are
explicitly represented.

We have shown that., given a graph structure So, we can effectively and econom-
ically represent it in computer storage. But it is seldom the case that So is given.
In most computer applications we are given a collection of points (data, if you will)
and the relation between them; that is, we are given only the graph G. We require
an effective procedure for deriving and thereby constructing in computer storage
the corresponding graph structure So.

Intuitively, given a graph G = (P, E), one must examine all possible subsets
Pi ~ P in order to discover reducible r and ~ subgraphs H i - - a nasty combinatorial
problem. However, Proposition 4 assures us that it is sufficient to consider only
those subgraphs on exactly two points. We next present an algorithm which ex-

. 1 . s . k . aoo..~.*.~.n fnr C o m n u t i n g M a c h i n e r y , Vol . 19, N o . 3, J u l y 1972

418 ~. L. PFALTZ

haus t i ve ly examines G for a two-po in t 7 or o" s u b g r a p h H. If found, the po in ts are
ident i f ied b y the a p p r o p r i a t e e o m r a e t i o n g,H • T h e p rocedure is t hen i t e r a t e d on the
roo t Go of the r e su l t an t p a r t i a l g r a p h s t ruc ture . I f none are found, Go is i r reducib le
and the r educ t i on is complete .

I n th is and fol lowing a lgo r i thms we assume a p r o g r a m m i n g l anguage wi th basic set
m a n i p u l a t i o n capab i l i ty . Thus , for example , R (q) denotes a p r i m i t i v e set va lued
funct ion, which given an e lement in Go, r e tu rns the set of all e lements to i ts immed ia t e
r ight . W e use t he r e p l a c e m e n t ope ra to r , as in {rk}k=l,~ ~ R (q) , to denote an idexed
vers ion of th is set ; and we assume an i t e r a t i ve cont ro l s t a t e m e n t of t he form "for
each rk ~ R (q) do "

P r o c e d u r e Reduce [This algorithm examines the root Go of a graph structure So for the
existence of a two-point r or ~r subgraph H. If found, the elements of H are contracted to a
single element q', while the subgraph H, now called G,.0, is stored as a list, of elements.]

Step 0. [Initialize] Go ~-- G;

Step 1. for each element q E Go do until step 4

Step 2. {rk}~-~.n ~-- R(q);
if n = 1 and L(rO = q then

[H = lq, r} is a cr subgraph]
contract (a, q, r~); go to step 1:

if n = 0 and L(q) = ~ then go to step 5;

Step 3. [n > 2] for eachrk E R(q) do until s t ep4
{pj}~-l,~ ~-- L(rk);
for each pj E L(rk) do until step 4

if R(q) ~ R(p~) then go to step 4;
if L(q) = L(p~) then

[H = {q, p~} is a r subgraph]
contract (r, q, pi); go to step 1;

Step 4. continue;
[Go is completely reduced] return;

Step 5. [R(q) and L(q) are empty, so q is an isolated point. Check for the existence of another
isolated point] for each element q* ~ q in Go do until step 6

if L(q*) = R (q*) = $2~ then
c o n t r a c t (~-, q, q*); go to s t ep 1;

S tep 6. [con t inue in i t i a l sea rch] go to s t ep 2;

Not ice t h a t " c o n t r a c t (t y p e e l , e2)" mere ly involves r ep lac ing the e lements
el and e2 in G, b y a new one of t he correc t " t y p e " and p lac ing t h e m on a r ing t h r o u g h
it. R e s t r u c t u r i n g the basic search loop beg inn ing wi th s tep 1, so t h a t a f te r a cont rac-
t ion i t cont inues the search "where i t left off" in s t ead of b l ind ly s t a r t i ng all over
again, s ignif icant ly i m p r o v e s t h e pe r fo rmance of t he p reced ing a lgor i thm. Other
modi f ica t ions in a s imi lar ve in can be m a d e as well.

I f G is known to be connected, as is of ten the case, t hen s teps 5 and 6 can be
omi t t ed . If, fu r ther , G is k n o w n to be a t w o - t e r m i n a l pa ra l l e l series ne tw ork
(T T S P N) , t hen for all q l , q2 be long ing to a c o m m o n T or a subgraph , we have
[L(q~) I = I L(q2)] = I R(q~) I =]R (q2) I = 1, which can be used to s impl i fy t he
procedure . Be rkus [5] used this t r i ck in deve lop ing an a u t o m a t a t h a t would accept
(cons t ruc t a "pa r se t r e e " of) T T S P N ' s .

More i m p o r t a n t l y , eve ry r educed subg raph in t he g raph s t ruc tu re p roduced b y
the a lgo r i t hm conta ins on ly two points . However , in the g raph s t ruc tu re So of

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

Graph S t ruc tures 419

Figure 3, t he re a re severa l subgraphs consis t ing of th ree or more elements . I t is
clearly inefficient to have, say, a r subg raph G.,~ which is an e lement of a v sub-
graph G~,~. The two should be combined into a single T subgraph , t hus s impl i fy ing
Sa . Propos i t ion 5 asser ts t h a t such s impl i f icat ion is leg i t imate . The p rocedure can
be i l lus t ra ted b y the fol lowing decep t ive ly shor t a lgo r i t hm in which t y p e (G .) has
value 0, 1, or 2 depend ing on whe the r G . is a s ingle ton p r imi t ive point , r subgraph ,
or z subgraph, respec t ive ly .

Procedure Simpl i fy [This algorithm examines all the elements of a graph structure and
combines pairs of the same type where possible,]

for each G.,t~ E So do
if type (G.,~) = type (G~,.) then

combine (G.,~ , G~,~);
return;

The subprocedure " c o m b i n e " is s t r a i gh t fo rw a rd if we assume a l is t- l ike represen-
tat ion such as F igure 4. The list of e lements of G.,~ is s imply inse r ted into the list of
elements of G~,~ so as to replace the or iginal cell e . which had po in t ed to it. The first
s ta tement "for each G .~ C S a . " . " indica tes s imply t h a t each e lement of SG
must be examined . Since Sa is essent ia l ly t ree s t ruc tu red , a s imple pos t -o rde r (or
prc-order) t r ave r sa l [2] of Sa will suffice. Use of t h e l a t t e r requi res some add i t iona l
care since we are a l te r ing por t ions of the t ree as we are t r ave r s ing them.

With these two basic p rocedures we have i m p l e m e n t e d a sys t em t h a t wil l
accept any basic acyclic g raph as inpu t and s tore i t as a g raph s t ruc ture . W e would
now expect to design p rocedures which use th is new k ind of in fo rma t ion s t r u c t u r e
Sa . We i l lus t ra te wi th two t yp i c a l examples .

Procedure Le f t eon tex t (G.,~) [This procedure, given the identifier (i.e. pointer to) graph
structure element G.,~ ~ Go, delivers the elements immediately to the left.]

Step 0. get G~,~ [using the pointer ~];

Step 1. if G~,. = Go then leftcontext ~-- L(G.,~); return;
if type (G~,~) = 2 then

[G~,~ is a a subgraph, hence a list of elements e~ , . . . , e. where e~ = e. (that s
points to G.,~) for some 1 < i _< n]
if e. = e~ then go to step 2

else leftcontext ~ e~_, ; return;

Step 2. [G~,~ is a r subgraph. (note that G~,~ cannot be a primitive point with type = 0
it contains G.,a as a subelement)]
get G~,~ [using the pointer ~];
since G~,v does not contain elements to the left of G.,~, we must work up in Sa .]
G~, ~ +--- G~,5 ;
go to step 1;

Not ice t h a t the p rocedure " L e h c o n t e x t (G . ,~) " differs f rom the p r imi t ive pro-
cedure " L (G . , ~) " in t h a t the l a t t e r opera tes only on e lements of Go • Since we have
not specified the compu te r r ep re sen t a t i on of Go, the design of t he p r imi t ive proce-
dures L and R are left to the reader . Also observe t h a t bo th L and Lef tcon tex t de-
liver the set of e lements (no t necessar i ly points) i m m e d i a t e l y to the left of the
specified e lement . I f we t a k e F igure 3 as an example , t hen Lef tcon tex t (G5,4) = {a}
and Lef tcon tex t (1) = {h, G1,0}, where a, l, and h denote p r imi t ive points . I f we
wish the left contex t of the po in t l in the sense of p r imi t ive po in ts i m m e d i a t e l y to

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

420 J .L. PFALTZ

the left (e.g. Figure 2), we must provide an additional procedure that delivers the
"rightmost" points of G1.0, namely {fi g, e}.

A frequently used procedure is one which, given two points p~, p2 of G (or ele-
ments of So), determines whether there is a path p(pl, p:) from p~ to p2. An
efficient implementation of this procedure is essential in information retrieval
systems where the path represents a transitive chain of implications or associations.
In a dynamic system where new points or edges are being added to a basic model G,
repeated and rapid applications of this procedure are required to test that the
acyclicity and basicness of G are preserved with each new addition.

B o o l e a n P r o c e d u r e P a t h (Gi , G2) [This procedure tes ts for the existence of a p a t h f rom Gi
to G2 which are e lements (usually pr imi t ive points) in S a • I t r e tu rns t rue if one exists, other-
wise false.]

Step 1. [Find the smallest subgraph G~ such t h a t G1 C G.~,~ c Ga, and G2 C G.2,~ C G~. If
e i the r G~ or G~ is conta ined in the o ther then the pa th concept is meaningless.] (This
is a simple search in the tree So ; the detai ls of following l inks f rom G~ and G2 back
to the root e lement G~ and tes t ing are left to the reader.)

Step 2. i fG~ = Go then go to s tep 3;
if type(G~) = 1 then

[G~ is a r subgraph]
p a t h ~-- false; r e tu rn
else
[G~ is a ~ subgraph]
find G.i ,~, G.~,t~ in the e lement l ist of G~ ;
if G.2,~ follows G,~L~

then pa th ~ t rue ; r e tu rn
else pa th ~-- false; r e tu rn ;

Step 3. [G.i,B, G.2,~ are e lements of Go] (Here several s t andard procedures can be used.
I t e r a t ed appl icat ion of the left context opera tor L in Go to form Lk(G.~,~) followed by
tes t ing for G.~,~ as an e lement of these sets will yield the pa th if i t exists. A dynamic
search, in the manner of Bel lman [1], which builds and tests Rk(G,.i,~) and Lk(G,,~,~)
a l t e rna te ly is a more sophis t ica ted and general ly more efficient a lgor i thm.)

The essential advantage of applying path to a graph structure So lies in step 2
where the existence or nonexistence of a path can be determined by examining a
single subgraph G~ of known characteristics; and in the fact that if step 3 must be
invoked, the graph Go has been considerably reduced. For example, in Figure 3
we can immediately verify that there is no path between points d and f since G2.~
(the smallest subgraph containing them) is a v subgraph. Similarly, the existence
of a path from c to s is quickly verified by noting that the elements G1,0 and Ge.0
(containing them respectively) are joined by a single edge in Go.

4. Generalizations of Graph Structures

In defining a graph structure $o of a graph G, we required that G be both acyclic
and that Sa be determined by only o" and r contractions. As a consequence we have
been assured that (1) G can be reconstructed from So, since each subgraph H is an
m-M subgraph; and (2) So can be derived from G by the iterated application of
local procedures. Basic acyclic graphs occur as a natural model in many computer
applications; nevertheless, one would like to generalize the procedure if possible.

It has been shown [4] that g and v contractions applied in this environment are

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

Graph Structures 421

FIG. 5.

G=
d

m
e f _._._,..~"

",,.c4.._.------- ~- /
\<--~.g \ .(

Source graph for graph structure of Figure 6

FIG. 6.

Go f~1
SG= ..~ - J ~____

G (o 2 m~

/,<
/ __)o3 ' ,

[/
G 3 , z L b ~ I e / ~l IG,~,~ ~,,

] \q

/ 5 6 \ G4,£ ?--*o)

} , I G5,4\ ct ,, i . I f Gs.41, okyl

f/og\~
GL51~ 1

\°h I

Graph structure Se of the graph G of Figure 5

strong convex homomorphisms which in some sense preserve the essential subgraph
structure of G. Suppose we relax the first requirement of acyclicity and let G contain
cycles (strongly connected components). We may then introduce a third kind of
contraction--call it a ~ contraction--which identifies all points on a cycle as a
single element. ~ contractions are also strong convex homomorphisms and 'y-sub-
graphs induce p-congruences. We could thus let the generalized graph structure So
of Figure 6 represent the graph of Figure 5. Unfortunately we have lost both the
properties of unique reconstructibility and local reduction. For example, from the
graph structure of Figure 6 we can deduce that there exists at least one edge from
the strongly connected ~ subgraph [b, d, el to the point m, but we cannot determine
the number of such edges nor the actual points involved. Similarly, reduction of G
to So may require nonlocal searches unless there is a bound on the length of the
smallest cycle in any strongly connected component.

On the other hand, Proposition 5 (or its equivalent) still holds true, since strong
connectivity is an equivalence relation on G, so that if H1 and H2 are both ? sub-
graphs of G and H1 n H2 # ~ , then H~ U H2 is ~ ,y subgraph. Further, in some
applications the sacrifice of properties (1) and (2) may not be serious. Consider
an information retrieval system where certain assertions (or terms) are consid-
ered equivalent (or synonymous) and it is only the transitive relationships, or
path structures, that are essential. Clearly the procedure "pa th" with appro-
priate modifications is still applicable. And if the system is a dynamic one, where
edges, or relations, are slowly being added to the structure, the "pa th" procedure
may be used to easily detect the presence of cycles and reduce them as they occur.

Journal of the Association for Computing Machinery, Vol. 19, No. 3, July 1972

4 2 2 J . L . PFALTZ

CI t

SO : Pt ~ P2 ~ Pt

Q2
~' P2'

Qt Q2bp 2 ~ 0'
S o: Pt " q)" Pt ~P2

FIG. 7. Edge contractions

In a similar manner the requirement of basicness can be relaxed. Many of the
preceding remarks are still applicable.

One last generalization is of importance in eertain network applications. We have
regarded the set of points as the essentially primitive set in the definition of the
graph G. Subgraphs and paths were defined in terms of points, and eontraetions
identified eolleetions of points (or elements) which had a common structural sig-
nifieanee. But in PERT networks, for example, it is the edges (called activities)
which are important and the points (called events) serve primarily as eonneetors.
One is tempted to simply consider the corresponding line graph, but this doesn't
quite work. Instead we must begin afresh and define eontraetions that identify two
edges (activities) which originate and terminate at the points (events) pl and p2 •
Again we have two fundamental cases, where the edges are disjoint or linearly
related, yielding the eontraetions sehematieally illustrated in Figure 7. These
intuitively eorrespond to our natural idea that two or more activities, conducted
either serially or in parallel, may constitute a single overall aetivity. The latter kind
of contraction has also been called a homoeomorphism (e.g. Harary [3]). The
resultant tree-like structure is easily visualized, and the reader is left to work out
the formal details.

REFERENCES

1. BELLMAN, R., COOKE, K., AND LOCKETT, J. Algorithms, Graphs, and Computers. Stevens
and Co., 1970.

2. :KNuTH, D.E . The Art of Computer Programming. Addison-Wesley, Reading, Mass., 1968.
3. HARARY, F. Graph Theory, Addison-Wesley, Reading, Mass., 1969.
4. FFALTZ, J. Convexity in graphs. J. Comb. Theory. 10, 2 (Apr. 1971), 143-162.
5. t)FALTZ, J., AND BERKUS, M. Web grammars and picture description. CSC Tech. Rep.,

U. of Maryland, College Park, Md., Sept. 1970, pp. 70-138.

RECEIVED FEBRUARY 1971; REVISED SEPTEMBER 1971

Journal of the Association for Computing Machinery, Vol. 19, No. 3, Ju ly 1972

