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ABsTRACT. 'The concept of a graph structure S5 in which a tree-like assemblage of subgraphs
is used to represent & directed graph @ is developed. This is directly analogous to the represen-
tation of lists by list structures. It is shown that with suitable restrictions, given 84 , & can
be uniquely determined, and conversely, given G, S; can be effectively constructed. A com-
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algorithms that illustrate the utility of graph structures, in particular, one that efficiently
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1. Introductzon

A simple list i3 a finite set of points (or items) that can be totally ordered. Such
simple lists have a straightforward computer representation as a simply linked
chain of cells, each of which represents a single point. The list concept becomes more
interesting if we admit the ability to identify all the points of some subsequence
and treat them as if they were a single item. Thus a more common definition is: a
list is a finite sequence of elements in which each element may be either a point or
itself a list (called a sublist). Computer representations of this more general concept
are called list structures. As before, an individual list may be a simple linked chain
of cells, but now those cells which represent sublist elements must contain an addi-
tional link to the sublist itself.

The utility of these tree-like list struetures is well documented in the literature.
One immediately considers generalizing this approach to the case of a set of points (or
items of information) where the relation between them is other than a total vrder-
ing—in ghort, to arbitrary directed graphs. Thus we would be led to define a directed
graph as a relation on a set of elements, each of which is either a point or itself a
directed graph. And, in effect, given an vriginal finite graph G, we would be identify-
ing arbitrary subgraphs A of G and treating them as single subgraph elements.

Unfortunately this appealing idea simply dvesn’t work in general. Given a sublist
in a list structure, we know how to reinsert it into ity higher level list, so that by a
simple traversal of the list structure tree we can reconstruct the original list of
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points. But given that H is a subgraph of G, how do we know how H is to be “re-
inserted” into ¢? We have lost the very valuable property of reconstructibility that
is present with list structures.

We will show, however, that by suitably restricting the kinds of graph G to be
considered, und by restricting the kinds of subgraph H to he identified as subgraph
elements, a workable and useful eoncept of a “graph structure” can be developed
which is directly analogous to that of a “list structure.”

First we will review the graph notation to be used, and will establish precisely
what we mean when we “identify’ a subgraph H of a graph ¢, and what we mean
by ‘‘reconstruetibility.” We will prove several results about graphs, which we will
use in Section 3 to show that graph structures actually have the properties we want
and that they can be effectively constructed. Graph structures themselves are de-
fined in Section 3. Finally, we will illustrate the utility of graph structures by pre-
senting algorithms that operate on them, and will suggest various modifications of
the concept.

2. o and 7 Conlractions

A simple direcled graph ( 18 a relation E (or set of ordered pairs) on a set of points
P, denoted G = (P, E). A subgraph H of G is E restricted to a subset Py C P.
With this definition of subgraph, one of several encountered in the literature, a sub-
graph is completely determined by its point set. Consequently we will often let H
denote both the point set and the subgraph, trusting that context will make the
precise meaning clear. For example, ¢ ~ H could denote the set of points in G but
not H, together with the subgraph on these points.

In general, the relation ¥ (for edge) is neither transitive nor reflexive. We can,
however, let F induce another relation p (for path)} on P which has both these
properties. We say there is a path from p to g, denoted p{p, ¢), if there exists a

sequence of points %o, ©1, -+, Tn € P with n > 0 such that (1) (z:—, z:) € E;
(2) iy Z wi,forl £ ¢ < n;and (3) o = p, 2 = ¢g. The path from p to g is
said to have length #, denoted | p(p, ¢) | = n. Transitivity and reflexivity are

evident; in particular, for all p € P there exists p(p, p) of length zero. If, in addi-
tion, p is a partial order relation on P (that is, weakly antisymmetric}, then & is
said to be an acyclic graph.

If H is any subgraph of @, then by the left context of H, denoted L(H ), we mean
the set {p ¢ H | (p, ¢) ¢ E forsome ¢ € H}. The right context is similarly defined,
R(H) ={r § H| (g, r) € E forsome ¢ € H}.

By the set of manimal points of H, denoted mg, and mazimal points, denoted
My, we mean the sets {q € H |forallp € H, p(p, q) impliesp = ¢} and {q € H |
forallr € H, p(q, r) implies ¢ = r} respectively.

Let R denote any relation on a set P and suppose we have, in addition, an equiva-
lence relation Z on P. It is natural to call £ an R-congruence on P if (py, 1) € R
implies (ps, ¢:) € R whenever (1) (p1, p2), (@1, ¢) € 2, and (2) (p1, q1) § 2.
{The usual definition of a congruence relative to a binary operator would omit con-
dition (2), but this seems too restrictive in the case of most relations.) Thus an B-
congruence preserves the relation B between elements of distinet congruence classes.

Now given any subgraph H, it, together with the singleton sets {p; for all
p: € G ~ H, defines a partition on P and hence an equivalence. The natural ques-
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tion to ask is, when does such a subgraph H induee an E-congruence? It turns out
that this is too stringent a requirement for our intended application so we instead
ask, when does such a subgraph H induce a p-congruence? These H have the prop-
erty that for any p € ¢ ~ H, if p(p, q.) for some q; £ H, then p(p, g:) for all
g € H.

By a homomorphism of G = (P, E) onto ¢ = (P, E"), denoted ¢:G — &, we
mean a simple point function ¢: P — P’ with the properties: (1) (p, ¢) ¢ F implies
(¢(p), ¢(q)) € E'5and (2) (¢, ¢) € E implies that for some z € ¢ '(p'), y €
¢7'(q") we have (x, y) £ E. We will use primes to denote points, edges, und paths
in a homomorphic image of G. Note that G and the point function ¢ alone define a
unique homomorphie image G’ on ¢(P), and that G und G’ are isomorphic if and
only if ¢ is one to one. A homomorphic mapping ¢:G — ' is called a contraction
if ¢ is acyelic.

ProrostTion 1. If G 4s acyclic, then any p-congruence T induces a contraciion
PR

Proor. Define ¢ by ¢(p) = ¢(g) iff (p, g) € Z. Itis now straightforward but
tedious to show that if ¢ is not acyclic, then G cannot have been acyelic cither
[4].

The eonverse to this proposition does not hold; we may have contractions ¢
whose pre-image partition is not a p-congruence.

A simple contraction ¢y:G — G is one where H is a nonempty subgraph of @, and
(1) ¢(g:) = ¢ forall g; € H, and (2) ¢ is an isomorphism of G ~ H onto ¢ ~ ar
Because ¢x is a homormophism we have in addition, (3) (p, ¢:) or (g:, r) € E,
where p, r € G ~ H implies (¢(p), ¢') or (¢, ¢(r)) € E'. In effect then, a simple
contraction ¢y on ¢ maps the entire subgraph H onto a single point, where q' i its
new identifier, while acting as the identity map on the rest of G. Clearly, if the
subgraph H induces a p-congruence on G, then ¢y is a simple contraction. Also, any
eontraction ¢ can be regarded as a composition of simple contractions ¢, , - - , va,
where H; = ¢ '(pJ).

We have observed that given G and any homomorphism ¢, G is completely de-
termined. Of prime coneern now are those contractions ¢r with the property that
H,G,andg € & completely eharacterize G. Since H is given and G ~ H >~ G ~
{¢'}, all that is necessary to complete the eharacterization is to be able to reconstruct
those edges between H and its left and right contexts. L(H) and R(H) themselves
are known sinee they correspond to L(¢") and R(¢), respectively. Contractions
¢r which have this property we call reconstructable.

In many computer applications, such as the representation of transitive implica-
tions in a semantic model, accessibility in a directory, or task dependence in a PErT
network, it is redundant to storc that information which ean be inferred from
transitivity. Regarding the relations as a directed graph G, the most compact
representation would have the property that | p(p, g) | > 2 implies (p, q) € E.
Such graphs are said to be basic. (Conversely, the most redundant representation of
G would be by its transitive closure G in which p(p, ¢) implies (p, ¢) € E.) Now
suppose the subgraph H induces a p-congruence on ; then clearly ¢x preserves all
the path information contained in G. We next show that if G is basie, g also pre-
serves the edge structure of G, in that we can reconstruct the missing edges, even
though H does not in general induce an E-congruence.

Prorosition 2. If a subgraph H tnduces a p-congruence on a basic acyclic graph
G, then H has the property that for any q € H and any p, s € G ~ H,
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(I) (p, q) € E implies g € mgand for all v € mg, {(p,r) € E, and

(2) (q,8) € Edmplicsq € Mgand forallr € My, (r,s) € E.

Proor. Suppose ¢ € mg ; then since @ is acyelic, there exists » € mg such that
p1(r, @) of length > 1. Since H is a p-congruence class, p(p, ¢) implies that gy(p, r)
of length > 1. Now by transitivity p; and p, imply | ps(p, ¢) | = 2 which, together
with (p, q) € E, contradicts G basic. So ¢ € msg. Now let r € my be any minimal
point. As before, we know p(p, 7). Suppose | p(p, #) | = 2, implying there exists
T: € p, 11 ¢ H (since r is minimal). Again, since H is a p-congruence class, we have
p(x1, q) of length > 1, yielding | o(p, g} | > 2, which with (p, ¢) € E apain con-
tradicts & basic. So | p(p, r} | = 1. The proof of assertion (2) is similar.

In effect then, every edge between the left context L(H) and H is between L(H)
and its set of minimal points mg . Further, for all p € L{(H), ¢ € ms, we have
(p, q) € E, and similarly for the right context. For this reason, subgraphs H which
exhibit the two properties of the preceding proposition will be called m-M subgraphs.
It is now readily apparent (1) that G is reconstructible from H, G', and ¢' € &
provided H is a m-M subgraph; (2) that in a graph & (not necessarily acyclic or
basie), any m-M subgraph H induces a p-congruence on G; and (3) if H induces a
p-congruence on a basie acyclic graph @, then H mustbe an m-M subgraph (Proposi-
tion 2 above).

Now the question becomes, how does one discover such m-M subgraphs in 2
practical sense; or equivalently, how does one discover simple contractions ¢a for
which H is an m-M subgraph ?

In particular, we would like & method of deriving such ¢# by combining contrac-
tions which are in some sense primitive, and which can themselves be discovered by
local search procedures. In [4] it is shown that for (f acyclic,

ProposITIoN 3. If on:G — G is any coniraction, then ¢x can be represented as a
composition of simple contractions ¢gx, where each H; is a subgraph on exactly two
poinis.

In such two-point contractions, the contracted subgraph A, is cither the trivial
graph with no edge between the two points, or a linear string with cxactly one edge
from one point to the other. This leads us to the following definitions. ¢y is called a
T contraction if H is an m-M subgraph and H is the trivial graph. ¢y is called a o
coniraction if H is an m-M subgraph and the points of H are totally ordered by p |a ,
that is, the path relation restricted to H. In these cases we will call H a r or ¢ sub-
graph, respectively, which simply denotes a special kind of m-M subgraph.

A graph G will be called i{rreducible if it contains no t or o subgraphs. In Figure 1,
H = [d, e] C Gisa r subgraph and ¢u..:G — ¢ is a 7 contraction; H' = [
¢1 © ¢ is a o subgraph and @pr 11 G — G is a o contraction; @7 is irreducible.

We can make several observations from this example. First, given the reduced
graph G and the contractions ¢ . , @ .ot , We can reconstruct . We will use this
observation as the key to defining graph structures. Also, the #-M subgraph [&, d, ¢]
in & can be represented as a composition of 7 and ¢ subgraphs, but the m-M sub-
graph [¢”, 1", ¢”, 9"1in @” cannot. Tn particular, this shows that we eannot strengthen
Proposition 3 and assert thatif H is an m-M subgraph, then ¢4 can berepresented by
the composition of ¢g, where each H,; is an m-M subgraph on two points, even
though in many cases this does turn out to be possible. We ean, however, show that:

Proros1iTioN 4. If G 15 basic and ¢y is any 7 (or o) conlraction, then ¢n can be
represented as a composition of two-potnt T (or o) contractions.

Proor. If H is a r subgraph, then evidently any subgraph H on two points
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Fii. 1. Examples of simple contractions

contained in I is a 7 subgraph, as s H ~ Hi Ule(H)}. ILH = [q1, -, q.) I8 &
o subgraph, we let Hy = [q1, 2] 0F [gn_1, ¢»] for the same result. ||
The requirement that 7 be basic is shown necessary {rom the following example.
/BME\
H = |a, b, ¢, d, e] is readily a o subgraph (it is an m-M subgraph totally ordered by
p). However, no two-point subgraph H, < I is a ¢ subgraph.

Prorostriox 5. I1f Hq, Hy are both v (or o) subgraphs of G acyclic, and H, N
I, = &, then Hy U Hyds o 1 {or o) subgraph.

Proor. Suppose H, and I, are 7 subgraphs, so that L(p:) = L(p,) for all
pi, p; € Hy, L{g:) = L(g;) for all q;, ¢, € He. Bince Hi N H: # &, pi = q;
for some 7, §, so that L(r,) = L{r;) forallr;,r, € Hi U H, . Similarly R(»;) = R(r;).
Readily, £ |#,ur, = &, 50 every point r; is both minimal und maximal, implying
H, U H, is an m-M subgraph, henee a 7 subgraph.

Now suppose H; = [p.), Hs = [g,] arc ¢ subgraphs. Since G is acyclic, we may
assume without loss of generality that there exists no path from gy to pr, and that

= ¢; . We can show that in the gencral case H; U H, is the totally ordered sub-
graph [pr, ==+, Piy @ity **° , Gu)y Where g = pg for 0 £ k <7 — 1 and
Pirk = Qsux for 0 < k < m — 4. To sce this last assertion, suppose, for instance,
that g;_y # pia; then q,01 € L(p:) implying g, € L{H}). Since H1 is an m-M
subgraph, p; € ma, , 50 p; = pi . But now p(gq:, g;21) and {(g; 1, p1) & E implies
plq, 1), a contradiction to our original assumption. The full proof requires con-
siderution of several eascs, all of which may be handled by this kind of argument.
It is then easy to. show that L{JI; U Hy) = L(p)) = L{H:) and R(H, UH,) =
E(g.) = R(H,), so that H, U H, is a o subgraph. 1
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CorOLLARY. If ¢u, and ¢u, are T (or o) contractions and Hi NH, = &, then
emlem, ()] = ea,un,(G) is a v (or &) contraction.

3. Implementation of Graph Slructures

A graph structure 8 is an acyelic graph Gy on a set of elements, each of which is
cither (1) a point, or (2) a graph structure &, which is a 7 (or ¢) subgraph of G .
Generally, if a graph structure is derived from or represents u simple acyclic graph
G, we denote it by S¢ . For example, the graph G of Figure 2 is represented by the

I
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T16. 4. Computer representation of a portion of Figure 3
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graph structure Sq of Tigure 3. In both figures we use lowercase letters as arbitrary
point identifiers; integers are used to identify other elements.

Notice that the graph structure Sg is tree-like, with the irreducible graph G
gerving as its root. The integer identifier “1” denotes an element (or point) in Gy,
but it also identifies the entire ¢ subgraph on the two elements “a’" and “2”. This
¢ subgraph we might call Gy, but since G also serves as a single element of Go,
we use the gymbolism 6,0 . In a similar manner, the 7 subgraph on the elements
4o and “d” which is a leaf of the tree structure we denote by G;.. In general
we will use the symbolism (7, 5 to denote subgraph structures where « is both the
element and subgraph identifier and B identifies the graph of which this is an ele-
ment. Thus depending on context, (7, s may be used to denote either a single element
a of the graph (#3, or the entire graph G, itself.

Graph struetures are particularly easy to represent in computer storage, In Figure
4 we illustrate onc such representation of a small portion of Figure 3 using what is
essontially a ring structure. Here each subgraph G, s is represented by linearly
linking cells that denote all of its elements. The ring is completed by linking this
list circularly through a cell o that denotes the entire subgraph and which in turn
belongs to the ring of clements of G . Here each primitive point has been treated as
a singleton subgraph; and these cells have been arranged as u linear symbol table
to permit easy entry into Sg using un external (or user) identifier for these points.
Other techniques of aceess, via hash coding or a directory, are equally possible.

Notice that it is unneccessary to explicitly represent any edges in any of the re-
duced portions of the graph, since these are implicitly indieated by the type of sub-
graph o {r or ¢) and its position in (5. Elements that belong to the irreducible
graph (%, must be handled differently, since here edges must be explicitly represented.
Standard tochniques include the use of a binury adjacency matrix or linked chains of
edge pointers. The method of representing Gy is omitted from Figure 4.

The ring structure of Figure 4 appears 10 be the most economical representation;
however, many variants are possible (sce Knuth [2] for such alternatives). For
example, a header cell may be added to precede the list of elements in G, and
the extra left field used to point directly to the header of Gy . The inclusion of such
minimal redundancy greatly simplifies the design of algorithms to operate on
the graph structure, as well as improving their efficiency.

Whatever actual computer representation is used, it is now a fairly straightforward
procedure to write algorithms that find the left (or right) contexts of any specified
point {or higher level element)}, or that step forward (or backward) along paths
in the original graph G, even though no edges in any reducible portion of G are
explicitly represented.

We have shown that, given a graph structure 8¢, we can effectively and econom-
leally represent it in computer storage. But it is seldom the case that Sg is given.
In most computer applications we are given a collection of points (data, if you will)
and the relation between them; that is, we are given only the graph G. We require
an effective procedure for deriving aud thereby constructing in computer storage
the corresponding graph structure Sg.

Intuitively, given a graph & = (P, E), one must examine all possible subsets
P; € P in order to discover redueible 7 and ¢ subgraphs H;—a nasty combinatorial
problem. However, Proposition 4 assures us that it is sufficient to consider only
those subgraphs on cxactly two points. We next present an algorithm which ex-
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haustively examines G for a two-point 7 or o subgraph H. If found, the points are
identified by the appropriate contraction ¢ . The procedure is then iterated on the
root (g of the resultant partial graph structure. If none are found, Gy is irreducible
and the reduction Is complete.

In this and following slgerithms we assume a programming language with basic set
manipulation capability. Thus, for example, £E{g) denoies a primitive set valued
funetion, which given an element in Gy, returns the set of all elements to its immediate
right. We use the replacement operator, as In {ryf smy,. < £(q), to denote an idexed
version of this set; and we assune an iterative control stutement of the form “for
each r € B(g) do....” ‘

Procedure Reduce [This algorithm examines the root Gy of & graph structure Sg for the
existenee of 8 two-point ¢ or ¢ subgraph H. If found, the elements of # are contracted to a
single element ¢’, while the subgraph H, now called G,.0 , is stored as a list of elements.]
Step 0. [Initialize] Gy « @
Step 1. for each element ¢ &€ Gy do until step 4
Step 2. {rehier.n ¢ R{g);
if n = 1 and L{r;) = g then
[H = {g, v} is a ¢ subgraph]
contract (e, ¢, 71); go to step 1:
if n = 0 and L(g) = & then go to step 5;
Step 3. [a > 2] for each r, € R{g) do until step 4
{pitietm = L{rs);
for each p; € L{ry) do until step 4
if R(g) ¢ R(p,) then go to step 4;
if L{g) = L{p;) then
[H = {g, p;} is o r subgraph)]
contract (7, q, p;); go to step 1;
Step 4. continue;
[y is completely reduced] return;

Step 5. [R(g) and L{g) are empty, so g is an isolated point. Check for the existence of another
isolated point] for each slement 9* # ¢ in Gy do until step 6
if Lig*) = B (¢®) = & then
contract (=, ¢, g¥); go to step 1;

Step 6. [continuc initial search] go to step 2;

Notice that ‘“‘contract (type er, €)"” merely involves replacing the elements
e1 and e; In Ga by a new one of the correct “type” and placing them on a ring through
it. Restructuring the basic search loop beginning with step 1, so that after a contrac-
tion it continues the search “where it left off” instead of biindly starting all over
again, significantly improves the performance of the preceding algorithm. Other
modifications in a similar vein can be made as well.

If G is known to be conneeted, as is often the case, then steps 5 and 6 can be
omitted. If, further, ¢ is known to be a two-terminal parallel series network
(TTSPXN), then for all ¢1, ¢ belonging to a common 7 or ¢ subgraph, we have
[ L{g) | = | L{g:) | = | R{q1) | = |R (g) | = 1, which ean be used to simplify the
procedure. Berkus [5] used this trick in developing an automata that would aceept
(construct a ‘‘parse tree” of ) TTSPN’s.

More importantly, every reduced subgraph in the graph strueture produced by
the algorithm contains only two points. Howcver, in the graph structure Se of
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Figure 3, there are several subgraphs consisting of three or more elements. Tt is
clearly inefficient to have, say, a 7 subgraph (s which is an element of a 7 sub-
graph (75, . The two should be combined into a single 7 subgraph, thus simplifying
Se . Proposition 5 asserts that such simplification is legitimate. The procedure ean
be illustrated by the following deceptively short algorithm in which type (¢.) has
value 0, 1, or 2 depending on whether G, is a singleton primitive point, r subgraph,
or ¢ subgraph, respectively.

Procedure Simplify [This algorithm examines sll the elements of a graph structure and
combines pairs of the same type where possible.]
for each Gap € Sy do
if type (Ga.s) = type (G,,) then
combine (Gagz, Gu.4);
return;

The subprocedure “combine’ is straightforward if we assume a list-like represen-
tation such as Figure 4. The list of elements of (7, 5 is simply inserted into the list of
elements of G,y s0 us to replace the original cell e, which had pointed to it. The first
statement “for each Gas € S¢ - -" indicutes simply that euch element of Sg
musi be examined. Since Sy 15 essentially tree structured, a simple post-order (or
pre-order) iraversal [2] of S¢ will suflice. Use of the latter requires some additional
care since we ure altering portions of the {ree as we are traversing them.

With these two basic procedures we have iLmplemented a system that will
accept any basic acyclic graph as input and store it as a graph structure. We would
now expect to design procedures which use this new kind of information structure
Sg . We illustrate with two typical examples.

Procedure Leftconlext (G..s) [This procedure, given the identifier (i.e. pointer to) graph
structure element G,.5 # Gy, delivers the elements immediately to the left.]
Step 0. get Gs,, [using the pointer 8];

Step 1. if Gg, 4 = G then lefteontext — L(Ga.,5); return;
if iype (Gg4) = 2 then
[{Gs.y is a ¢ subgraph, hence a list of elements ¢, , --- , ¢, where ¢; = e, {that s
points to Ha,z) for some 1 < i < n]
if e« = € then go to step 2
else leftcontext « e;, ; return;
Btep 2. [, is a 7 subgraph. (note that Gy, , cannot be a primitive point with type = 0
it contains (.. as a subelement)]
get G,,; [using the pointer ~];
since Gy, , does not contain elements to the left of Gz, we must work up in Sg .

Gor — Gas s
go to step 1;

Notice that the procedure “Leftcontext (G,s)’" differs from the primitive pro-
cedure “L((Gq,) " in that the latter operates only on elements of &, . Since we have
not speeified the computer representation of Gy, the design of the primitive proce-
dures L and R arc left to the reader. Also observe that both L and Lefteontext de-
liver the set of elements (not necessarily points) immediately to the left of the
specified element. If we take Figure 3 as an example, then Lefteontext ((f54) = la}
and Leftcontext ({) = |h, G}, where a, [, and A denote primitive points. If we
wish the left context of the point 7 in the sense of primitive points immediately to
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the left (e.g. Figure 2), we must provide an additional procedure that delivers the
“rightmost” points of Gh,0, namely {f, g, ¢}.

A frequently used procedure ig one which, given two points p1, p: of G (or ele-
ments of Sg), determines whether there is a path p(pr, p2) from p1 to pa. An
efficient implementation of this procedure is ecssential in information retrieval
systems where the path represents a transitive chain of implications or asscciations.
In a dynamie system where new points or edges are being added to a bagic model G,
repeated and rapid applications of this procedure arc required to test that the
acyelicity and basieness of ¢ are preserved with each new addition.

Boolean Proceduare Path (G, G2} [This procedure tests for the existence of a path from G,
to G:which are elements (usually primitive points) in 8¢ . It returns true if one exists, other-
wise false.]

Step 1. [Find the smallest subgraph G5 such that G, © Ga1s C G, and G2 € Guz s © G . I
either Gi or G is contained in the other then the path concept is meaningless.] (This
is a simple search in the tree S¢ ; the details of following links from G4 and G» back
to the root element & and testing are left to the reader.)

Step 2. if Gg = Gy then go to step 3;
if type{Gs) = 1 then

[Gs 15 a r subgraph]
path « false; return
else
|G is a & subgraph]
find Gar,5 , Qus.g in the element list of @5 ;
if Gaz,g follows Ga1,3
then path « true; return
else path « false; return;

Step 3. [Ga.s, Goz.s are elements of Gy] (Here several standard procedures ean be used.
Iterated application of the left context operator L in Gy to form L (Gas.s) followed by
testing for G, as an clement of these sets will vield the path if it exists. A dynamic
search, in the manner of Bellman [1], which builds and tests R¥(G,1.5) and F*(Gas )
alternately is a more sophisticated and generally more efficient algorithm.)

The essential advantage of applying path to a graph structure Sg lies in step 2
where the existence or nonexistence of a path can be determined by examining a
single subgraph Gj of known characteristies; and in the fact that if step 3 must be
invoked, the graph G, has been considerably reduced. For example, in Figure 3
we can immediately verify that there is no path between points d and [ since G,
(the smallest subgraph containing them) is a 7 subgraph. Similarly, the existence
of a path from ¢ to s is quickly verified by noting that the elements Gy and Gy
(containing them respectively) are joined by a single edge in G, .

4. Generalizations of Graph Structures

In defining a graph structure Se of a graph @, we required that G be both acyclie
and that Se be determined by only o and 7 contractions. As a consequence we have
been assured that (1) ¢ can be reconstructed from S , since each subgraph H 1s an
m-M subgraph; and (2) Ss can be derived from ¢ by the iterated application of
local procedures. Basic acyclic graphs occur as a natural model in many computer
applications; nevertheless, one would like to generalize the procedure if possible.

It hus been shown [4] that ¢ and + contractions applied in this environment are
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Fia. 6. Graph structure 8¢ of the graph @ of Figure 5

Btrong couvex homomorphisms which in some sense preserve the essential subgraph
structure of G. Suppose we relax the first requirement of acyelicity and let & contain
cveles (strongly connected components). We may then introduce a third kind of
contraction—call 1t a ¥ contraction—which identifies all points on a cycle as a
single element. y contractions are also strong convex homomorphisms and 4y-sub-
graphs induce p-congruences. We eould thus let the generalized graph structure Sg
of Figure 6 represent the graph of Figure 5. Unfortunately we have lost both the
properties of unique reconstructibility and local reduction. For example, from the
graph strueture ol Figure 6 we can deduece that there exigts at least onc edge from
the strongly connected « subgraph [b, d, €] to the point m, but we eannot determine
the number of such edges nor the actual points involved. Similarly, reduction of G
to S, may require nonlocal searches unless there is a bound on the length of the
smallest ¢yele in any strongly connected component.

On the other hand, Proposition 5 (or its equivalent) still holds true, sinee strong
conneetivity is an equivalenee relation on G, so that if I7; and H, are both v sub-
graphs of ¢ and H, N H, # &, then H, U H, is a vy subgraph. Further, in some
applications the sacrifiec of properties (1) and (2) may not be serious. Consider
an information retricval system where certain assertions (or terms) are eonsid-
ercd equivalent (or synonymous) and it is only the transitive relationships, or
path structures, that are essential. Clearly the proeedure “path” with appro-
priate modifications is still applicable. And if the system is a dynamic one, where
edges, or relations, are slowly being added to the structure, the “path” procedure
may be used to easily deteet the presenee of eveles and reduce them as they oceur.
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Fig. 7. Edge contractions

In a similar manner the requirement of basiencss can be relaxed. Many of the
preceding remarks are still applieable.

One last generalization is of importanee in eertain notwork applications. We have
regarded the set of points as the cssentially primitive set in the definition of the
graph G. Subgraphs and paths were defined in terms of points, and contractions
identified ecolleetions of points {or clements) which had a eommon structural sig-
nificance. But in PERT networks, for example, it is the edges (called activities)
which are important and the points {ealled events) serve primarily as connectors.
One is tempted to simply consider the corresponding line graph, but this doesn’t
quite work. Instead we must begin afresh and define contractions that identify two
edges {activitics) which originate and terminate at the points {events) py and p, .
Again we have two fundamental eases, where the edges are disjoint or linearly
related, viclding the contractions schematically illustrated in Figure 7. Thesc
intuitively correspond to our natural idea that two or more activities, conducted
either serially or in parallel, may ceonstitute a single overall activity. The latter kind
of contraction has also been called a homoeomorphism (e.g. Harary [3]). The
resultant tree-like structure is casily visualized, and the reader is left to work out
the formal details.
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