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ABSTRACT. The concept of a graph structure So in which a tree-like assemblage of subgraphs 
is used to represent a directed graph G is developed. This is directly analogous to the represen- 
tation of lists by list structures. It  is shown that with suitable restrictions, given So , G can 
be uniquely determined, and conversely, given G, So can be effectively constructed. A com- 
puter implementation which minimizes storage to represent G is presented, together with 
algorithms that illustrate the utility of graph structures, in particular, one that efficiently 
determines the existence of paths in G. 
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1. Introduction 

A simple list is a finite set of points  (or items) t ha t  can be to ta l ly  ordered. Such 
simple lists have a s t ra ight forward  compute r  representa t ion as a simply linked 
chain of cells, each of which represents  a single point.  The  list concept  becomes more 
interesting if we admi t  the  abil i ty to identify all the  points of some subsequence 
and t rea t  t hem as if t h e y  were a single item. Thus  a more  common  definition is: a 
list is a finite sequence of elements in which each element may  be either a point  or 
itself a list (called a sublist) .  C o m p u t e r  representat ions  of this more  general concept  
are called list s t ructures.  As before, an individual list may  be a simple linked chain 
of cells, bu t  now those cells which represent  sublist elements must  contain  an addi- 
tional link to  the  sublist itself. 

T he  ut i l i ty  of these tree-like list s t ructures  is well documented  in the literature. 
One immed ia t e ly  considers generalizing this approach  to the  case of a set of points (or 
items of informat ion)  where the  relat ion between them is other  t han  a tota l  order- 
i n g - i n  short ,  to  a rb i t r a ry  directed graphs.  Thus  we would be led to  define a directed 
graph as a relat ion on a set of elements, each of which is either a point  or itself a 
directed graph.  And,  in effect, given an original finite graph  G, we would be identify- 
ing a rb i t ra ry  subgraphs  H of G and t rea t ing  them as single subgraph elements. 

Unfo r tuna te ly  this appealing idea s imply doesn ' t  work in general. Given a sublist 
in a list s t ructure ,  we know how to reinsert  it into its higher level list, so tha t  by  a 
simple t raversal  of the  list s t ruc ture  tree we can reconstruct  the  original list of 
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points. But given that  H is a subgraph of G, how do we know how H is to be "re- 
inserted" into G? We have lost the very valuable property of reconstructibility that 
is present with list structures. 

We will show, however, tha t  by suitably restricting the kinds of graph G to be 
considered, and by restricting the kinds of subgraph H to be identified as subgraph 
elements, a workable and useful concept of a "graph structure" can be developed 
which is directly analogous to tha t  of a "list s t ructure."  

First we will review the graph notation to be used, and will establish precisely 
what we mean when we "identify" a subgraph H of a graph G, and what we mean 
by "reconstructibili ty." We will prove several results about graphs, which we will 
use in Section 3 to show that  graph structures actually have the properties we want 
and that  they can be effectively constructed. Graph structures themselves are de- 
fined in Section 3. Finally, we will illustrate the utility of graph structures by pre- 
senting algorithms that  operate on them, and will suggest various modifications of 
the concept. 

2. ~ and v Contractions 

A simple directed graph G is a relation E (or set of ordered pairs) on a set of points 
P, denoted G = (P,  E) .  A subgraph H of G is E restricted to a subset P ,  c P. 
With this definition of subgraph, one of several encountered in the literature, a sub- 
graph is completely determined by its point set. Consequently we will often let H 
denote both the point set and the subgraph, trusting that  context will make the 
precise meaning clear. For example, G ~ H could denote the set of points in G but 
not H, together with the subgraph on these points. 

In general, the relation E (for edge) is neither transitive nor reflexive. We can, 
however, let E induce another relation p (for path) on P which has both these 
properties. We say there is a path from p to q, denoted p(p, q), if there exists a 
sequence of points x0, xl ,  . . .  , xn E P with n > 0 such that  (1) (xi-1, xi) E E; 
(2) x~-i ~ x l ,  for 1 < i < n; and (3) x0 = p, xn = q. The path from p to q is 
said to have length n, denoted ]p(p, q) I = n. Transit ivity and reflexivity are 
evident; in particular, for all p E P there exists p(p, p) of length zero. If, in addi- 
tion, p is a partial order relation on P ( that  is, weakly antisymmetric),  then G is 
said to be an acyclic graph. 

If H is any subgraph of G, then by the left context of H, denoted L ( H ) ,  we mean 
the set {p ~ H ] (p, q) E E for some q E H}. The right context is similarly defined, 
R ( H )  = {r ~ H I  (q, r) E E for some q E H}. 

By the set of minimal points of H, denoted mx ,  and maximal points, denoted 
M , ,  we mean the sets {q E H [ for all p E H, p(p, q) implies p = q} and {q E H I 
for all r E H, p(q, r) implies q = r} respectively. 

Let  R denote any relation on a set P and suppose we have, in addition, an equiva- 
lence relation Z on P. I t  is natural to call ~ an R-congruence on P if (Pl ,  ql) E R 
implies (p2, q2) E R whenever (1) (p l ,  p2), (q~, q2) E 2, and (2) (p~, q~) ~ Z. 
(The usual definition of a congruence relative to a binary operator would omit con- 
dition (2), but this seems too restrictive in the case of most relations.) Thus an R- 
congruence preserves the relation R between elements of distinct congruence classes. 

Now given any subgraph H,  it, together with the singleton sets {P~I for all 
p~ E G ~ H, defines a parti t ion on P and hence an equivalence. The natural ques- 
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tion to ask is, when does such a subgraph H induce an E-congruence? It turns out 
that this is too stringent a requirement for our intended application so we instead 
ask, when does such a subgraph H induce a p-congruence? These H have the prop- 
erty that for any p E G ~ H, if p(p, q~) for some qi E H, then p(p, qi) for all 
q~E H. 

By a homomorphism of G = (P,  E)  onto G' = (P', E ' ) ,  denoted ~p:G --~ G', we 
mean a simple point function ~: P ~ P' with the properties: (1) (p, q) E E implies 
(~(p), ~p(q)) E E' ;  and (2) (p', q') E E'  implies that  for some x E - l ( p , ) ,  Y C 
- l (q , )  we have (x, y) C E. We will use primes to denote points, edges, and paths 
in a homomorphic image of G. Note that  G and the point function ~ alone define a 
unique homomorphic image G' on ~ (P ) ,  and that  G and G' are isomorphic if and 
only if ~ is one to one. A homomorphic mapping ~:G --~ G' is called a contraction 
if G' is acyclic. 

PROPOSITION 1. I f  G is acyclic, then any p-congruence ~ induces a contraction 
~:G ~ G'. 

PROOF. Define ~ by ¢(p)  = ~(q) iff (p, q) E Z. I t  is now straightforward but 
tedious to show that  if G' is not acyclic, then G cannot have been acyclic either 
[4]. 

The converse to this proposition does not hold; we may have contractions 
whose pre-image parti t ion is not a p-congruence. 

A simple contraction ¢H: G ~ G' is one where H is a nonempty subgraph of G, and 
(1) ~(q~) = q' for all q~ E H,  and (2) ¢ is an isomorphism of G ~ H onto G' ~ {q'}. 
Because ~H is a homormophism we have in addition, (3) (p, q~) or (qi, r) E E, 
where p, r E G ~ H implies (~(p) ,  q') or (q', ~(r)  ) E E' .  In effect then, a simple 
contraction ¢ ,  on G maps the entire subgraph H onto a single point, where q' is its 
new identifier, while acting as the identity map on the rest of G. Clearly, if the 
subgraph H induces a p-congruence on G, then tH is a simple contraction. Also, any 
contraction ~ can be regarded as a composition of simple contractions tu~,  • • • , ~ . .  
where Hi  = - l ( p , ) .  

We have observed that  given G and any homomorphism ~, G' is completely de- 
termined. Of prime concern now are those contractions ~,, with the property that  
H, G', and q' E G' completely characterize G. Since H is given and G ~ H ~ G' 
{q'}, all that  is necessary to complete the characterization is to be able to reconstruct 
those edges between H and its left and right contexts. L ( H )  and R ( H )  themselves 
are known since they correspond to L(q')  and R(q') ,  respectively. Contractions 
~ which have this property we call reconstructable. 

In many computer applications, such as the representation of transitive implica- 
tions in a semantic model, accessibility in a directory, or task dependence in a PERT 
network, it is redundant to store tha t  information which can be inferred from 
transitivity. Regarding the relations as a directed graph G, the most compact 
representation would have the property that  ]p(p, q) I >_ 2 implies (p, q) ~ E. 
Such graphs are said to be basic. (Conversely, the most redundant representation of 
G would be by its transitive closure G t in which p(p, q) implies (p, q) E E.) Now 
suppose the subgraph H induces a p-congruence on G; then clearly ~H preserves all 
the path information contained in G. We next show that  if G is basic, ~pH also pre- 
serves the edge structure of G, in that  we can reconstruct the missing edges, even 
though H does not in general induce an E-congruence. 

PROPOSITION 2. I f  a subgraph H induces a p-congruence on a basic acyclic graph 
G, then H has the property that for any q E H and any p, s E G ~ H, 
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(1) (p ,q )  E Eimpl i e sq  E m a a n d f o r a l l r  E m , ,  (p ,r )  E E, and 
(2) (q,s) E Eimpl iesq  E MBand fora l l r  E MH, (r,s) E E. 
PRooF. Suppose q ~ mH ; then since G is acyclic, there exists r E mH such that 

pl(r, q) of length ~_ 1. Since H is a p-congruence class, p(p, q) implies tha t  p2(p, r) 
of length > 1. Now by transitivity pl and p2 imply I p3(p, q) I >- 2 which, together 
with (p, q) E E, contradicts G basic. So q E m . .  Now let r E m .  be any minimal 
point. As before, we know p(p, r). Suppose I P(P, r) I ~- 2, implying there exists 
xl E p, Xl ~ H (since r is minimal). Again, since H is a p-congruence class, we have 
p(xl ,  q) of length >_ 1, yielding I P(P, q) I >_ 2, which with (p, q) E E again con- 
tradicts G basic. So I P(P, r) I = 1. The proof of assertion (2) is similar. 

In effect then, every edge between the left context L(H)  and H is between L(H)  
and its set of minimal points mH. Further,  for all p E L(H) ,  q E m r ,  we have 
(p, q) E E, and similarly for the right context. For this reason, subgraphs H which 
exhibit the two properties of the preceding proposition will be called m-M subgraphs. 
I t  is now readily apparent (1) that  G is reconstructible from H, G', and q' E G' 
provided H is a m-M subgraph; (2) that  in a graph G (not necessarily acyclic or 
basic), any m-M subgraph H induces a p-congruence on G; and (3) if H induces a 
p-congruence on a basic acyclic graph G, then H must be an m-M subgraph (Proposi- 
tion 2 above). 

Now the question becomes, how does one discover such m-M subgraphs in a 
practical sense; or equivalently, how does one discover simple contractions ~H for 
which H is an m-M subgraph ? 

In particular, we would like a method of deriving such ~ by combining contrac- 
tions which are in some sense primitive, and which can themselves be discovered by 
local search procedures. In [4] it is shown that  for G acyclic, 

PROPOSITION 3. l f  ~ : G  ~ G' is any contraction, then ~ can be represented as a 
composition of simple contractions ~H~ where each Hi is a subgraph on exactly two 
points. 

In such two-point contractions, the contracted subgraph Hi  is either the trivial 
graph with no edge between the two points, or a linear string with exactly one edge 
from one point to the other. This leads us to the following definitions. ~H is called a 
r contraction if H is an m-M subgraph and H is the trivial graph. ~H is called a 
contraction if H is an m-M subgraph and the points of H are totally ordered by p ] . ,  
that  is, the path relation restricted to H.  In these cases we will call H a 7- or (r sub- 
graph, respectively, which simply denotes a special kind of m-M subgraph. 

A graph G will be called irreducible if it contains no r or cr subgraphs. In Figure 1, 
H = [d, e] c G is a r subgraph and 02~.~i:G ~ G' is a r contraction; H' = [b', 
q'] c G' is a ~ subgraph and ~ib,.q,j:G' ~ G" is a ~ contraction; G" is irreducible. 

We can make several observations from this example. First, given the reduced 
graph G" and the contractions ~d.d , qEb'.q'l, we can reconstruct G. We will use this 
observation as the key to defining graph structures. Also, the m-M subgraph [b, d, e] 
in G can be represented as a composition of r and cr subgraphs, but  the m-M sub- 
graph [q",f", c", g"] in G" cannot. In particular, this shows that  we cannot strengthen 
Proposition 3 and assert t ha t  if H is an m-M subgraph, then @H can be represented by 
the composition of ~.~ where each Hi is an m-M subgraph on two points, even 
though in many cases this does turn out to be possible. We can, however, show that:  

PROPOSITION 4. I f  G is basic and ~H is any r (or (r) contraction, then qg can be 
represented as a composition of two-point r (or or) contractions. 

PROOF. If H is a r subgraph, then evidently any subgraph H1 on two points 
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d 

G o . f  

~.1 = ¢'P [d,e]b, q' 

*, - ' " ~ .  h' 

¢P2 =~[b',q'J n 
q 

G" a " . ' J / ~ " ' ~ . f "  

c " ' - - S  
g 

FIG. 1. E x a m p l e s  of s imp le  c o n t r a c t i o n s  

contained in H is a r subgraph,  as is H ~ H~ U {~(Hi)  }. I f  H = [q~, • • • , q,,] is a 
subgraph, we let H~ = [ql, q2] or [qn-1, q.] for  the  same result. | 
The requirement  t ha t  G be basic is shown necessary f rom the following example:  

"o'-. 

H = [a, b, c, d, el is readily a (r subgraph (it is an m - M  subgraph total ly  ordered by  
p). However,  no two-point  subgraph H1 c H is a ~ subgraph.  

PROPOSITION" 5. I f  H i ,  H2 are both r (or o') subgraphs of G acyclic, and H1 f'l 
H: ~ $2~, then Hi  U He is a r (or o') subgraph. 

PROOF. Suppose Hx and H2 are r subgraphs,  so tha t  L(p i )  = L(p~) for all 
pi,  p j C  H i ,  L(q l )  = L(q¢) for all qi ,  q j ~  H~.  Since H l f 3 H 2  ~ ~ ,  pi = qj 
for some i , j ,  so t h a t L ( r i )  = L ( r j )  for all r~, rj C H1 U H2. Similarly R(r i )  = R(r¢) .  
Readily, E IH~U"~ = ~ ,  SO every  point  ri is bo th  minimal and maximal ,  implying 
H~ U H2 is an m - M  subgraph,  hence a r subgraph.  

Now suppose H1 = [p~], H2 = [qi] are ~ subgraphs.  Since G is acyclic, we may  
assume wi thout  loss of general i ty t ha t  there  exists no pa th  from q~ to  p~, and tha t  
pi = qj • We can show tha t  in the general c a s e  H i  U H 2  is the tota l ly  ordered sub- 
graph [ p ~ , . . . , p ~ , q ¢ + t , " - , q ~ ] ,  where qi-k = pi-k for 0 < k < j - 1 and 
pi+k = qi+k for 0 < k < m - i. To  see this last assertion, suppose, for instance, 
that  qi-~ ¢ P~-~ ; then  q¢_l E L(p~) implying qj_~ C L ( H t ) .  Since H1 is an m - M  
subgraph, p~ ~ m,~ , so p~ = p~. But  now p(q t ,  qj_~) and (qi_t ,  p~) C E implies 
p(q~, pl),  a contradict ion to our original assumption.  The  full proof requires con- 
sideration of several cases, all of which m a y  be handled by  this kind of argument .  
I t  is then  easy t o  show t h a t L ( H 1  U H 2 )  = L(p~) = L(H~)  a n d R ( H ~  OHm) = 
R(q , )  = R ( H : ) ,  so tha t  H~ U H~ is a ~ subgraph.  | 
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COROLLARY. If ¢H1 and ~2  are 7" (or ¢) contractions and H1 N H2 ~ ~ ,  then 
,pH~[~H2(G)] = ~a,u~2(G) is a r (or ¢) contraction. 

3. Implementation o/ Graph Structures 
A graph structure S is an acyclic graph G~ on a set of elements, each of which is 
either (1) a point, or (2) a graph structure G, which is a r (or ¢) subgraph of G~. 
Generally, if a graph structure is derived from or represents a simple acyclic graph 
G, we denote it by So. For example, the graph G of Figure 2 is represented by the 

F I G .  2 .  

i 

e 
Original graph corresponding to the graph structures of Figures 3 and 4 

IO 

1 o - J ' "  ':,¢ G,o,8, I 
r I J a 2 (" £ 7 9 t "\ \\ k • ) I\ 

G2,t . ~ / r  Gil ,lO// \.. 
Ii 3/C) [ i I • . . . .  \ 

~_J _ p__9., ~ 

G ? , e /  \~G9,e) \-\ 

If / I I ~k  ~" / G3,2/, ~ L e /  ~G llo- 

\ r  L o p / 

G ( I  ,4  *C 

F I G .  3 .  Graph structure So of the graph G of Figure 2 

Point 
Table 

Fia. 4. 

(Element in G O ) 
I: 

Gt ,o: ¢ ~  

G 2 1 : ~  ~ - ~  , 

:t ° s In ° =  
to point f "  to G4, 2 
in table 

Computer representation of a portion of Figure 3 
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graph structure So of Figure 3. In both figures we use lowercase letters as arbitrary 
point identifiers; integers are used to identify other elements. 

Notice that  the graph structure So is tree-like, with the irreducible graph Go 
serving as its root. The integer identifier "1" denotes an element (or point) in Go, 
but it also identifies the entire ~ subgraph on the two elements "a" and "2". This 
cr subgraph we might call G1, but since G1 also serves as a single element of Go, 
we use the symbolism G1,0. In a similar manner, the r subgraph on the elements 
"c" and "d" which is a leaf of the tree structure we denote by Ga.4. In general 
we will use the symbolism G,,0 to denote subgraph structures where a is both the 
element and subgraph identifier and ~ identifies the graph of which this is an ele- 
ment. Thus depending on context, G~.0 may be used to denote either a single element 
c~ of the graph G¢, or the entire graph G~ itself. 

Graph structures are particularly easy to represent in computer storage. In Figure 
4 we illustrate one such representation of a small portion of Figure 3 using what is 
essentially a ring structure. Here each subgraph G,.0 is represented by linearly 
linking cells that  denote all of its elements. The ring is completed by linking this 
list circularly through a cell c~ that  denotes the entire subgraph and which in turn 
belongs to the ring of elements of Go • Here each primitive point has been treated as 
a singleton subgraph; and these cells have been arranged as a linear symbol table 
to permit easy entry into So using an external (or user) identifier for these points. 
Other techniques of access, via hash coding or a directory, are equally possible. 

Notice that  it is unnecessary to explicitly represent any edges in any of the re- 
duced portions of the graph, since these are implicitly indicated by the type of sub- 
graph a (r  or cr) and its position in Go. Elements that  belong to the irreducible 
graph Go must be handled differently, since here edges must be explicitly represented. 
Standard techniques include the use of a binary adjacency matrix or linked chains of 
edge pointers. The method of representing Go is omitted from Figure 4. 

The ring structure of Figure 4 appears to be the most economical representation; 
however, many variants are possible (see Knuth  [2] for such alternatives). For 
example, a header cell may be added to precede the list of elements in G,,0 and 
the extra left field used to point directly to the header of Go • The inclusion of such 
minimal redundancy greatly simplifies the design of algorithms to operate on 
the graph structure, as well as improving their efficiency. 

Whatever actual computer representation is used, it is now a fairly straightforward 
procedure to write algorithms that  find the left (or right) contexts of any specified 
point (or higher level element), or that  step forward (or backward) along paths 
in the original graph G, even though no edges in any reducible portion of G are 
explicitly represented. 

We have shown that., given a graph structure So, we can effectively and econom- 
ically represent it in computer storage. But it is seldom the case that  So is given. 
In most computer applications we are given a collection of points (data, if you will) 
and the relation between them; that  is, we are given only the graph G. We require 
an effective procedure for deriving and thereby constructing in computer storage 
the corresponding graph structure So. 

Intuitively, given a graph G = (P, E),  one must examine all possible subsets 
Pi ~ P in order to discover reducible r and ~ subgraphs H i - - a  nasty combinatorial 
problem. However, Proposition 4 assures us that  it is sufficient to consider only 
those subgraphs on exactly two points. We next present an algorithm which ex- 
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haus t i ve ly  examines  G for a two-po in t  7 or o" s u b g r a p h  H.  If  found,  the  po in ts  are 
ident i f ied b y  the  a p p r o p r i a t e  e o m r a e t i o n  g,H • T h e  p rocedure  is t hen  i t e r a t e d  on the  
roo t  Go of the  r e su l t an t  p a r t i a l  g r a p h  s t ruc ture .  I f  none are  found,  Go is i r reducib le  
and  the  r educ t i on  is complete .  

I n  th is  and  fol lowing a lgo r i thms  we assume a p r o g r a m m i n g  l anguage  wi th  basic  set 
m a n i p u l a t i o n  capab i l i ty .  Thus ,  for example ,  R ( q )  denotes  a p r i m i t i v e  set va lued  
funct ion,  which given an  e lement  in Go, r e tu rns  the  set of all e lements  to i ts immed ia t e  
r ight .  W e  use t he  r e p l a c e m e n t  ope ra to r ,  as in {rk}k=l,~ ~ R ( q ) ,  to  denote  an idexed 
vers ion  of th is  set ;  and  we assume an i t e r a t i ve  cont ro l  s t a t e m e n t  of t he  form "for  
each rk ~ R ( q )  do . . . .  " 

P r o c e d u r e  Reduce  [This algorithm examines the root Go of a graph structure So for the 
existence of a two-point r or ~r subgraph H. If found, the elements of H are contracted to a 
single element q', while the subgraph H, now called G,.0, is stored as a list, of elements.] 

Step 0. [Initialize] Go ~-- G; 

Step 1. for each element q E Go do until step 4 

Step 2. {rk}~-~.n ~-- R(q); 
if n = 1 and L(rO = q then 

[H = lq, r} is a cr subgraph] 
contract (a, q, r~); go to step 1: 

if n = 0 and L(q) = ~ then go to step 5; 

Step 3. [n > 2] for eachrk E R(q) do until s t ep4  
{pj}~-l,~ ~-- L(rk); 
for each pj E L(rk) do until step 4 

if R(q) ~ R(p~) then go to step 4; 
if L(q) = L(p~) then 

[H = {q, p~} is a r subgraph] 
contract (r, q, pi); go to step 1; 

Step 4. continue; 
[Go is completely reduced] return; 

Step 5. [R(q) and L(q) are empty, so q is an isolated point. Check for the existence of another 
isolated point] for each element q* ~ q in Go do until step 6 

if L(q*) = R (q*) = $2~ then 
c o n t r a c t  (~-, q, q*); go to s t ep  1; 

S tep  6. [ con t inue  in i t i a l  sea rch]  go to s t ep  2; 

Not ice  t h a t  " c o n t r a c t  ( t y p e  e l ,  e2)" mere ly  involves  r ep lac ing  the  e lements  
el and  e2 in G, b y  a new one of t he  correc t  " t y p e "  and  p lac ing  t h e m  on a r ing  t h r o u g h  
it. R e s t r u c t u r i n g  the  basic search loop beg inn ing  wi th  s tep  1, so t h a t  a f te r  a cont rac-  
t ion  i t  cont inues  the  search "where  i t  left  off" in s t ead  of b l ind ly  s t a r t i ng  all over  
again,  s ignif icant ly  i m p r o v e s  t h e  pe r fo rmance  of t he  p reced ing  a lgor i thm.  Other  
modi f ica t ions  in a s imi lar  ve in  can be m a d e  as well.  

I f  G is known  to  be connected,  as is of ten the  case, t hen  s teps  5 and  6 can be 
omi t t ed .  If,  fu r ther ,  G is k n o w n  to be a t w o - t e r m i n a l  pa ra l l e l  series ne tw ork  
( T T S P N ) ,  t hen  for all q l ,  q2 be long ing  to  a c o m m o n  T or  a subgraph ,  we have  
[L(q~)  I = I L(q2) ] = I R(q~) I = ]R (q2) I = 1, which  can be used to  s impl i fy  t he  
procedure .  Be rkus  [5] used this  t r i ck  in deve lop ing  an a u t o m a t a  t h a t  would  accept  
( cons t ruc t  a "pa r se  t r e e "  of ) T T S P N ' s .  

More  i m p o r t a n t l y ,  eve ry  r educed  subg raph  in t he  g raph  s t ruc tu re  p roduced  b y  
the  a lgo r i t hm conta ins  on ly  two points .  However ,  in the  g raph  s t ruc tu re  So of 
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Figure 3, t he re  a re  severa l  subgraphs  consis t ing of th ree  or more  elements .  I t  is 
clearly inefficient to  have,  say,  a r subg raph  G.,~ which is an e lement  of a v sub- 
graph G~,~. The  two should  be combined  into  a single T subgraph ,  t hus  s impl i fy ing  
Sa .  Propos i t ion  5 asser ts  t h a t  such s impl i f icat ion is leg i t imate .  The  p rocedure  can 
be i l lus t ra ted b y  the  fol lowing decep t ive ly  shor t  a lgo r i t hm in which t y p e  (G . )  has 
value 0, 1, or 2 depend ing  on whe the r  G .  is a s ingle ton  p r imi t ive  point ,  r subgraph ,  
or z subgraph,  respec t ive ly .  

Procedure Simpl i fy  [This algorithm examines all the elements of a graph structure and 
combines pairs of the same type where possible,] 

for each G.,t~ E So  do 
if type (G.,~) = type (G~,.) then 

combine (G.,~ , G~,~); 
return; 

The subprocedure  " c o m b i n e "  is s t r a i gh t fo rw a rd  if we assume a l is t- l ike represen-  
tat ion such as F igure  4. The  list  of e lements  of G.,~ is s imply  inse r ted  into the  list  of 
elements of G~,~ so as to  replace  the  or iginal  cell e .  which had  po in t ed  to  it. The  first 
s ta tement  "for  each G .~  C S a . "  . "  indica tes  s imply  t h a t  each e lement  of SG 
must be examined .  Since Sa  is essent ia l ly  t ree  s t ruc tu red ,  a s imple pos t -o rde r  (or  
prc-order) t r ave r sa l  [2] of Sa  will suffice. Use  of t h e  l a t t e r  requi res  some add i t iona l  
care since we are  a l te r ing  por t ions  of the  t ree  as we are  t r ave r s ing  them.  

With  these  two basic  p rocedures  we have  i m p l e m e n t e d  a sys t em t h a t  wil l  
accept any  basic  acyclic g raph  as inpu t  and  s tore  i t  as a g raph  s t ruc ture .  W e  would  
now expect to  design p rocedures  which use th is  new k ind  of in fo rma t ion  s t r u c t u r e  
Sa .  We i l lus t ra te  wi th  two t yp i c a l  examples .  

Procedure Le f t eon tex t  (G.,~) [This procedure, given the identifier (i.e. pointer to) graph 
structure element G.,~ ~ Go, delivers the elements immediately to the left.] 

Step 0. get G~,~ [using the pointer ~]; 

Step 1. if G~,. = Go then leftcontext ~-- L(G.,~); return; 
if type (G~,~) = 2 then 

[G~,~ is a a subgraph, hence a list of elements e~ , . . .  , e. where e~ = e. (that s 
points to G.,~) for some 1 < i _< n] 
if e. = e~ then go to step 2 

else leftcontext ~ e~_, ; return; 

Step 2. [G~,~ is a r subgraph. (note that G~,~ cannot be a primitive point with type = 0 
it contains G.,a as a subelement)] 
get G~,~ [using the pointer ~]; 
since G~,v does not contain elements to the left of G.,~, we must work up in Sa  .] 
G~, ~ +--- G~,5 ; 
go to step 1; 

Not ice  t h a t  the  p rocedure  " L e h c o n t e x t  (G . ,~ ) "  differs f rom the  p r imi t ive  pro-  
cedure " L ( G . , ~ ) "  in t h a t  the  l a t t e r  opera tes  only  on e lements  of Go • Since we have  
not specified the  compu te r  r ep re sen t a t i on  of Go, the  design of t he  p r imi t ive  proce-  
dures L and R are  left  to  the  reader .  Also observe  t h a t  bo th  L and Lef tcon tex t  de- 
liver the  set of e lements  (no t  necessar i ly  points)  i m m e d i a t e l y  to  the  left  of the  
specified e lement .  I f  we t a k e  F igure  3 as an example ,  t hen  Lef tcon tex t  (G5,4) = {a} 
and Lef tcon tex t  (1) = {h, G1,0}, where  a, l, and  h denote  p r imi t ive  points .  I f  we 
wish the  left  contex t  of the  po in t  l in the  sense of p r imi t ive  po in ts  i m m e d i a t e l y  to  
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the left (e.g. Figure 2), we must provide an additional procedure that delivers the 
"rightmost" points of G1.0, namely {fi g, e}. 

A frequently used procedure is one which, given two points p~, p2 of G (or ele- 
ments of So), determines whether there is a path p(pl, p:) from p~ to p2. An 
efficient implementation of this procedure is essential in information retrieval 
systems where the path represents a transitive chain of implications or associations. 
In a dynamic system where new points or edges are being added to a basic model G, 
repeated and rapid applications of this procedure are required to test that the 
acyclicity and basicness of G are preserved with each new addition. 

B o o l e a n  P r o c e d u r e  P a t h  (Gi , G2) [This procedure  tes ts  for the  existence of a p a t h  f rom Gi 
to G2 which are e lements  (usually pr imi t ive  points)  in S a  • I t  r e tu rns  t rue if one exists, other-  
wise false.] 

Step 1. [Find the  smallest  subgraph  G~ such t h a t  G1 C G.~,~ c Ga,  and G2 C G.2,~ C G~. If 
e i the r  G~ or G~ is conta ined  in the  o ther  then  the pa th  concept  is meaningless.]  (This 
is a simple search in the tree So ; the detai ls  of following l inks f rom G~ and G2 back 
to the  root  e lement  G~ and tes t ing  are left  to the  reader.)  

Step 2. i fG~ = Go then  go to s tep 3; 
if type(G~) = 1 then  

[G~ is a r subgraph]  
p a t h  ~-- false; r e tu rn  
else 
[G~ is a ~ subgraph]  
find G.i ,~,  G.~,t~ in the  e lement  l ist  of G~ ; 
if G.2,~ follows G,~L~ 

then  pa th  ~ t rue ;  r e tu rn  
else pa th  ~-- false; r e tu rn ;  

Step 3. [G.i,B, G.2,~ are e lements  of Go] (Here several s t andard  procedures can be used. 
I t e r a t ed  appl icat ion of the left  context  opera tor  L in Go to form Lk(G.~,~) followed by 
tes t ing  for G.~,~ as an e lement  of these sets will yield the pa th  if i t  exists. A dynamic  
search, in the manner  of Bel lman [1], which builds and tests  Rk(G,.i,~) and Lk(G,,~,~) 
a l t e rna te ly  is a more sophis t ica ted  and general ly more efficient a lgor i thm.)  

The essential advantage of applying path to a graph structure So lies in step 2 
where the existence or nonexistence of a path can be determined by examining a 
single subgraph G~ of known characteristics; and in the fact that if step 3 must be 
invoked, the graph Go has been considerably reduced. For example, in Figure 3 
we can immediately verify that there is no path between points d and f since G2.~ 
(the smallest subgraph containing them) is a v subgraph. Similarly, the existence 
of a path from c to s is quickly verified by noting that the elements G1,0 and Ge.0 
(containing them respectively) are joined by a single edge in Go. 

4. Generalizations of Graph Structures 

In defining a graph structure $o of a graph G, we required that G be both acyclic 
and that Sa be determined by only o" and r contractions. As a consequence we have 
been assured that (1) G can be reconstructed from So, since each subgraph H is an 
m-M subgraph; and (2) So can be derived from G by the iterated application of 
local procedures. Basic acyclic graphs occur as a natural model in many computer 
applications; nevertheless, one would like to generalize the procedure if possible. 

It has been shown [4] that g and v contractions applied in this environment are 
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strong convex homomorphisms which in some sense preserve the essential subgraph 
structure of G. Suppose we relax the first requirement of acyclicity and let G contain 
cycles (strongly connected components). We may then introduce a third kind of 
contraction--call it a ~ contraction--which identifies all points on a cycle as a 
single element. ~ contractions are also strong convex homomorphisms and 'y-sub- 
graphs induce p-congruences. We could thus let the generalized graph structure So 
of Figure 6 represent the graph of Figure 5. Unfortunately we have lost both the 
properties of unique reconstructibility and local reduction. For example, from the 
graph structure of Figure 6 we can deduce that  there exists at least one edge from 
the strongly connected ~ subgraph [b, d, el to the point m, but we cannot determine 
the number of such edges nor the actual points involved. Similarly, reduction of G 
to So may require nonlocal searches unless there is a bound on the length of the 
smallest cycle in any strongly connected component. 

On the other hand, Proposition 5 (or its equivalent) still holds true, since strong 
connectivity is an equivalence relation on G, so that  if H1 and H2 are both ? sub- 
graphs of G and H1 n H2 # ~ ,  then H~ U H2 is ~ ,y subgraph. Further,  in some 
applications the sacrifice of properties (1) and (2) may not be serious. Consider 
an information retrieval system where certain assertions (or terms) are consid- 
ered equivalent (or synonymous) and it is only the transitive relationships, or 
path structures, that  are essential. Clearly the procedure "pa th"  with appro- 
priate modifications is still applicable. And if the system is a dynamic one, where 
edges, or relations, are slowly being added to the structure, the "pa th"  procedure 
may be used to easily detect the presence of cycles and reduce them as they occur. 
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FIG. 7. Edge contractions 

In a similar manner the requirement of basicness can be relaxed. Many of the 
preceding remarks are still applicable. 

One last generalization is of importance in eertain network applications. We have 
regarded the set of points as the essentially primitive set in the definition of the 
graph G. Subgraphs and paths were defined in terms of points, and eontraetions 
identified eolleetions of points (or elements) which had a common structural sig- 
nifieanee. But in PERT networks, for example, it is the edges (called activities) 
which are important and the points (called events) serve primarily as eonneetors. 
One is tempted to simply consider the corresponding line graph, but this doesn't 
quite work. Instead we must begin afresh and define eontraetions that  identify two 
edges (activities) which originate and terminate at the points (events) pl and p2 • 
Again we have two fundamental cases, where the edges are disjoint or linearly 
related, yielding the eontraetions sehematieally illustrated in Figure 7. These 
intuitively eorrespond to our natural idea that  two or more activities, conducted 
either serially or in parallel, may constitute a single overall aetivity. The latter kind 
of contraction has also been called a homoeomorphism (e.g. Harary [3]). The 
resultant tree-like structure is easily visualized, and the reader is left to work out 
the formal details. 
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